3 research outputs found

    An evolving feature weighting framework for radial basis function neural network models

    Get PDF
    Via Granular Computing (GrC), one can create effective computational frameworks for obtaining information from data, motivated by the human perception of combining similar objects. Combining knowledge gained via GrC with a Fuzzy inference engine (Neural-Fuzzy) enable us to develop a transparent system. While weighting variables based on their importance during the iterative data granulation process has been proposed before (W-GrC), there is no work in the literature to demonstrate effectiveness and impact on Type-2 Fuzzy Logic systems (T2-FLS). The main contribution of this paper is to extend W-GrC, for the first time, to both Type-1 and Type-2 models known as Radial Basis Function Neural Network (RBFNN) and General Type-2 Radial Basis Function Neural Network (GT2-RBFNN). The proposed framework is validated using popular datasets: Iris, Wine, Breast Cancer, Heart and Cardiotocography. Results show that with the appropriate selection of feature weight parameter, the new computational framework achieves better classification accuracy outcomes. In addition, we also introduce in this research work an investigation on the modelling structure's interpretability (via Nauck's index) where it is shown that a good balance of interpretability and accuracy can be maintained

    Anomaly Detection in IoT: Recent Advances, AI and ML Perspectives and Applications

    Get PDF
    IoT comprises sensors and other small devices interconnected locally and via the Internet. Typical IoT devices collect data from the environment through sensors, analyze it and act back on the physical world through actuators. We can find them integrated into home appliances, Healthcare, Control systems, and wearables. This chapter presents a variety of applications where IoT devices are used for anomaly detection and correction. We review recent advancements in Machine/Deep Learning Models and Techniques for Anomaly Detection in IoT networks. We describe significant in-depth applications in various domains, Anomaly Detection for IoT Time-Series Data, Cybersecurity, Healthcare, Smart city, and more. The number of connected devices is increasing daily; by 2025, there will be approximately 85 billion IoT devices, spreading everywhere in Manufacturing (40%), Medical (30%), Retail, and Security (20%). This significant shift toward the Internet of Things (IoT) has created opportunities for future IoT applications. The chapter examines the security issues of IoT standards, protocols, and practical operations and identifies the hazards associated with the existing IoT model. It analyzes new security protocols and solutions to moderate these challenges. This chapter’s outcome can benefit the research community by encapsulating the Information related to IoT and proposing innovative solutions

    Granular-Rule Extraction to Simplify Data

    No full text
    Granulation simplifies the data to better understand its complexity. It comforts this understanding by extracting the structure of data, essentially in big data or cloud computing scales. It can extract a simple granular-rules set from a complex data set. Granulation is associated with theory of fuzzy information granulation, which can be supported by fuzzy C-mean clustering. However, intersections of fuzzy clusters create redundant granular-rules. This paper proposes a granular-rules extraction method to simplify a data set into a granular- rule set with unique granular-rules. It performs based on two stages to construct and prune the granular-rules. We use four data sets to reveal the results, i.e., wine, servo, iris, and concrete compressive strength. The results reveal the ability of proposed method to simplify data sets by 58% to 91%
    corecore