
User Response Learning for Directly Optimizing
Campaign Performance in Display Advertising

Kan Ren†, Weinan Zhang†∗, Yifei Rong♯, Haifeng Zhang♮, Yong Yu†, Jun Wang‡

†Apex Data and Knowledge Management Lab, Shanghai Jiao Tong University
‡University College London, ♯YOYI Inc., ♮Peking University

{kren,wnzhang}@apex.sjtu.edu.cn, yifei.rong@yoyi.com.cn

ABSTRACT
Learning and predicting user responses, such as clicks and
conversions, are crucial for many Internet-based businesses
including web search, e-commerce, and online advertising.
Typically, a user response model is established by optimiz-
ing the prediction accuracy, e.g., minimizing the error be-
tween the prediction and the ground truth user response.
However, in many practical cases, predicting user responses
is only part of a rather larger predictive or optimization
task, where on one hand, the accuracy of a user response
prediction determines the final (expected) utility to be op-
timized, but on the other hand, its learning may also be
influenced from the follow-up stochastic process. It is, thus,
of great interest to optimize the entire process as a whole
rather than treat them independently or sequentially. In
this paper, we take real-time display advertising as an ex-
ample, where the predicted user’s ad click-through rate
(CTR) is employed to calculate a bid for an ad impression
in the second price auction. We reformulate a common lo-
gistic regression CTR model by putting it back into its sub-
sequent bidding context: rather than minimizing the pre-
diction error, the model parameters are learned directly by
optimizing campaign profit. The gradient update resulted
from our formulations naturally fine-tunes the cases where
the market competition is high, leading to a more cost-
effective bidding. Our experiments demonstrate that, while
maintaining comparable CTR prediction accuracy, our pro-
posed user response learning leads to campaign profit gains
as much as 78.2% for offline test and 25.5% for online A/B
test over strong baselines.

1. INTRODUCTION
Real-time bidding (RTB) based display advertising has

gained significant popularity since its emergence in 2009
[20]. As a key advantage over previous contextual advertis-
ing paradigm, RTB enables impression-level ad inventory
evaluation and user targetting, which largely improves the
efficiency of resource reallocation between the buy side (ad-
vertising budget) and the sell side (publishers ad inventory).

In RTB display advertising, each time when a user visits
a publisher’s site (a webpage or a mobile App page), a bid
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request for the corresponding ad display opportunity, along
with its information about the underlying user, the domain
context, and the auction, is sent to each advertiser for bid
via an ad exchange. In order to calculate the bid, the adver-
tiser first predicts the user response of that ad display, i.e.,
how likely the user is going to click or convert, which is nor-
mally measured by the predicted probability of click (CTR)
or conversion (CVR). The advertiers should bid higher and
allocate more budget on the ad inventory that has higher
CTR or CVR [22].
Typically, the bid optimization is done in a sequential

basis. First, the CTR/CVR1 estimation is formulated as
a binary regression problem, which can be solved by such
as logistic regression with SGD [23] or FTRL learning [18],
Bayesian probit regression [9], gradient boosting regression
trees [10], and Factorization Machines [21]. The common
objective in this stage is to make the estimation as accurate
as possible by, for instance, minimizing the error between
the predictions and ground truth user responses. Second,
once we have obtained the user response prediction, we will
use it as an input for optimizing the bid based on other con-
siderations including campaign budget, market price, etc
[14, 32, 31, 22].
However, such sequential optimization is not ideal. Ac-

cording to the Bayesian decision theory [3], the learning of
the user response model should be informed by the final bid-
ding utility. For instance, the required accuracy of the CTR
prediction would not be the same throughout the range of
the prediction [0, 1] as there is a cost (negative utility) for
the advertiser to win an impression if no click, but no cost
(zero utility) for losing one. The value of clicks also varies
across campaigns; and it would be good if the CTR learning
can tailor its efforts more towards those higher-valued cases
and make them better predicted. More importantly, the
user response prediction is correlated with the second price
auction in RTB — if won an auction, the advertiser pays
the market price [2], i.e., the highest bid from competitors,
and then obtain the payoff from the user conversions driven
by the ad. Therefore, the market price and the competition
have a significant impact on the campaign performance. If
the performed bid is in a highly competitive situation, it
is of low confidence to predict whether the advertiser will
win the ad auction or not; thus the optimization of the
CTR prediction in such case should be more focused and
fine-tuned than that in the less competitive case.
In this paper, we reformulate the CTR learning problem

in the context of the second price auction. Instead of in-
dependently training the CTR estimator, we consider the
CTR estimation as a part of bid optimization and its pre-
diction directly determines the auction results and thus the

