78 research outputs found

    Towards a User Privacy-Aware Mobile Gaming App Installation Prediction Model

    Full text link
    Over the past decade, programmatic advertising has received a great deal of attention in the online advertising industry. A real-time bidding (RTB) system is rapidly becoming the most popular method to buy and sell online advertising impressions. Within the RTB system, demand-side platforms (DSP) aim to spend advertisers' campaign budgets efficiently while maximizing profit, seeking impressions that result in high user responses, such as clicks or installs. In the current study, we investigate the process of predicting a mobile gaming app installation from the point of view of a particular DSP, while paying attention to user privacy, and exploring the trade-off between privacy preservation and model performance. There are multiple levels of potential threats to user privacy, depending on the privacy leaks associated with the data-sharing process, such as data transformation or de-anonymization. To address these concerns, privacy-preserving techniques were proposed, such as cryptographic approaches, for training privacy-aware machine-learning models. However, the ability to train a mobile gaming app installation prediction model without using user-level data, can prevent these threats and protect the users' privacy, even though the model's ability to predict may be impaired. Additionally, current laws might force companies to declare that they are collecting data, and might even give the user the option to opt out of such data collection, which might threaten companies' business models in digital advertising, which are dependent on the collection and use of user-level data. We conclude that privacy-aware models might still preserve significant capabilities, enabling companies to make better decisions, dependent on the privacy-efficacy trade-off utility function of each case.Comment: 11 pages, 3 figure

    Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising

    Get PDF
    In real-time display advertising, ad slots are sold per impression via an auction mechanism. For an advertiser, the campaign information is incomplete --- the user responses (e.g, clicks or conversions) and the market price of each ad impression are observed only if the advertiser's bid had won the corresponding ad auction. The predictions, such as bid landscape forecasting, click-through rate (CTR) estimation, and bid optimisation, are all operated in the pre-bid stage with full-volume bid request data. However, the training data is gathered in the post-bid stage with a strong bias towards the winning impressions. A common solution for learning over such censored data is to reweight data instances to correct the discrepancy between training and prediction. However, little study has been done on how to obtain the weights independent of previous bidding strategies and consequently integrate them into the final CTR prediction and bid generation steps. In this paper, we formulate CTR estimation and bid optimisation under such censored auction data. Derived from a survival model, we show that historic bid information is naturally incorporated to produce Bid-aware Gradient Descents (BGD) which controls both the importance and the direction of the gradient to achieve unbiased learning. The empirical study based on two large-scale real-world datasets demonstrates remarkable performance gains from our solution. The learning framework has been deployed on Yahoo!'s real-time bidding platform and provided 2.97% AUC lift for CTR estimation and 9.30% eCPC drop for bid optimisation in an online A/B test

    Real-Time Bidding by Reinforcement Learning in Display Advertising

    Get PDF
    The majority of online display ads are served through real-time bidding (RTB) --- each ad display impression is auctioned off in real-time when it is just being generated from a user visit. To place an ad automatically and optimally, it is critical for advertisers to devise a learning algorithm to cleverly bid an ad impression in real-time. Most previous works consider the bid decision as a static optimization problem of either treating the value of each impression independently or setting a bid price to each segment of ad volume. However, the bidding for a given ad campaign would repeatedly happen during its life span before the budget runs out. As such, each bid is strategically correlated by the constrained budget and the overall effectiveness of the campaign (e.g., the rewards from generated clicks), which is only observed after the campaign has completed. Thus, it is of great interest to devise an optimal bidding strategy sequentially so that the campaign budget can be dynamically allocated across all the available impressions on the basis of both the immediate and future rewards. In this paper, we formulate the bid decision process as a reinforcement learning problem, where the state space is represented by the auction information and the campaign's real-time parameters, while an action is the bid price to set. By modeling the state transition via auction competition, we build a Markov Decision Process framework for learning the optimal bidding policy to optimize the advertising performance in the dynamic real-time bidding environment. Furthermore, the scalability problem from the large real-world auction volume and campaign budget is well handled by state value approximation using neural networks.Comment: WSDM 201

    Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting

    Get PDF
    The most significant progress in recent years in online display advertising is what is known as the Real-Time Bidding (RTB) mechanism to buy and sell ads. RTB essentially facilitates buying an individual ad impression in real time while it is still being generated from a user’s visit. RTB not only scales up the buying process by aggregating a large amount of available inventories across publishers but, most importantly, enables direct targeting of individual users. As such, RTB has fundamentally changed the landscape of digital marketing. Scientifically, the demand for automation, integration and optimisation in RTB also brings new research opportunities in information retrieval, data mining, machine learning and other related fields. In this monograph, an overview is given of the fundamental infrastructure, algorithms, and technical solutions of this new frontier of computational advertising. The covered topics include user response prediction, bid landscape forecasting, bidding algorithms, revenue optimisation, statistical arbitrage, dynamic pricing, and ad fraud detection

