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Abstract

Via Granular Computing (GrC), one can create effective computational frameworks

for obtaining information from data, motivated by the human perception of com-

bining similar objects. Combining knowledge gained via GrC with a Fuzzy inference

engine (Neural-Fuzzy) enable us to develop a transparent system. While weighting

variables based on their importance during the iterative data granulation process

has been proposed before (W-GrC), there is no work in the literature to demon-

strate effectiveness and impact on Type-2 Fuzzy Logic systems (T2-FLS). The main

contribution of this paper is to extend W-GrC, for the first time, to both Type-1

and Type-2 models known as Radial Basis Function Neural Network (RBFNN) and

General Type-2 Radial Basis Function Neural Network (GT2-RBFNN). The pro-

posed framework is validated using popular datasets: Iris, Wine, Breast Cancer,

Heart and Cardiotocography. Results show that with the appropriate selection of

feature weight parameter, the new computational framework achieves better clas-

sification accuracy outcomes. In addition, we also introduce in this research work

an investigation on the modelling structure's interpretability (via Nauck's index)

where it is shown that a good balance of interpretability and accuracy can be

maintained.

K E YWORD S

explainable AI, feature weights, granular computing, iterative data granulation, neural

network, radial basis function

1 | INTRODUCTION

The concept of iterative data granulation can be combined with Fuzzy Logic information granulation theory, by means of clustering algorithms

(Mashinchi et al., 2015). Via such computational frameworks, data is simplified (via grouping/clustering) to make it easier to understand and

reduce its complexity. Motivation for this work arises from the need for information simplification, summarization, information clarity, low compu-

tational cost and tolerance to uncertainty (Butenkov et al., 2017).

In the study by Rubio-Solis et al. (2019), iterative data granulation is used to determine the rulebase parameters in a GT2-RBFNN model,

which is equivalent to GT2-FLS. An iterative data granulation algorithm attempts to combine information intuitively (human-like behaviour), such

as two most compatible granules, iteratively until information is sufficiently compressed (Pedrycz & Bargiela, 2002). In this paper, compatibility is

calculated via distance and density measures for the potential new formed granules.
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In most research on iterative data granulation, all input features are considered to have equal degree of importance. However, this method is

not ideal particularly if it involves data with high number of features (Huang et al., 2005), in which features may have different weight that evolves

during the granulation. Intuitively, one would not include features that are less relevant to a task, when attempting to group information together.

The idea of feature weighting in data clustering is not new. In GrC in particular, in the study by Muda and Panoutsos (2022), the first attempt

to integrate the evolving feature weighting algorithm is presented, referred to as weighted GrC (W-GrC), in which the current information gran-

ules play an important role to determine the weight of each feature. The concept of W-GrC is inspired by the weighted k-means (W-k-means) pro-

posed by Huang et al. (2005) and the weighted version of Ward called Wardp (Amorim, 2015), in the area of hierarchical clustering. However, W-

GrC so far is investigated in terms of its impact in forming accurate and interpretable Fuzzy Logic rulebases, only in Type-1 Fuzzy Logic systems

(T1-FLS).

In this paper, we investigate and analyse the of use of W-GrC to (1) Neural-Fuzzy (NF) structures (based on RBF), (2) Type-2 Fuzzy Logic sys-

tems and (3) while also assessing for the first time the impact on rule base interpretability. A NF system leverages the learning capabilities of Neu-

ral Networks (NN) and the transparency of Fuzzy Logic systems (Rubio-Solis & Panoutsos, 2013). We present the evolving feature framework for

both Type-1 and Type-2 models, known as RBFNN and GT2-RBFNN. The new framework is validated using popular datasets: Iris, Wine, Breast

Cancer, Heart and Cardiotocography (UCI machine learning repository). Results show that with a proper selection of feature weight parameter,

the new computational framework achieves better classification accuracy outcomes. In addition, we also investigate in this research work the

impact on the modelling structure's interpretability (via Nauck's index) where it is shown that via W-GrC a good balance of interpretability and

accuracy is maintained.