1In this paper, we focus on the CTR estimation, while the
CVR estimation can be done by following the same token.
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advertising performance and vice versa. With this in mind,
we learn a CTR model by directly optimizing the campaign
performance, where the settings with or without budget
constraints are studied. The resulting gradient functions for
learning a CTR model reveal that learning weights should
reflect the market competition of the auction. Specifically,
the higher probabilistic density the market price is at the
bid price, the higher learning weight is set on the data in-
stance. This naturally provides a more learning focus on
the instances where the competition is high. The fine tuned
model would be able to bid close to the market price, result-
ing in more cost-effective bidding. Note that in the second
price auction, the game theoretical approach and the ratio-
nal assumption lead to a truthful bidding, independent of
market price [11]. However, empirical studies have shown
that advertisers are quite often not rational in RTB [29] and
in this paper, we take a stochastic approach by following [2].

We have conducted large-scale offline experiments based
on real-world data with various budget and bidding strategy
settings. We find that our solutions have as much as 78.2%
profit gain over baselines. Also we have deployed our CTR
predictor training schemes onto a commercial RTB plat-
form. The online A/B testing results demonstrate that our
proposed CTR predictor learning directly leads to 25.5%
campaign profit gain over a widely used CTR model.

The rest of this paper is organized as follows. In Sec-
tion 2 we compare related work with ours. In Section 3, we
propose the CTR training framework optimizing campaign
performance. Our experiment is given in Section 4. We
conclude the paper with the future work in Section 5.

2. RELATED WORK
User Response Prediction. The user response predic-
tion, such as the click-through rate (CTR) estimation or
the conversion rate (CVR) estimation, has become a core
research problem in real-time display advertising [14, 18,
26]. The response prediction is a probability estimation
task [19] which models the interest of users towards the
content of publishers or the ads, and is used to derive the
budget allocation of the advertisers [23]. Typically, the
response prediction problem is formulated as a regression
problem with prediction likelihood as the training objective
[23, 9, 1, 21]. From the methodology view, linear models
such as logistic regression [14] and non-linear models such
as tree-based model [10] and factorization machines [19,
21] are commonly used. Other variants include Bayesian
probit regression [9], FTRFL [24] in factorization machine,
and convolutional neural network learning framework [17].
Normally, area under ROC curve (AUC) and relative in-
formation gain (RIG) are common evaluation metrics for
CTR prediction accuracy [9]. Recently, the authors in [4,
25] pointed out that such metrics were not good enough
for evaluating CTR predictor in RTB based advertising be-
cause of the subsequent bidding and auctions. In this paper,
we use a logistical regression as a working example and go
one step further over [4] to reformulate the CTR estima-
tion learning by directly optimizing campaign performance
(profit).

Bidding Strategy. With the estimated CTR/CVR, the
advertisers would be able to assess the value of the impres-
sion and perform a bid. The auction theory [7] proves that
truthful bidding, i.e., bidding the action value times the ac-
tion rate, is the optimal strategy in the second price auction
[14]. However, with budget and auction volume constraints,
the truthful bidding may not be optimal [30]. The linear
bidding strategy [22] is widely used in industry, where the
bid price is calculated via the predicted CTR/CVR multi-

plied by a constant parameter tuned according to the cam-
paign budget and performance. The authors in [5] pro-
posed a bidding function with truthful bidding value minus
a tuned parameter. A lift-based bidding strategy was re-
cently proposed in [28] where the bid price was determined
by the user CVR lift after seeing the displayed ad.
However, the impact of market price distribution, i.e. bid

landscape, is not studied in above work, and the final util-
ity of the campaign is not considered in the optimization
objective, which may result in some unfavorable statistics
such as relatively high eCPC and low return-on-investment
ratio (ROI). The authors in [15] combined the winning rate
estimation and the winning price prediction together and
deployed the estimation results in different bidding strate-
gies towards different business demands. The authors in
[13] embedded a budget smoothing component into a bid
optimization framework. In [32, 31], using a CTR estima-
tion as an input, the authors proposed non-linear bidding
functions. Our work is different from the above work as we
directly model CTR learning as part of bid optimization for
campaign profit maximization.