    User Response Learning for Directly Optimizing Campaign Performance in Display Advertising

    Get PDF
    Learning and predicting user responses, such as clicks and conversions, are crucial for many Internet-based businesses including web search, e-commerce, and online advertising. Typically, a user response model is established by optimizing the prediction accuracy, e.g., minimizing the error between the prediction and the ground truth user response. However, in many practical cases, predicting user responses is only part of a rather larger predictive or optimization task, where on one hand, the accuracy of a user response prediction determines the final (expected) utility to be optimized, but on the other hand, its learning may also be influenced from the follow-up stochastic process. It is, thus, of great interest to optimize the entire process as a whole rather than treat them independently or sequentially. In this paper, we take real-time display advertising as an example, where the predicted user's ad click-through rate (CTR) is employed to calculate a bid for an ad impression in the second price auction. We reformulate a common logistic regression CTR model by putting it back into its subsequent bidding context: rather than minimizing the prediction error, the model parameters are learned directly by optimizing campaign profit. The gradient update resulted from our formulations naturally fine-tunes the cases where the market competition is high, leading to a more cost-effective bidding. Our experiments demonstrate that, while maintaining comparable CTR prediction accuracy, our proposed user response learning leads to campaign profit gains as much as 78.2% for offline test and 25.5% for online A/B test over strong baselines

    Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting

    Get PDF
    The most significant progress in recent years in online display advertising is what is known as the Real-Time Bidding (RTB) mechanism to buy and sell ads. RTB essentially facilitates buying an individual ad impression in real time while it is still being generated from a user’s visit. RTB not only scales up the buying process by aggregating a large amount of available inventories across publishers but, most importantly, enables direct targeting of individual users. As such, RTB has fundamentally changed the landscape of digital marketing. Scientifically, the demand for automation, integration and optimisation in RTB also brings new research opportunities in information retrieval, data mining, machine learning and other related fields. In this monograph, an overview is given of the fundamental infrastructure, algorithms, and technical solutions of this new frontier of computational advertising. The covered topics include user response prediction, bid landscape forecasting, bidding algorithms, revenue optimisation, statistical arbitrage, dynamic pricing, and ad fraud detection

    Click-through rate prediction : a comparative study of ensemble techniques in real-time bidding

    Get PDF
    Dissertation presented as a partial requirement for obtaining the Master’s degree in Information Management, with a specialization in Business Intelligence and Knowledge ManagementReal-Time Bidding is an automated mechanism to buy and sell ads in real time that uses data collected from internet users, to accurately deliver the right audience to the best-matched advertisers. It goes beyond contextual advertising by motivating the bidding focused on user data and also, it is different from the sponsored search auction where the bid price is associated with keywords. There is extensive literature regarding the classification and prediction of performance metrics such as click-through-rate, impression rate and bidding price. However, there is limited research on the application of advanced machine learning techniques, such as ensemble methods, on predicting click-through rate of real-time bidding campaigns. This paper presents an in-depth analysis of predicting click-through rate in real-time bidding campaigns by comparing the classification results from six traditional classification models (Linear Discriminant Analysis, Logistic Regression, Regularised Regression, Decision trees, k-nearest neighbors and Support Vector Machines) with two popular ensemble learning techniques (Voting and BootStrap Aggregation). The goal of our research is to determine whether ensemble methods can accurately predict click-through rate and compared to standard classifiers. Results showed that ensemble techniques outperformed simple classifiers performance. Moreover, also, highlights the excellent performance of linear algorithms (Linear Discriminant Analysis and Regularized Regression)

    Managing Risk of Bidding in Display Advertising

    Full text link
    In this paper, we deal with the uncertainty of bidding for display advertising. Similar to the financial market trading, real-time bidding (RTB) based display advertising employs an auction mechanism to automate the impression level media buying; and running a campaign is no different than an investment of acquiring new customers in return for obtaining additional converted sales. Thus, how to optimally bid on an ad impression to drive the profit and return-on-investment becomes essential. However, the large randomness of the user behaviors and the cost uncertainty caused by the auction competition may result in a significant risk from the campaign performance estimation. In this paper, we explicitly model the uncertainty of user click-through rate estimation and auction competition to capture the risk. We borrow an idea from finance and derive the value at risk for each ad display opportunity. Our formulation results in two risk-aware bidding strategies that penalize risky ad impressions and focus more on the ones with higher expected return and lower risk. The empirical study on real-world data demonstrates the effectiveness of our proposed risk-aware bidding strategies: yielding profit gains of 15.4% in offline experiments and up to 17.5% in an online A/B test on a commercial RTB platform over the widely applied bidding strategies
    • …
    corecore