The rest of the paper is organized as follows. The iterative data granulation is discussed in Section 2 and the formation of fuzzy rulebase and

the membership functions' parameters is described in Section 3. The fundamental of the classifiers (RBFNN and GT2-RBFNN) is presented in Sec-

tions 4 and 5, and the proposed W-GrC is discussed in detail in Section 6, together with the experiment result based on four benchmark datasets.

2 | KNOWLEDGE DISCOVERY USING GRANULAR COMPUTING

Granular computing is a computational paradigm that imitates human cognition in terms of grouping similar information together (Rubio-Solis &

Panoutsos, 2013). Granular Computing's ability to find and extract knowledge from unstructured data in the form of information granules is one

of its key features. The information granules, or knowledge gathered, can be utilized to build the linguistic rule-bases of a fuzzy logic-based system

(Muda & Panoutsos, 2020). A variety of granulation or clustering techniques have been used in the literature to aid the design of fuzzy and

Neural-Fuzzy systems including fuzzy c-means and hierarchical clustering (Panoutsos & Mahfouf, 2005).

In the study by Pedrycz and Bargiela (2002), Pedrycz suggested an iterative data granulation method which is similar to the idea of agglomera-

tive hierarchical grouping. It starts with a set of numerical data and creation of information granules whose distribution and size accurately capture

the substance of the data. These algorithms do, however, differ greatly from one another. In data granulation (referred as GrC afterwards), the

original data and the information granules are closely related. This is so that each sub-granule, which each derives from the data directly, may be

found within each granule (Panoutsos & Mahfouf, 2010). The transparency feature provided by GrC makes this algorithm ideal to be integrated

with Fuzzy and Neural-Fuzzy systems modelling (Panoutsos & Mahfouf, 2005).

A large number of studies on GrC algorithm have been conducted in building data-driven Fuzzy models. Recent research on GrC focus

on the use of GrC with Type-2 Fuzzy systems. For example, Rubio-Solis et al. (2019) implemented the iterative data granulation method to

approximate the parameters of each fuzzy rule in the General Type-2 Radial Basis Function Neural Network (GT2-RBFNN) models. The neu-

ral architecture of the GT2-RBFNN is built on the representation of α-planes, and each fuzzy rule's antecedent and consequent parts employ

GT2 Fuzzy Sets. In (Baraka & Panoutsos, 2019), Baraka et al. proposed long-term learning framework that employs the concepts of GrC to

extract information/knowledge from raw data in the form of interval-valued sets. The structure being used in the research is Interval-Valued

Radial Basis Function Neural Fuzzy (IV-RBF-NF). The integration of GrC with Type-2 systems are also the focus in Baraka et al. (2016) and

Solis and Panoutsos (2015). So far, there is not any attempt to embed the feature weight concept in GrC within the Type-2 Fuzzy systems

framework.

In works related to Type-1 Fuzzy systems, the idea of feature weight was first presented in Panoutsos and Mahfouf (2010), and the majority

of publications on this approach employ fixed weights for each feature, such as in the studies by Baraka et al. (2014) and Muda and Panoutsos

(2020). There are few studies on feature weighting for GrC; for instance, a Fast Correlation-Based Filter based on symmetrical uncertainty to find

the most important aspects of a welding process is found in the study by Solis and Panoutsos (2017). However, in this pre-processing stage (which

serves as a filter mechanism), the feature weights are predetermined and their values remain constant over the course of the granulation process'

evolution. The progressive feature weighting algorithm is first integrated in the study by Muda and Panoutsos (2022), although W-GrC is only

studied in terms of its impact on creating rulebases in Type-1 Fuzzy Logic systems (T1-FLS).

The iterative data granulation (Panoutsos & Mahfouf, 2005; Pedrycz & Bargiela, 2002) is an algorithmic method which is accomplished by

repeating two important steps:
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• Identify the most compatible pair of information granules and merge them.

• Repeat the previous step until an adequate level of data granulation is obtained.

