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GRAPH ANALYTICS ACCELERATORS FOR
COGNITIVE SYSTEMS

.................................................................................................................................................................................................................

THIS ARTICLE PROPOSES AN ACCELERATOR ARCHITECTURE SPECIFICALLY OPTIMIZED FOR

VERTEX-CENTRIC GRAPH APPLICATIONS WITH IRREGULAR MEMORY ACCESS PATTERNS,

ASYNCHRONOUS EXECUTION, AND ASYMMETRIC CONVERGENCE. THE PROPOSED

ARCHITECTURE ADDRESSES THE LIMITATIONS OF EXISTING CPU AND GPU SYSTEMS

WHILE PROVIDING A CUSTOMIZABLE TEMPLATE. EXPERIMENTS SHOW THAT THE

GENERATED ACCELERATORS CAN OUTPERFORM A HIGH-END CPU SYSTEM WITH UP TO

3 TIMES BETTER PERFORMANCE AND 65 TIMES BETTER POWER EFFICIENCY.

......Cognitive systems comprise
many elements, such as natural language
processing, artificial intelligence, machine
learning, and data analytics.1 Due to the
increasingly large amounts of data that need
to be processed, ongoing efforts are aimed at
integrating big data analytics with cognitive
systems.2 Graph analytics has been gaining
popularity recently, especially due to the
abundance of data from web and social net-
works. Specifically, cognitive systems can use
large knowledge bases represented as graphs
for reasoning and human interactions.3

Many graph algorithms are executed in
the inner loops of cognitive systems. Various
speech-recognition and language-processing
models used in cognitive applications can be
represented as graphs4 (see the “Graph-Based
Cognitive Applications” sidebar for more
information).

Graph analytics–based cognitive applica-
tions differ from traditional computationally
intensive applications that have regular access
patterns and abundant data and thread-level

parallelism. Graph applications are hard to
parallelize due to irregular execution patterns
and synchronization requirements. In this
article, we propose an accelerator architecture
that targets graph analytics applications. We
implement our architecture as a template to
make it easy to model different applications.
Architects and designers can plug applica-
tion-level data structures and functions into
this template to generate hardware imple-
mentations for a large class of graph analytics
applications.

Graph Analytics Applications
Graph analytics applications are among the
core algorithms used in cognitive systems.
However, efficiently implementing these
applications on existing systems is not trivial.
There are several reasons for this, including
memory access bottlenecks, synchronization
problems, and irregular computation and
communication patterns. These properties
can be exploited to improve performance and
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power efficiency by customizing the
hardware.

Many graph algorithms are iterative in
nature, wherein execution continues until a
convergence criteria is met. However, the
number of iterations required to converge
individual vertices can vary significantly. For
instance, Figure 1a plots the percent of vertices
not converged throughout the PageRank itera-
tions, where less than 1 percent of vertices
require all iterations to converge. Our analysis
shows that enabling asymmetric convergence
decreases the total number of edges processed
by 47 percent on average. Although single-
instruction, multiple-data architectures can
process multiple vertices simultaneously, they
have control-divergence issues when asymmet-
ric convergence is enabled.

Asynchronous execution, which lets
neighboring vertices access the most recent
data, can improve work efficiency even fur-
ther.5 Figure 1b shows the relative number of
edges processed for PageRank when support
for both asynchronous execution and asym-
metric convergence is enabled. These features
reduce the number of edges processed by 66
percent on average. However, programmers
who want to utilize the work efficiency of
asynchronous execution should handle syn-

chronization and enforce sequential consis-
tency in software to prevent data race
conditions. Fine-grained locking mechanisms
slow down the execution of both CPUs and
throughput architectures.

One main bottleneck in graph applica-
tions is memory access due to low computa-
tion-to-communication ratios, low spatial
and temporal locality, and hard-to-predict
memory accesses.

