1,275 research outputs found

    Local and Global Illumination in the Volume Rendering Integral

    Get PDF

    Multi-View Polarimetric Scattering Cloud Tomography and Retrieval of Droplet Size

    Get PDF
    Tomography aims to recover a three-dimensional (3D) density map of a medium or an object. In medical imaging, it is extensively used for diagnostics via X-ray computed tomography (CT). We define and derive a tomography of cloud droplet distributions via passive remote sensing. We use multi-view polarimetric images to fit a 3D polarized radiative transfer (RT) forward model. Our motivation is 3D volumetric probing of vertically-developed convectively-driven clouds that are ill-served by current methods in operational passive remote sensing. Current techniques are based on strictly 1D RT modeling and applied to a single cloudy pixel, where cloud geometry defaults to that of a plane-parallel slab. Incident unpolarized sunlight, once scattered by cloud-droplets, changes its polarization state according to droplet size. Therefore, polarimetric measurements in the rainbow and glory angular regions can be used to infer the droplet size distribution. This work defines and derives a framework for a full 3D tomography of cloud droplets for both their mass concentration in space and their distribution across a range of sizes. This 3D retrieval of key microphysical properties is made tractable by our novel approach that involves a restructuring and differentiation of an open-source polarized 3D RT code to accommodate a special two-step optimization technique. Physically-realistic synthetic clouds are used to demonstrate the methodology with rigorous uncertainty quantification

    Deep Fluids: A Generative Network for Parameterized Fluid Simulations

    Full text link
    This paper presents a novel generative model to synthesize fluid simulations from a set of reduced parameters. A convolutional neural network is trained on a collection of discrete, parameterizable fluid simulation velocity fields. Due to the capability of deep learning architectures to learn representative features of the data, our generative model is able to accurately approximate the training data set, while providing plausible interpolated in-betweens. The proposed generative model is optimized for fluids by a novel loss function that guarantees divergence-free velocity fields at all times. In addition, we demonstrate that we can handle complex parameterizations in reduced spaces, and advance simulations in time by integrating in the latent space with a second network. Our method models a wide variety of fluid behaviors, thus enabling applications such as fast construction of simulations, interpolation of fluids with different parameters, time re-sampling, latent space simulations, and compression of fluid simulation data. Reconstructed velocity fields are generated up to 700x faster than re-simulating the data with the underlying CPU solver, while achieving compression rates of up to 1300x.Comment: Computer Graphics Forum (Proceedings of EUROGRAPHICS 2019), additional materials: http://www.byungsoo.me/project/deep-fluids

    Neural Relightable Participating Media Rendering

    Get PDF
    Learning neural radiance fields of a scene has recently allowed realistic novel view synthesis of the scene, but they are limited to synthesize images under the original fixed lighting condition. Therefore, they are not flexible for the eagerly desired tasks like relighting, scene editing and scene composition. To tackle this problem, several recent methods propose to disentangle reflectance and illumination from the radiance field. These methods can cope with solid objects with opaque surfaces but participating media are neglected. Also, they take into account only direct illumination or at most one-bounce indirect illumination, thus suffer from energy loss due to ignoring the high-order indirect illumination. We propose to learn neural representations for participating media with a complete simulation of global illumination. We estimate direct illumination via ray tracing and compute indirect illumination with spherical harmonics. Our approach avoids computing the lengthy indirect bounces and does not suffer from energy loss. Our experiments on multiple scenes show that our approach achieves superior visual quality and numerical performance compared to state-of-the-art methods, and it can generalize to deal with solid objects with opaque surfaces as well.Comment: Accepted to NeurIPS 202

    Collimated Whole Volume Light Scattering in Homogeneous Finite Media

    Get PDF
    Crepuscular rays form when light encounters an optically thick or opaque medium which masks out portions of the visible scene. Real-time applications commonly estimate this phenomena by connecting paths between light sources and the camera after a single scattering event. We provide a set of algorithms for solving integration and sampling of single-scattered collimated light in a box-shaped medium and show how they extend to multiple scattering and convex media. First, a method for exactly integrating the unoccluded single scattering in rectilinear box-shaped medium is proposed and paired with a ratio estimator and moment-based approximation. Compared to previous methods, it requires only a single sample in unoccluded areas to compute the whole integral solution and provides greater convergence in the rest of the scene. Second, we derive an importance sampling scheme accounting for the entire geometry of the medium. This sampling strategy is then incorporated in an optimized Monte Carlo integration. The resulting integration scheme yields visible noise reduction and it is directly applicable to indoor scene rendering in room-scale interactive experiences. Furthermore, it extends to multiple light sources and achieves superior converge compared to independent sampling with existing algorithms. We validate our techniques against previous methods based on ray marching and distance sampling to prove their superior noise reduction capability

    Reconstruction and rendering of time-varying natural phenomena

    Get PDF
    While computer performance increases and computer generated images get ever more realistic, the need for modeling computer graphics content is becoming stronger. To achieve photo-realism detailed scenes have to be modeled often with a significant amount of manual labour. Interdisciplinary research combining the fields of Computer Graphics, Computer Vision and Scientific Computing has led to the development of (semi-)automatic modeling tools freeing the user of labour-intensive modeling tasks. The modeling of animated content is especially challenging. Realistic motion is necessary to convince the audience of computer games, movies with mixed reality content and augmented reality applications. The goal of this thesis is to investigate automated modeling techniques for time-varying natural phenomena. The results of the presented methods are animated, three-dimensional computer models of fire, smoke and fluid flows.Durch die steigende Rechenkapazität moderner Computer besteht die Möglichkeit immer realistischere Bilder virtuell zu erzeugen. Dadurch entsteht ein größerer Bedarf an Modellierungsarbeit um die nötigen Objekte virtuell zu beschreiben. Um photorealistische Bilder erzeugen zu können müssen sehr detaillierte Szenen, oft in mühsamer Handarbeit, modelliert werden. Ein interdisziplinärer Forschungszweig, der Computergrafik, Bildverarbeitung und Wissenschaftliches Rechnen verbindet, hat in den letzten Jahren die Entwicklung von (semi-)automatischen Methoden zur Modellierung von Computergrafikinhalten vorangetrieben. Die Modellierung dynamischer Inhalte ist dabei eine besonders anspruchsvolle Aufgabe, da realistische Bewegungsabläufe sehr wichtig für eine überzeugende Darstellung von Computergrafikinhalten in Filmen, Computerspielen oder Augmented-Reality Anwendungen sind. Das Ziel dieser Arbeit ist es automatische Modellierungsmethoden für dynamische Naturerscheinungen wie Wasserfluss, Feuer, Rauch und die Bewegung erhitzter Luft zu entwickeln. Das Resultat der entwickelten Methoden sind dabei dynamische, dreidimensionale Computergrafikmodelle
    corecore