Given two granules A and B, the compatibility is:

C A, Bð Þ¼DistanceMAX�DistanceA,B:exp �α�Rð Þ ð1Þ

in which

DensityR¼
CA,B=CardinalityMAX

LA,B=LengthMAX

ð2Þ

DistanceMAX: maximum distance in dataset:

DistanceMAX ¼
Xd

v¼1
distancevð Þ ð3Þ

DistanceA,B: average multidimensional distance between granules weighted by feature weight wv :

DistanceA,B ¼

Pd
v¼1wv D1�D2ð Þ

d
ð4Þ

where

D1 ¼ max maxAv , maxBvð Þ ð5Þ

D2 ¼ min minAv , minBvð Þ ð6Þ

maxAv : upper limit in granule A, dimension v, minAv : lower limit in granule A, dimension v, α: parameter that balances distance and density,

CardinalityMAX : cardinality in data set, LengthMAX: maximum length of a granule, CA,B: cardinality of merged granule, and LA,B: length of merged

granule, given by:

LA,B ¼
Xd

i¼v
maxXv �minXvð Þ ð7Þ

Most previous works related to GrC set the feature importance (weight wv ) as 1 for all input variables. Feature importance could be

established using expert knowledge (e.g. for known processes, heuristically, or via trial and error) as well as via mathematical and computational

methods directly using the available data/information.

Figure 1 depicts the development of a two-dimensional, 400 instance synthetic data set's data granulation process. Every instance of the raw

data is treated as one granule-point at the beginning. The number of granules is subsequently decreased as a result of this repeated merging pro-

cess until the final information granules are established. In this example, the iterative data granulation is implemented, with the density factor of

0.2, and the number of iterations for Figure 1b,c are 390 and 395, respectively.

3 | FORMATION OF FUZZY LOGIC RULE-BASE

The information obtained from GrC provides the fuzzy rulebase initial structure, that is, the membership functions' (MFs) centre and width. Con-

sider a system with 2 input variables (A and B) and 1 output (O). The process of granulation, across each input variable individually and across the

entire data input enables us to form the rules that is equivalent to a Mamdani FIS rule-base:

Rule1 : IF inputA¼A1 and inputB¼B1 and…ð Þ THEN output¼O1ð Þ

Rule2 : IF inputA¼A2 and inputB¼B2 and…ð Þ THEN output¼O2ð Þ
ð8Þ

MUDA ET AL. 3 of 14

 1
4
6
8
0
3
9
4
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/ex

sy
.1

3
2
0
1
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [0

5
/1

2
/2

0
2

2
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



Figure 2 shows how five information granules in are being translated into five Fuzzy MFs. These MFs represent the rule-bases for Iris data,

which consists of four inputs and one output. However, note that the number of dimensions shown in Figure 2a is only two instead of four.

Gaussian membership functions (MFs) are used in this study. The formation of Gaussian MFs requires two important parameters, namely centre

of MFs (c) and sigma (σ). In this paper, the MFs parameters (centre and sigma) are determined from the median and standard deviation of the data

in granules, respectively.

4 | RADIAL BASIS FUNCTION NEURAL NETWORK (RBFNN)

Fuzzy logic system with singleton fuzzy output can be represented by Panoutsos and Mahfouf, (2005):

y¼
Xp

i¼1

zi

Qm
j¼1μji xj

� �

Pp

i¼1

Qm
j¼1μij xj

� �

8
>><
>>:

9
>>=
>>;

ð9Þ

(a)

(b)

(c)

F IGURE 1 Data granulation process from (a) 400 data vectors to (b) 10 information granules and (c) 5 information granules
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y¼

Pp
i¼1zimi xð ÞPp
i¼1mi xð Þ

ð11Þ

where mi xð Þ is the membership degree of the input vector x defined as:

mi xð Þ¼ e x�cjk k=σj2ð Þ ð12Þ

Based on the RBF:

gi xð Þ¼
mi xð Þ

Pp

i¼1

mi xð Þ

ð13Þ

the NF output can be written as:

y¼
Xp

i¼1

zigi xð Þ ð14Þ

A Radial Basis Function Neural Network (RBFNN) can be regarded as an FLS that combines the input–output space as depicted in Figure 3.