Bid Landscape. Bid landscape forecasting refers to pre-
dicting the distribution of market price for a type of ad in-
ventory [6]. The advertisers use it to calculate the winning
rate given a bid and decide the final bid price. Several win-
ning function forms were hypothesized in [15, 32] to directly
induce the optimal bidding functions. A campaign-level
forecasting system with tree models was presented in [6].
The authors in [12] conducted an error handling method-
ology to improve the efficiency and reliability of the bid
landscape forecasting system. As advertisers only know the
statistics (market price, user clicks etc.) from their winning
impressions, the authors in [27] proposed a solution to han-
dle such data censorship in market price prediction. Later
we will the show market price distribution indeed plays an
essential role in CTR model learning for campaign profit
optimization, which has never been proposed.
To sum up, all the existing learning frameworks in RTB

consider the user response prediction and bidding optimiza-
tion as two separated parts, while in our paper, we model
them as a whole and perform a novel joint optimization.

3. THE PROPOSED SOLUTION
In this section, we formulate the CTR model learning to

directly optimize profit for a performance campaign (the
goal is to acquire new customers in order to generate sales).

3.1 Problem Setup and Objective Function
We consider the following performance campaign setting:

advertisers typically employ a DSP (demand side platform),
which connects to ad exchanges, to deliver their ads. For
a given ad campaign, when a bid request from an ad ex-
change hits pre-specified target rules (targeted domains or
audiences), the DSP predicts its CTR/CVR and then cal-
culates a bid in real-time using the predicted CTR/CVR.
Without loss of generality, we take clicks as the expected
user actions and the problem is to learn the user response
(CTR) model by considering the entire bidding process and
the final utility of the bidding.
A bid request contains various information of an ad dis-

play opportunity, including the information of the underly-
ing user, location, time, user terminal, browser, the contex-
tual information about the webpage etc. Together with the
features extracted from the campaign itself, we construct
the high-dimensional feature vector for the bid request, de-
noted as x. We also use px(x) to denote the probability
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Table 1: Notations and descriptions

Notation Description
v The pre-defined value of positive user response.
y The true label of user response.
x The bid request represented by its features.

px(x) The probability density function of x.
z The market price.

pz(z) The probability density function of z.
θ The weight of CTR estimation function.

fθ(x) the CTR estimation function to learn.
b(fθ(x)) The bid price determined by the estimated CTR,

b for short.
Rθ(·) The utility function.
w(b) The winning probability given bid price b.
c(b) The expected cost given bid price b if winning.

distribution of the input feature vector x that matches the
campaign target rules .

Formally, the CTR estimation is denoted as a function
p(y = 1|x) ≡ fθ(x) mapping from feature x to the prob-
ability of a click, where y ∈ {0, 1} is a binary variable in-
dicating whether a user click occurs (1) or not (0). The
function is parameterized by θ. We also denote the true
value of a click as v, which is pre-specified by the advertiser
for a given campaign2.

Next we define the context where the CTR estimator is
situated. Previous studies have specified the bidding strat-
egy as a function b(fθ(x)) mapping from the predicted CTR
(or other KPIs) fθ(x) to the bid price [14, 22, 32]. Essen-
tially, the mapping follows a sequential dependency assump-
tion x→ fθ(x)→ b proposed by [32, 31]. In this paper, we
follow the same formulation. For simplicity, we use b(·) to
represent the bidding function, but also occasionally use b
to directly represent the bid price.

Once the DSP sends out the bid b, the ad exchange hosts
a second-price auction [11] and decides who is going to win
the auction. The probability of winning an auction is influ-
enced by the bid price b and the stochastic market price z
with an underlying p.d.f. pz(z); we use w(b) to denote the
probability of winning as:

w(b) =

∫ b

0

pz(z)dz, (1)

which is the probability that the bid b is higher than the
market price z [11]. Later we will discuss the important
role of pz(z) in our CTR learning.

If the bid wins the auction, the advertiser pays the cost,
which is the market price z. We denote the expected cost
in the second price auction as

c(b) =

∫ b

0
zpz(z)dz∫ b

0
pz(z)dz

, (2)

which is essentially the expected market price when win-
ning the auction [11]. Once we have defined the bidding
function b, the value of a click v, and the winning rate w,
the expected cost c, we are ready to define a general form of
the utility function as Rθ(x, y; b, v, c, w) for a given (x, y)
2-tuple in the training data (all the received historical im-
pressions).