Some real-world graphs, such as social
networks, follow power-law distribution,
wherein a small number of vertices have

Graph-Based Cognitive Applications
Finite-state decoding graphs are commonly used by WFST-based

speech recognition algorithms, wherein the objective is to com-

pute the most likely paths corresponding to the input sequences.1

Belief propagation on a Bayesian network is another graph ana-

lytics application used by different cognitive applications.2 Cogni-

tive platforms such as unmanned aerial vehicles or self-driving

cars run single-source shortest-path (SSSP) algorithms in their

inner-loop computations.3 Personalized recommendations can be

generated from large datasets using algorithms such as stochastic

gradient descent (SGD) on bipartite graphs. TextRank is a model

proposed for natural-language applications such as document tag-

ging based on key phrases and sentence extraction for automatic

summarization.4 TextRank operates on graphs in which vertices

represent terms and edges represent the associations inferred

from the input texts.

References
1. J.A. Bilmes, “Graphical Models and Automatic Speech

Recognition,” Mathematical Foundations of Speech and

Language Processing, Springer, 2004, pp. 191–245.

2. R. Nambiar and M. Poess, eds., Performance Evaluation and

Benchmarking: Traditional to Big Data to Internet of Things:

7th TPC Technology Conference, Springer, 2016, vol. 9508.

3. M. Ahmad, C.J. Michael, and O. Khan, “A Case for a Sit-

uationally Adaptive Many-Core Execution Model for Cog-

nitive Computing Workloads,” Proc. 2nd Workshop

Cognitive Architectures (CogArch 16), 2016; www.engr.

uconn.edu/�omer.khan/pubs/sas-cogarch16.pdf.

4. R. Mihalcea and P. Tarau, “TextRank: Bringing Order into

Texts,” Proc. Conf. Empirical Methods in Natural Lan-

guage Processing (EMNLP), 2004, pp. 404–411.

 0

 25

 50

 75

 100

0 20 40 60 80 100A
ct

iv
e 

ve
rt

ic
es

 (
%

)

Iteration

pk
wg

lj

 0

 25

 50

wg pk lj

E
d

g
es

p
ro

ce
ss

ed
 (

%
)

Dataset(a) (b)

Figure 1. Analysis of the PageRank application on three datasets: web-

Google (wg), soc-Pokec (pk), and soc-LiveJournal (lj). (a) Asymmetric

convergence of vertices for PageRank. (b) Work efficiency when

asymmetric convergence and asynchronous execution features are

enabled.
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much higher degrees when compared to the
rest. In such an environment, static partition-
ing of vertices to different threads greatly suf-
fers from load imbalances. An efficient
implementation must distribute its workload
carefully, and more importantly, should be
able to handle high-degree vertices efficiently.

Proposed Architecture Template
Several graph frameworks have been pro-
posed in recent years. The common objective

is to hide the complexities of parallel and dis-
tributed software development by providing
a high-level programming interface. We fol-
low a similar approach for our template
architecture. Specifically, we use the vertex-
centric (“think like a vertex”) abstraction
model, which comprises gather-apply-scatter
functions as in GraphLab.5 In this model,
users must define basic data structures corre-
sponding to each vertex and edge, and imple-
ment serial functions for the following
operations:

� Gather: Collect and accumulate data
from the neighboring vertices and
edges.

� Apply: Perform the main computa-
tion for the input vertex using the
Gather results.

� Scatter: Distribute the vertex data
computed in Apply to neighbors and
determine whether to schedule the
neighboring vertices for future
execution.

The application-specific data structures
and functions in the programming interface
are clearly separated from the architecture
template implementation. All application-
specific data structures and functions are
defined in plain C language and are plugged
into our architecture template. The template
automatically removes the hardware corre-
sponding to empty data structures and
unused features. As an example, the applica-
tion-specific part of our PageRank imple-
mentation is about 40 lines of C code,
whereas the common architecture template is
more than 30,000 lines of SystemC code and
is not visible to the user.