In the hidden layer (or RBF layer), it resembles an additive weighted combination of the MFs of the fired-rule output sets. As a result, each hidden

receptive unit in the RBFNN functions similarly to a fuzzy rule represented by a multivariable Gaussian MF (Rubio-Solis et al., 2019).

The MFs parameters cij and σij (obtained from GrC) are optimized by using the back-error-propagation (BEP) algorithm. The BEP has been

demonstrated to be efficient in the system optimization (Rubio-Solis & Panoutsos, 2013). The overview of W-GrC Neural Fuzzy (NF) is shown in

Figure 4.

5 | GENERAL TYPE-2 RADIAL BASIS FUNCTION NEURAL NETWORK

T2-FLS and T1-FLS are similar in terms of their linguistic IF…THEN rules. In T2-FLSs, the premise and consequent are of type-2 fuzzy sets (T2FS).

The MF in T1FS is a crisp number while the MF of a T2FS is itself a fuzzy set (Baraka et al., 2016).

The potential of T2FS to model additional uncertainty (due to its extra dimension) have sparked the interest amongst the researchers

(Hamrawi et al., 2017). The Footprint of Uncertainty (FOU) encompassed by T2FS provides more degree of freedom to the T2FS as compared

against the T1FS, and hence better modelling of uncertainty (Wagner & Hagras, 2010).

F IGURE 3 General structure of an RBFNN
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5.1 | α-Plane representation

GT2-FS represented by ~A is characterized by a bivariate MF μ~A x, uð Þ⊆ [0, 1] where the primary variable is x�X. The secondary variable is charac-

terized by u� Jx⊆ 0, 1½ � as shown in Figure 5. Thus, ~A is:

~A¼ x, uð Þ, μ~A x, uð Þ j 8x�X, 8u� Jx ⊆ 0, 1½ �
� �

ð15Þ

An α-plane ~A is represented by ~Aα, is the union of the primary MFs of ~A with α 0≤ α≤ 1ð Þ:

~Aα ¼ x, uð Þ, μ~A x, uð Þ≥ α j x�X, u� 0, 1½ �
� �

ð16Þ

5.2 | GT2-RBFNN

For a Type-1 RBFNN, each receptive unit represents a fuzzy rule:

R1
: IF x1 is Fi1 and …IF xk is F

i
k and…

IF xn is Fin THEN y is Gi; i¼1,…M
ð17Þ

Raw data

Data granulation

De�ne NF structure

From granules to MFs

Optimisation

Final 

model

Knowledge extraction in the form of 

information granules using weighted GrC (W-

GrC)

Convert information granules to MFs. De�ne 

the c and σ of the MFs from the granular data

Convert each multidimensional granule to a 

Fuzzy rule

NF structure is optimised by using the BEP 

algorithm.

F IGURE 4 W-GrC- NF modelling framework
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In the form of GT2-FLS, the rule can be described as:

eR
i

a : IF x1 is eF
i

1 and …IF xk is eF
i

k and…

IF xn is eFin THEN y is egi x
!
p

� �
; i¼1,…M

ð18Þ

where x1,…,xk are the input vectors, ~F
i

1,…,
~F
i

k are the T2FS, and i,…,M is the number of rules.

With uncertain standard deviation σi ¼ σ1i , σ
2
i

� 	
, the GT2-RBFNN inputs the data as a multidimensional crisp vector that is represented by

x
!
p ¼ x1, …, xn½ �: The firing interval Fαsi is used to determine the reduced set [yαsl x

!
p

� �
,yαsr x

!
p

� �
] (in the type-reduction layer) before obtaining the

defuzzified output by the average of yαsl x
!

p

� �
and yαsr x

!
p

� �
.