Our task of building a user response model can be thus
formulated as to learn the optimal parameter θ∗ so that the
expected utility will be maximized:

θ∗ = argmax
θ

∫
x

Rθ(x, y; b, v, c, w)px(x)dx, (3)

2Can be calculated as the probability of a conversion from
the click multiplied by the value of the converted sale.

where we do not include a campaign budget constraint for
optimizing the CTR model as we will show later in Sec-
tions 3.2 and 3.3 that the utility function Rθ(·) has included
the cost, while the true value of a click v limits the max bid.
The budget constraint is, however, incorporated in bid op-
timization [32], which will be discussed in Section 3.6. For
readability, our notations are summarized in Table 1.

3.2 Gradient for Expected Utility
To solve Eq. (3), utility function Rθ(·) can be naturally

defined as the expected direct profit from the campaign:

REU
θ (x, y) = [vy − c(b(fθ(x)))] · w(b(fθ(x))), (4)

where to simplify our notation, we drop the dependency of
b, v, c, w for REU

θ (x, y). The expectation is with respect to
whether winning or not, where no winning has zero utility.
Recall that, in the training set defined as D, each sample
is represented as a 2-tuple as (x, y), where x denotes the
feature vector of the bid request, and y denotes the indicator
whether user action (click) occurs. The overall expected
direct profit [4] of all the auctions can be calculated by
replacing Eqs. (1) and (2) into Eq. (4) as∑

(x,y)∈D

REU
θ (x, y)

=
∑

(x,y)∈D

[
vy −

∫ b(fθ(x))

0
z · pz(z)dz∫ b(fθ(x))

0
pz(z)dz

]
·
∫ b(fθ(x))

0

pz(z)dz

=
∑

(x,y)∈D

∫ b(fθ(x))

0

(vy − z) · pz(z)dz. (5)

Taking Eq. (5) into Eq. (3) with a regularization term
turns our learning problem into convex optimization:

θEU = argmin
θ
−

∑
(x,y)∈D

REU
θ (x, y) +

λ

2
∥θ∥22 (6)

= argmin
θ

∑
x

∫ b(fθ(x))

0

(z − vy) · pz(z)dz +
λ

2
θTθ,

where the optimal value of θ is obtained by taking a gra-
dient descent algorithm. The gradient of REU

θ (x, y) with
regard to θ is calculated as

∂REU
θ (x, y)

∂θ
= (

bid error︷ ︸︸ ︷
b(fθ(x))− vy) ·

market sensitivity︷ ︸︸ ︷
pz(b(fθ(x))) ·

∂b(fθ(x))

∂fθ(x)

∂fθ(x)

∂θ
+ λθ,

(7)

and we update for each data instance as θ ← θ−η ∂REU
θ (x,y)

∂θ
by above chain rule.

Discussion. Eq. (7) provides a novel gradient update, tak-
ing into account both the utility and the cost of a bid-
ding decision (the bid error term) as well as the impact
from the market price distribution (the market sensitivity
term). They act as two additional re-weighting functions
influencing a conventional gradient update, which is formu-
lated by the remaining terms in the equation. We illus-
trate their impact in Figure 1. The left subfigure shows
the weight from bid error against bid price with different
user responses (y = 1 or y = 0). We see that the update
of the CTR model aims to correct a bid towards the true
value vy from a training instance, i.e., an optimal model
(parameter) would generate a bid close to v for a positive
instance, while close to zero for a negative instance. The
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Figure 1: The illustration of the impact from the bid and
market price of Expected Utility (EU); click value v = 300.

right subfigure plots the weight adjustment from the mar-
ket sensitivity term (y-axis left) and the combined weight
bid error × market sensitivity (y-axis right). We observe
that the market sensitivity term re-weights the bid error
by checking the fitness to the market price distribution;
this makes the gradient focused more on fixing the errors
(if any) when the bid is close to the market price. This
is intuitively correct because when the bid is close to the
market price, the competition is high and a small error (win
a case that is no click and vice versa) would make a huge
difference in terms of the cost and reward. Specifically, for
the negative response (y = 0), the combined weight bpz(b)
stays positive in order to constantly lower the bid via CTR
learning, but its peak location is slightly higher than the
mode of market price. For the positive response (y = 1),
the combining weight (b − v)pz(b) is negative to push the
bid higher to v. Note that the bid is restricted in [0, v] as
bidding higher than v is of no advantage than bidding v
when optimizing profit.