The proposed accelerator is loosely
coupled with the host processor and is con-
nected to the system DRAM. We assume
that the host processor will populate the
graph data in DRAM and send a start signal
to the accelerator. Once the accelerator fin-
ishes computation, it will send a signal back
to the host. Figure 2a shows the proposed
high-level architecture for a single accelerator
unit (AU). The architecture has the following
features:

� Tens of vertices and hundreds of
edges are processed simultaneously to
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Figure 2. Accelerator block diagram. For clarity, some of the connections

between the blocks are not shown. (a) Single accelerator unit. (b) Multiple

accelerator units.
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achieve high levels of memory-level
parallelism. This is done by main-
taining partial states for multiple ver-
tices and edges while waiting for
responses to long-latency memory
requests.

� Scale-free graphs are handled through
dynamic load balancing. For exam-
ple, hundreds of edge states can be
assigned to a single high-degree ver-
tex or can be distributed to multiple
low-degree vertices during execution.

� Synchronization between concur-
rently processed vertices and edges is
done in the sync unit (SYU) module,
which is designed for graph process-
ing. This module ensures sequential
consistency with negligible perform-
ance overhead. Furthermore, it works
in a distributed fashion without a
centralized bottleneck.

� The active list manager (ALM)
module maintains the set of active
(not yet converged) vertices. This
module enables simultaneous high-
throughput reads and writes to and
from the distributed active list (AL)
data structure without the need for
expensive locking mechanisms.

� The memory subsystem is optimized
for sparse graph data structures.

In the following sections, we describe dif-
ferent modules in a single AU and explain
how to connect multiple AUs together.

Computational Units
The main computational units in our accelera-
tor are the gather unit (GU), apply unit
(APU), and scatter unit (SCU), which are
shown in Figure 2a. These computational units
are designed to perform the respective gather,
apply, and scatter operations for each vertex.

Collecting and accumulating data from
neighbors requires several memory load oper-
ations, each of which can have long latency
to the system memory. For this reason, we
propose a latency-tolerant architecture for
the GU, in which many vertices and edges
are processed concurrently, and partial vertex
and edge states are stored locally.

The limited local storage available in
the GU is shared among all concurrently

processed vertices. In our proposed GU
microarchitecture, a credit-based mecha-
nism assigns the available edge slots dynam-
ically to multiple vertices. The vertices that
are supposed to execute logically before
others are given higher priority during this
assignment. For example, it is possible for a
high-priority and high-degree vertex to be
assigned all available edge slots. It is also pos-
sible for multiple low-degree vertices to share
the available storage. These decisions are
made dynamically on the basis of the vertex
degrees and priorities.

The APU module performs computation
for each vertex using the data computed by
the GU without accessing the system mem-
ory. The computation in this stage is typically
pipelined over multiple cycles so that differ-
ent vertices can be processed at different pipe-
line stages.

The SCU implements the scatter program
for each vertex v, in which the application-
specific scatter functions determine how to
distribute the updated data of v to its neigh-
bors. Similar to the GU, multiple vertices
and edges are processed in parallel to hide
memory-access latencies, and a credit-based
mechanism dynamically assigns local storage
to vertices. For each neighboring vertex u of
vertex v, the application-specific function also
determines whether v should activate u (that
is, schedule u for future execution).

Enabling Sequential Consistency
The SYU is the critical module that allows
race-free and sequentially consistent execu-
tion of all vertices in the proposed architec-
ture. The SYU is in charge of coordination
between vertices such that read-after-write
(RAW) and write-after-read (WAR) depend-
encies are respected and no redundant activa-
tion occurs.

The basic idea to ensure sequential consis-
tency is to assign a unique rank value to each
vertex before it begins execution. The rank
values are increased monotonically so that
the vertices that start execution earlier have
lower ranks and higher priorities. We use the
edge consistency model,5 which implements
sequential consistency by enforcing ordering
between adjacent vertices, since a vertex is
allowed to update only its own data and the
data of edges connected to it.

.............................................................
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The SYU microarchitecture comprises the
following basic operations.

