710 research outputs found

    Decision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures

    Get PDF
    ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and efficiency of the presented approach

    Modelling epistasis in genetic disease using Petri nets, evolutionary computation and frequent itemset mining

    Get PDF
    Petri nets are useful for mathematically modelling disease-causing genetic epistasis. A Petri net model of an interaction has the potential to lead to biological insight into the cause of a genetic disease. However, defining a Petri net by hand for a particular interaction is extremely difficult because of the sheer complexity of the problem and degrees of freedom inherent in a Petri net’s architecture. We propose therefore a novel method, based on evolutionary computation and data mining, for automatically constructing Petri net models of non-linear gene interactions. The method comprises two main steps. Firstly, an initial partial Petri net is set up with several repeated sub-nets that model individual genes and a set of constraints, comprising relevant common sense and biological knowledge, is also defined. These constraints characterise the class of Petri nets that are desired. Secondly, this initial Petri net structure and the constraints are used as the input to a genetic algorithm. The genetic algorithm searches for a Petri net architecture that is both a superset of the initial net, and also conforms to all of the given constraints. The genetic algorithm evaluation function that we employ gives equal weighting to both the accuracy of the net and also its parsimony. We demonstrate our method using an epistatic model related to the presence of digital ulcers in systemic sclerosis patients that was recently reported in the literature. Our results show that although individual “perfect” Petri nets can frequently be discovered for this interaction, the true value of this approach lies in generating many different perfect nets, and applying data mining techniques to them in order to elucidate common and statistically significant patterns of interaction

    Dynamic production system identification for smart manufacturing systems

    Get PDF
    This paper presents a methodology, called production system identification, to produce a model of a manufacturing system from logs of the system's operation. The model produced is intended to aid in making production scheduling decisions. Production system identification is similar to machine-learning methods of process mining in that they both use logs of operations. However, process mining falls short of addressing important requirements; process mining does not (1) account for infrequent exceptional events that may provide insight into system capabilities and reliability, (2) offer means to validate the model relative to an understanding of causes, and (3) updated the model as the situation on the production floor changes. The paper describes a genetic programming (GP) methodology that uses Petri nets, probabilistic neural nets, and a causal model of production system dynamics to address these shortcomings. A coloured Petri net formalism appropriate to GP is developed and used to interpret the log. Interpreted logs provide a relation between Petri net states and exceptional system states that can be learned by means of novel formulation of probabilistic neural nets (PNNs). A generalized stochastic Petri net and the PNNs are used to validate the GP-generated solutions. The methodology is evaluated with an example based on an automotive assembly system

    Evolution from the ground up with Amee – From basic concepts to explorative modeling

    Get PDF
    Evolutionary theory has been the foundation of biological research for about a century now, yet over the past few decades, new discoveries and theoretical advances have rapidly transformed our understanding of the evolutionary process. Foremost among them are evolutionary developmental biology, epigenetic inheritance, and various forms of evolu- tionarily relevant phenotypic plasticity, as well as cultural evolution, which ultimately led to the conceptualization of an extended evolutionary synthesis. Starting from abstract principles rooted in complexity theory, this thesis aims to provide a unified conceptual understanding of any kind of evolution, biological or otherwise. This is used in the second part to develop Amee, an agent-based model that unifies development, niche construction, and phenotypic plasticity with natural selection based on a simulated ecology. Amee is implemented in Utopia, which allows performant, integrated implementation and simulation of arbitrary agent-based models. A phenomenological overview over Amee’s capabilities is provided, ranging from the evolution of ecospecies down to the evolution of metabolic networks and up to beyond-species-level biological organization, all of which emerges autonomously from the basic dynamics. The interaction of development, plasticity, and niche construction has been investigated, and it has been shown that while expected natural phenomena can, in principle, arise, the accessible simulation time and system size are too small to produce natural evo-devo phenomena and –structures. Amee thus can be used to simulate the evolution of a wide variety of processes

    Computer Science at the University of Helsinki 1998

    Get PDF

    Applications of Petri nets

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2008Includes bibliographical references (leaves: 51-52)Text in English; Abstract: Turkish and Englishix, 52 leavesPetri nets are powerful formalism for modeling a wide range of dynamic systems and system behaviors. This thesis surveys the basic concept and application of Petri nets. The structure of Petri nets, their marking and execution and several examples of Petri net modeling. In this thesis we research into the analysis of Petri nets. Also we give the structure of Reachability graphs of Petri nets and their advantages for analyzing the Petri nets. The reachability problem for Petri nets is the problem of finding if Mn 2 R(M0) for a given marking Mn in a net (N,M0).We present several different kinds of Petri nets, together with computer tools based on Mathematica. We give the Mathematica commands for Reachability problem and also we created Mathematica commands for Incidence matrix of Petri nets. We study the concept of Petri nets and applications of Petri nets.We especially focus on Biological applications on Petri nets and we work on modeling of Hashimoto.s Thyroiditis in Petri Nets
    • …
    corecore