6 | WEIGHTED GRC

The work in this paper is inspired by the Weighted K-Means algorithm (also known as WK-Means) proposed by Huang et al. (2005), which is a

modified version of the K-Means criterion algorithm that assigns weights to the features. Their approach resembles the wrapper approach of fea-

ture selection, where the feature weights are weighted to a set of patterns during the clustering phase. The WK-Means algorithm introduced by

Huang et al. minimizes the following object function:

W S, C, wð Þ¼
XK

k¼1

X

i � Sk

X

v � V

wβ
vd yiv , ckvð Þ ð19Þ

The objective function is minimized by iteratively optimizing (19) for S, C, and w, where S¼ S1, S2 , …, Sk , …, SKf g, ck �C is the granule centre,

yi is an instance, β is the feature weighting parameter. During the clustering process, the feature weight wv needs to be updated. There are two

possibilities for the update of wv , with S and C fixed, subject to β >1, and wv is given by:

wv ¼

0, if Dv ¼0
1

Xh

j¼1

Dv

Dj


 � 1
β�1

, if Dv≠0

8
>>><
>>>:

ð20Þ

where h is the number of features where Dv≠0. Dv is defined as:

Dv ¼
XK

k¼1

1

N�1

XN

i¼1

jyiv � ckv j
2 ð21Þ

F IGURE 5 α � planes (reproduced via Rubio-Solis et al. (2019)).
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where N is the cardinality in the granule k. Based on Equation (20), a zero weight will be assigned when the vth variable only contains a single

value (i.e. Dv ¼0).

Algorithm 1 shows how the feature weighting algorithm is embedded in the GrC. Only the first merging process will treat all the features

equally; the algorithm then will adapt the new evolving feature weighting in computing the distance (and hence the compatibility measure). After

each merging process, the granules will be updated and all the instances in all information granules are keep in track. This is an important step in

the W-GrC, since we need to monitor the within granule variance in each iteration (that is used to adjust the feature weight). Finally, the feature

weights for all features are updated, and are applied in the next iteration.

The hypothesis in this feature-weighting algorithm, in that the input variable with large variance in granules is considered as less important

(therefore, designed to yield less influence in forming future information granules). The mechanism to achieve this is to penalize its contribution in

the compatibility index. Importance here, is addressed via having robust information granules, however other metrics can be used too

(e.g. correlation to output/outcome).

6.1 | Simulations and empirical results

Five classification datasets were used to validate the proposed approach—Iris, Wine, Breast Cancer, Heart and Cardiotocography with 4, 13,

9, 13 and 21 input features, respectively. As suggested in Huang et al. (2005), we set the feature weighting parameter β >1 (from 2 to 10) to

investigate how to set the value of β to affect the model predictive performance in terms of the classification accuracy. The initial weights for all

features are set to 1 and expected to evolve throughout the granulation process. Simulation results aim to show the effectiveness of W-GrC

(compared to GrC) in model accuracy as well as interpretability.

While the optimization/selection of the number of granules (hence rules) is not the focus for this work, five granules were heuristically cho-

sen, towards generating a relatively parsimonious system. For consistency, five information granules (or rules) are formed throughout the simula-

tions, and 10 runs are conducted for each value of β. The selection of five information granules is based on the system's interpretability (as few

rules as possible), system's accuracy and also with reference to the compatibility measure. In further work, one may want to optimize and further

investigate the number of rules (which would impact interpretability, as well as accuracy).

Tables 1–6 summarize how W-GrC performs with different values of β in RBFNN and GT2-RBFNN, respectively. The result is benchmarked

against the original GrC that is represented in the ‘GrC’ row.

For the Iris data, improvement in terms of classification accuracy were obtained in RBFNN at β� {2,5,6,8,9,10} with the highest accuracy of

98.33%. Correspondingly, W-GrC with GT2-RBFNN outperforms the conventional GrC at β � {2,3,4,5,7,9,10}, with the maximum accuracy of

98%, that occurs at β¼2 and β¼10:

Moving on to more complex data, Wine (13 input features as opposed to 4 in Iris), the impact of W-GrC can be observed in RBFNN at β �

{2,4,10}. Interestingly, most values of β in GT2-RBFNN result in higher accuracy than the conventional GrC. However, it is noted that the perfor-

mance of the conventional GrC in GT2-RBFNN is slightly lower than its counterpart in RBFNN.