Maintain vertex states. Once a new vertex is
received from runtime, it is assigned a unique
rank and stored in a table that contains all
vertices currently being executed in the AU.
The row corresponding to vertex v contains
its ID, rank, execution state, and all stalled
requests for v. The execution state of v is also
updated when a gather-done or scatter-done
message is received.

Maintain RAW ordering. Consider an edge
e : u! v, in which rank(u) < rank(v)—that
is, the execution of u should (logically) hap-
pen before that of v. Sequential consistency
dictates that v should not read the data of ver-
tex u or edge e before u updates them. The
neighboring vertex data (NVD) access
requests from the GU go through the SYU to
ensure this ordering.

Maintain WAR ordering. Consider edge u!
v. There is a potential WAR dependency
between u and v if rank(u) > rank(v). To
maintain WAR ordering, the SCU sends a
message to the SYU corresponding to each
edge e : u! v and waits for acknowledgement
before it writes data associated with e or u.

Avoid unnecessary activations. Consider an
activation message received from the SCU
corresponding to edge u ! v. This implies
that vertex v should be added to the AL for
future execution. However, if vertices u and v
are being executed concurrently, activation of
v may be unnecessary, depending on the ver-
tex ranks. Specifically, if rank(u) < rank(v),
sequential consistency mechanisms guarantee
that vertex v will access the data most recently
updated by vertex u. So, it is unnecessary to
schedule v for future execution again. The
SYU filters out such unnecessary activations
before passing the activation requests to the
ALM.

Managing Active Vertices
The AL stores the set of vertices that need to
be executed in the future. The initial AL is
application dependent and is part of the
input data. Because the AL could contain all
vertices in the input graph, it must be stored

in the system memory. As we explained ear-
lier, the application-specific convergence con-
dition is checked in the SCU to determine
which vertices to schedule for future execu-
tion, whereas the unnecessary activations are
filtered out in the SYU. The ALM is respon-
sible for the following tasks: extracting verti-
ces from the AL and sending them to
runtime for execution, and receiving new
activation requests from the SYU and adding
them to the AL while avoiding duplications.

For storage and data-access efficiency, the
AL comprises two data structures: a bit vector
in which each bit corresponds to the presence
or absence of a vertex in the AL, and a queue
of bit vector indices in which each index cor-
responds to a 256-bit segment of the bit
vector.

To extract new vertices for execution, the
ALM reads the next bit vector index from the
AL queue and loads the corresponding 256-
bit segment of the bit vector. Then, it starts
sending the vertices that have set bits in the
bit vector to runtime for execution.

When the ALM receives an activation
request for vertex v, it first checks whether the
bit corresponding to v is locally stored in the
ALM. If so, it simply sets that bit locally.
Otherwise, it sends the request to the AL
memory unit. Special care must be taken to
handle in-flight bit vectors and vertex indices.
Specifically, when a vertex index is sent to
runtime, it also must be registered with the
SYU, and an acknowledgment needs to be
received before removing the corresponding
bit from the local storage of ALM. Other-
wise, an incoming activation request for the
same vertex could fail to detect that the vertex
is already being executed. Similarly, the in-
flight bit vectors between ALM and AL
memory must be handled with care to avoid
adding duplicate vertices to AL.

Runtime
The runtime (RT) module is in charge of
monitoring available resources in the AU and
scheduling new vertex executions. It reads
new vertices from the ALM and sends them
to the SYU when it detects that there are
available resources. It is also responsible for
detecting the termination condition and
sending out a completion signal when there
are no in-flight or executing vertices and the
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AL is empty. Runtime is a simple module
comprising two counters to track the number
of vertices in the gather and scatter stages.

Specialized Memory Subsystem
Different data structures must be accessed
when a vertex program is executed. In this
article, we assume that the popular com-
pressed sparse row format is used to store the
input graph topology. In this format, indices
of the edges connected to each vertex are
stored contiguously in an array, which is
denoted as Edge Info. The offsets to this
array are stored in a separate array denoted as
Vertex Info. In addition, application-specific
data structures can be defined per vertex and
edge, which are denoted as Vertex Data and
Edge Data. As we explained previously, the
AL must also be stored in main memory.

In the proposed architecture, we define a
custom cache corresponding to each graph
object type as shown in Figure 2a. The access
patterns for different object types can vary
significantly. For example, Edge Info accesses
tend to have good spatial locality because of
contiguous storage of indices. On the other
hand, Vertex Data and Edge Data accesses
typically have poor temporal and spatial
locality for unstructured graphs due to the
random nature of accesses to neighbors’ data.
The individual cache parameters are custom-
izable in our template-based architecture,
and they can be determined based on the spe-
cific application requirements.

Multiple Accelerator Units
We can further improve throughput by repli-
cating the AUs as shown in Figure 2b. In this
article, we focus on fine-grained parallelism
by tightly integrating a small number of AUs,
and statically assigning vertices and edges to
AUs on the basis of their indices. The mem-
ory subsystem is also partitioned according to
this assignment in a multibank fashion.

When multiple AUs are concurrently run-
ning, additional synchronization mechanisms
are needed. There are two lightweight mod-
ules with minimal processing requirements.

The first is the global rank counter (GRC)
module. As we’ve described, sequential consis-
tency is implemented by assigning monotoni-
cally increasing unique ranks to vertices.
When multiple AUs are involved, mono-

tonicity is achieved by a GRC that sends an
increment signal to all SYUs whenever an
SYU assigns a new rank. The uniqueness of
ranks is ensured by concatenating the AU ID
to the least-significant bit of the original ranks.
The GRC is connected to each AU’s SYU.

The second module is the global termina-
tion detector (GTD). Each AU’s runtime is
responsible for detecting the termination
condition for that AU. When multiple AUs
are involved, the GTD collects the termina-
tion signals from individual RTs and deter-
mines the termination condition of the
whole system. The GTD is responsible for
notifying the host processor that the compu-
tation is finished.

The GRC and GTD are the only central-
ized modules in a multi-AU system. Both
implement simple operations that are not in
the critical path for performance. Hence, the
execution happens in a distributed fashion
without any centralized bottleneck.

Empirical Study
We selected four graph analytics applications
that are used as part of cognitive systems.

� PageRank (PR) is a ranking algo-
rithm that is used not only to rank
web pages, but also to summarize
text, as in TextRank and LexRank.6

� Stochastic gradient descent (SGD) is
an iterative machine-learning algo-
rithm that is used in personalized rec-
ommendations. This is especially
important because many web services
depend on personalized recommen-
dations to improve user experience.

� Single-source shortest path (SSSP) is
a kernel used in unmanned aerial
vehicles, which are among future cog-
nitive systems, and also in network
analytics as a kernel for betweenness-
centrality calculations.

� Loopy belief propagation (LBP) is an
important kernel used by cognitive
systems in the context of image proc-
essing and other applications.

For each benchmark, we tried to use the
most efficient parallel implementation, either
by obtaining from available benchmark suites
or manually optimizing. Our preliminary
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work offers further details of applications and
selected benchmark implementations.7

Experiments
We tested each application with various data-
sets from well-known graph databases.7 The
number of vertices and edges in the selected
input graphs for PageRank and SSSP applica-
tions ranged from 916,000 vertices and

5.1 million edges to 67 million vertices and
1 billion edges. For LBP, we used three images,
with (1,000 � 1,000), (2,000 � 2,000), and
(3,000� 3,000) pixels. For SGD, we selected
two movie datasets with 1 million and 10 mil-
lion ratings. Table 1 shows the details of the
selected datasets.