In the case of the Breast Cancer dataset, it is obvious that larger values of β (β ≥6Þ are required in RBFNN to generate good outcome. The

highest accuracy is when β¼7 with 98.16% while GrC obtained 97.43%. For GT2-RBFNN, almost the similar pattern in Wine is shown here,

where the W-GrC outperformed the original GrC in all values of β, except when β¼2:

Algorithm 1 Weighted Granular Computing (W-GrC)

1. Initial setting

For the first iteration, all features are assigned with feature weight of 1. Feature weight parameter, β is selected (i.e. β > 1Þ. The rest

follows the conventional GrC settings.

2. Merging of granules

Only the first merging process is based on the conventional GrC (granules distances with equal weights), while the rest of iterations

will adapt the new evolving feature weights wv in computing the compatibility measure and selection of pair of granules to be

merged.

3. Granule update

Update the cardinality, maximum and minimum limit of the new information granule, and keep track the instances in each granule.

4. Weight update

Update the feature weights based on Equation (20). Repeat step (2–4).
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RBFNN shows a more consistent performance against its counterpart GT2-RBFNN in Heart, where all trials with W-GrC achieve higher accu-

racy than GrC, except for when β¼2: As a comparison, the higher accuracy is achieved in W-GrC with GT2-RBFNN at β � {3,4,5,7,8}.

TABLE 1 Performance of W-GrC in Type-1 RBFNN with different β values (Iris and Wine)

Iris Wine

RMSE Acc. (%) Standard deviation (%) RMSE Acc. (%) Standard deviation (%)

GrC 0.0763 97.67 2.74 0.0866 98.67 1.72

β¼2:0 0.0777 98.33 2.36 0.0726 99 1.61

β¼3:0 0.0909 96 3.06 0.0904 98.33 2.36

β¼4:0 0.0859 96.33 3.67 0.0714 99.33 1.41

β¼5:0 0.0732 98 2.33 0.0797 98.67 1.76

β¼6:0 0.0783 98.33 1.76 0.0868 97.33 5.84

β¼7:0 0.0735 97.67 1.61 0.0881 98.33 2.36

β¼8:0 0.0765 98 1.72 0.0854 98.33 3.6

β¼9:0 0.0785 98.33 1.76 0.0807 98.33 4.22

β¼10:0 0.0761 98 1.72 0.0768 99.67 1.05

TABLE 2 Performance of W-GrC in Type-1 RBFNN with different β values (Breast Cancer and Heart)

Breast cancer Heart

RMSE Acc. (%) Standard deviation (%) RMSE Acc. (%) Standard deviation (%)

GrC 0.1486 97.43 1.05 0.3339 84.75 4.99

β¼2:0 0.1676 96.91 1.95 0.3479 84.41 3.46

β¼3:0 0.1506 97.35 1.84 0.3336 86.95 2.89

β¼4:0 0.1628 96.84 1.04 0.3383 86.44 2.65

β¼5:0 0.151 97.35 1.11 0.3306 85.42 2.42

β¼6:0 0.154 97.5 1.11 0.3273 87.46 4.39

β¼7:0 0.1302 98.16 1.16 0.3263 85.08 4.51

β¼8:0 0.1473 97.5 1.35 0.3198 86.27 3.04

β¼9:0 0.1352 97.94 1.19 0.3233 85.42 3.12

β¼10:0 0.1599 97.72 1.07 0.3338 85.08 4.21

TABLE 3 Performance of W-GrC in Type-1 RBFNN with different β value (Cardiotocography)

Cardiotocography

RMSE Acc. (%) Standard deviation (%)

GrC 0.1773 84.63 2.54

β¼2:0 0.1505 86.12 2.58

β¼3:0 0.1757 86.2 2.59

β¼4:0 0.1796 83.69 2.51

β¼5:0 0.1609 87.76 2.63

β¼6:0 0.178 84.39 2.53

β¼7:0 0.1733 85.49 2.56

β¼8:0 0.175 85.25 2.56

β¼9:0 0.1897 82.2 2.47

β¼10:0 0.1678 84.94 2.54
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However, in the case of larger dataset Cardiotocography (with 2126 instances and 21 input variables), the performance of GT2-RBFNN is

higher than RBFNN. The maximum accuracies recorded by GT2-RBFNN and RBFNN are 88.92% and 87.76%, respectively. The positive impact of

W-GrC with GT2-RBFNN is shown in all values of β except when β¼2: In RBFNN, the improvement can be observed at β � {2,3,5,7,8,10}.

TABLE 4 Performance of W-GrC in General Type-2 RBFNN with different β values (Iris and Wine)

Iris Wine

RMSE Acc. (%) Standard deviation (%) RMSE Acc. (%) Standard deviation (%)

GrC 0.1179 96.33 2.92 0.0971 96.33 3.67

β¼2:0 0.1101 98 1.72 0.1062 97 1.89

β¼3:0 0.1131 97.67 2.74 0.1033 97.33 2.11

β¼4:0 0.1183 96.67 2.72 0.0867 97.67 2.25

β¼5:0 0.1078 97.67 2.25 0.095 96.33 2.46

β¼6:0 0.1139 96.33 2.46 0.0853 97.67 2.74

β¼7:0 0.1094 97.33 2.63 0.088 99 1.61

β¼8:0 0.1122 95.33 2.81 0.0968 97.33 2.11

β¼9:0 0.1158 97.33 2.11 0.0933 98.67 1.72

β¼10:0 0.1101 98 1.72 0.1051 96.33 3.67

TABLE 5 Performance of W-GrC in General Type-2 RBFNN with different β values (Breast Cancer and Heart)

Breast cancer Heart

RMSE Acc. (%) Standard deviation (%) RMSE Acc. (%) Standard deviation (%)

GrC 0.1741 96.25 2.12 0.3059 81.69 4.06

β¼2:0 0.1824 96.18 1.58 0.3063 81 5.99

β¼3:0 0.1663 96.76 1.44 0.3072 83 3.79

β¼4:0 0.1451 97.21 1.3 0.31 84 3.56

β¼5:0 0.1685 96.76 1.21 0.3034 83 3.73

β¼6:0 0.1662 96.62 1.56 0.2997 80 2.75

β¼7:0 0.1574 97.35 1.39 0.305 81.86 4.66

β¼8:0 0.1608 96.91 1.69 0.3031 81.86 5.06

β¼9:0 0.1502 97.65 0.67 0.3009 81.69 5.23

β¼10:0 0.1654 96.47 1.83 0.31 80.68 4.67

TABLE 6 Performance of W-GrC in General Type-2 RBFNN with different β values (Cardiotocography)

Cardiotocography

RMSE Acc. (%) Standard deviation (%)

GrC 0.1584 87.36 2.62

β¼2:0 0.1661 86.52 2.59

β¼3:0 0.1648 87.77 2.63

β¼4:0 0.1545 87.98 2.67

β¼5:0 0.1544 88.92 2.63

β¼6:0 0.159 87.51 2.65

β¼7:0 0.1561 88.45 2.65

β¼8:0 0.1585 88.35 2.66

β¼9:0 0.1584 88.56 2.63

β¼10:0 0.148 87.67 2.62
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From the result, we can conclude that, W-GrC performs better than the conventional GrC. However, careful selection of β is crucial to

achieve superior classification accuracy. W-GrC accomplishes the best performance when a suitable parameter β is chosen. This is due to assig-

ning higher weights to the more important input features at a given instance during the formation of information granules.

The benchmark with other related works also shows that the results obtained in this paper is comparable with other researchers' models, par-

ticularly involving neural network and support vector machine (SVM). In neural network research, Saha and Ramanathan (2019); Zhou et al.