To calculate the native system’s energy and
power consumption, we used the running

Table 1. Datasets used in our experiments.7

Application Dataset No. of vertices No. of edges

PageRank and single-source

shortest-path (SSSP) (directed)

web-Google (wg) 916,000 5.1 million

soc-Pokec (pk) 1.6 million 30 million

soc-LiveJournal (lj) 4.8 million 69 million

g24 (synthetic) 16.8 million 268 million

g25 (synthetic) 33.5 million 536 million

g26 (synthetic) 67 million 1 billion

Loopy belief propagation

(undirected)

1,000� 1,000 pixels 1 million 2 million

2,000� 2,000 pixels 4 million 8 million

3,000� 3,000 pixels 9 million 18 million

Stochastic gradient descent

(undirected)

1 million ratings 9,700 1 million

10 million ratings 80,000 10 million
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average power limit. For our accelerator
implementations, we used 22-nm libraries
for standard cells and metal layers, Cacti for
caches, and DramSim2 for memory. We used
a commercial high-level synthesis tool to gen-
erate RTL from our SystemC-based perform-
ance models in order to estimate area,
performance, and power. For all applications,
the number of AUs was four. However, other
microarchitectural parameters (such as cache
sizes and the number of vertices and edges
processed concurrently) have been tuned
individually per application. Our preliminary
work offers further details of our experimen-
tal setup, including the parameters used.7

Results and Discussion
We used a 24-core IvyBridge server system as
the baseline for our experiments. As Figure
3a shows, our accelerator (ACC) outperforms
or shows similar performance in 9 out of 17
test cases when compared to the 24-core
CPU system. Among four applications, Page-
Rank is the best example that can benefit
from asynchronous execution and asymmet-
ric convergence.5 Specifically, our accelerator
outperforms the 24-core CPU in four cases,
while having very close execution times in the
remaining two cases. Additionally, our accel-
erator shows speedups in the range of 2 to
4.6 times relative to 12 cores. As expected,
we have observed up to 39 percent work effi-
ciency, which in turn improves the
performance.

The speedup of the LBP application is
between 2.5 and 3 times with respect to
24 cores. LBP-like applications can benefit
from asynchronous execution (we have
observed up to 70 percent work efficiency
with our accelerator) thanks to better conver-
gence behavior,5 but implementing sequen-
tial consistency can slow down the execution
on a CPU.8 For SGD, our accelerator per-
forms better than the 24-core CPU because
the large number of arithmetic operations
per vertex (due to vector product calculation
for each edge) can be done more efficiently in
custom hardware. In contrast, SSSP is the
only application that performed worse than
the 24-core CPU, because the CPU imple-
mentation uses the delta stepping algorithm,
which cannot be modeled by the gather-
apply-scatter abstraction.

We observed that power consumed in the
accelerator is dominated by the DRAM
power, as previous studies have also shown.9

DDR3 power is projected to DDR4 power
for CPU experiments, and core þ uncore
power dominates the CPU’s power
consumption.

Figure 3b shows the power consumption
of our accelerators compared to a 24-core
CPU. Our accelerator is up to 65 times more
power efficient. In particular, although SSSP
performed worse than the 24-core system, it
was 65 times more power efficient.

Figures 4a and 4b show the execution
time and memory bandwidth, respectively, as
a function of the number of AUs. We
observed good speedups for up to four AUs,
but beyond this, we saw diminishing returns
due to the memory bandwidth saturation.
Figure 4 shows that performance and mem-
ory bandwidth utilization follow a similar
pattern for irregular graph applications. Page-
Rank and SSSP can achieve high memory
bandwidth utilization even with one or two
AUs, because they require limited computa-
tion per edge compared to LBP and SGD.

O ur accelerator architecture targets
graph analytics applications that fol-

low the well-known gather-apply-scatter
abstraction. Due to irregular memory access
patterns in these applications, the perform-
ance bottleneck is the system memory
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bandwidth. We have shown that the pro-
posed accelerators can use this bandwidth in
a much more-power efficient way than multi-
core CPUs. Furthermore, the proposed tem-
plate architecture includes work efficiency
features targeted at iterative graph applica-
tions, which lead to performance improve-
ments of up to 3 times. Although we have
studied fixed-function accelerators in this
article, future work could make the proposed
architecture software programmable by
replacing the application-specific logic with
simple processors. Another aim of future
work is to generalize the proposed architec-
ture beyond the gather-apply-scatter abstrac-
tion model. MICR O
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