(2020) yield performance of 98.04% and 97.66%, respectively, for Iris data. The same authors also reported accuracies of 96.72% and 98.66% in

Wine. For Breast Cancer dataset, the radial basis function network (RBFN) model developed in Chaurasia et al. (2018) achieves 96.77%, while in

another research (Islam et al., 2020) scores 98.51%. Even though the results obtained in Heart are not as high as in other datasets (87.46% in

RBFNN and 84% in GT2-RBFNN), they are still comparable with other works, for example in Zhang et al. (2020) with 86.25% and Begum et al.

(2021) with 83% accuracies. For Cardiotocography dataset, neural network research show the accuracies of 84.2% (Çapa, 2018), 86.38%

(Parvathsuman et al., 2019) and 83.12% (Amin et al., 2019).

The results are also compared against another popular method, SVM. Iris results presented in Nasiri and Shakibian (2022) and Singaravelan

et al. (2018) for example, show the accuracies of 96% and 98%, while Wine results in (Deng et al., 2017; Nasiri & Shakibian, 2022) are 98.73%

and 100%, respectively. Comparable performance also can be seen in Breast Cancer and Heart, for example in (Nurhayati, Agustian, &

Lubis, 2020) (Breast Cancer—98.07%), (Islam et al., 2020) (Breast Cancer—97.14%), (Panup et al., 2022) (Heart—82.9%) and (Khanom et al., 2020)

(Heart—86.89%). Finally, the performance of SVM with Cardiotocography is also compared, for example 74.92% in Amin et al. (2019), 86.59% in

Prasetyo et al. (2021) and 84.38% in Parvathsuman et al. (2019).

6.2 | Interpretability index

In the proposed research, both the interpretability and accuracy features are considered. Interpretability is defined as the attribute of a model to

allow human to understand the behaviour of a system (Shukla & Tripathi, 2012). We are interested to investigate the impact on model's interpret-

ability by the improved predictive performance.

In this paper, the interpretability is measured with Nauck's index (NI) which is proposed by Nauck (2003). It is defined as:

Nauck index¼ comp�cov�part ð22Þ

(the details of NI can be referred to Nauck (2003)).

Table 7 shows the NI for the W-GrC and the original GrC in both RBFNN and GT2-RBFNN. It is shown that in both models, W-GrC can pro-

duce higher accuracy without significantly sacrifice the model interpretability. The impact on NI is minor, as presented in Table 7. Note that for

GT2-RBFNN, there are two values for the interpretability index: upper MF (UMF) and lower MF (LMF).

7 | CONCLUSION

W-GrC is extended to NF modelling structures based on RBF. The feature weighting algorithm is used to depict the significance of the input fea-

tures (in terms of their robustness) and such weights influence the granulation as it evolves. The impact of W-GrC is demonstrated for the first

time in both T1 and T2 FLS in terms of achieved data-driven modelling accuracy (UCI machine learning repository data).

TABLE 7 Comparison of the interpretability index

RBFNN General Type-2 RBFNN

W-GrC GrC

W-GrC GrC

UMF LMF UMF LMF

Iris 0.0252 0.0239 0.0081 0.0132 0.0083 0.0135

Wine 0.0061 0.0065 0.0027 0.0045 0.0027 0.0044

Breast Cancer 0.0065 0.0067 0.0049 0.0052 0.0054 0.0055

Heart 0.0044 0.0044 0.0017 0.0019 0.0018 0.002

Cardiotocography 0.004 0.0039 0.0022 0.0025 0.0025 0.0029
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In both T1 and T2 models, W-GrC performs better against the conventional GrC when suitable hyperparameter is chosen. While the perfor-

mance that can be achieved is better, one has to acknowledge the introduction of a new hypermeter (that needs to be successfully identified/

tuned). In terms overall Fuzzy Logic system interpretability, the Nauck's index calculated indicates that there is no major impact on the rulebase

interpretability.
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