3.3 Gradient for Risk-Return
Besides the expected utility (EU), we also propose a risk-

return (RR) model to balance the risk and return of a bid
decision as below:

RRR
θ (x, y) =

( vy

z︸︷︷︸
return

− v(1− y)

v − z︸ ︷︷ ︸
risk

)
· w(b(fθ(x))), (8)

where we define that when y = 1, the winning utility is v
z
,

which is the ratio between the return and the cost of this
transaction; when y = 0, the winning utility becomes the
penalty for taking risk −v

v−z
, which is defined as the ratio

between the lost (−v) and the gain if winning (v−z). Note
that v is always higher than z as v ≥ b > z. The penalty is
very high when bidding for a very low margin (low v − z)
case. Thus the new optimization objective function is

θRR = argmin
θ
−

∑
(x,y)∈D

RRR
θ (x, y) +

λ

2
∥θ∥22

= argmin
θ
−

∑
(x,y)∈D

∫ b(fθ(x))

0

(vy
z
− v(1− y)

v − z

)
· pz(z)dz

+
λ

2
θTθ, (9)

which leads to the gradient of RRR
θ (x, y) w.r.t. θ as

∂RRR
θ (x, y)

∂θ
=

( bid error︷ ︸︸ ︷
− vy

b(fθ(x))
+

v(1− y)

v − b(fθ(x))

)
·
market sensitivity︷ ︸︸ ︷
pz(b(fθ(x)))

·∂b(fθ(x))
∂fθ(x)

∂fθ(x)

∂θ
+ λθ. (10)

Discussion. To understand the above gradient, we plot
the bid error, market sensitivity and their combined weight
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Figure 2: The illustration of the impact from the bid and
market price of Risk Return (RR); click value v = 300.

in Figure 2. The RR model is different from the previous
EU model in that, the bid error turns to return when the
response is positive, and becomes risk when meets a nega-
tive response. If y = 0 and bid price is high, or if y = 1 and
bid price is low, the bid error is quite significant to avoid
the happening of such cases.
As is shown both in Eqs. (7) and (10), the market price

distribution plays an important role in the optimization:
with the determined bidding function and CTR estimation
function, the gradient is weighted by the probability dense
function of market price, which is denoted as pz(z).
Various bid landscape models can be utilized to model

pz(z), such as the parametric log-normal distribution [6]
and Gamma distribution [4]. In this paper, while our model
is flexible with various landscape models, we adopt a non-
parametric pz(z) directly obtained from each campaign’s
winning price data [2].

3.4 Model Realization
Solving the proposed learning objectives (6) and (9) re-

lies on the realization of the bidding function b(fθ(x)), the
market price distribution pz(z) and the CTR estimation
function itself fθ(x). In this section, we will discuss the
solutions from the proposed two training objectives given
some specific implementations of b(fθ(x)), pz(z) and fθ(x).
Without loss of generality, for the CTR estimation model,

we adopt the widely used logistic regression for fθ(x)

fθ(x) ≡ σ(θTx) =
1

1 + e−θTx
, (11)

and get ∂fθ(x)
∂θ

= σ(θTx)(1− σ(θTx))x.
For the bidding strategy, we employ a widely used lin-

ear bidding function w.r.t. the predicted CTR [22] with a
scaling parameter ϕ

b(fθ(x)) ≡ ϕ · v · fθ(x). (12)

Taking Eqs. (11) and (12) into (7) and (10), respectively,
we derive our final gradient of the proposed EU utility:

∂REU
θ (x, y)

∂θ
=ϕv2(ϕσ(θTx)− y) · pz(b(fθ(x)))· (13)

σ(θTx)(1− σ(θTx))x+ λθ,

and that of the RR utility:

∂RRR
θ (x, y)

∂θ
=ϕv

(
− y

ϕσ(θTx)
+

1− y

1− ϕσ(θTx)

)
· (14)

pz(b(fθ(x))) · σ(θTx)(1− σ(θTx))x+ λθ,

where the bidding function parameter ϕ acts as a calibration
term in bid correction.

3.5 Links to Previous Work
It is of great interest to compare our profit-optimized

solutions with the existing ones that optimize the fitness
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Table 2: The comparison of the model gradients (without regularization). LR: logistic regreesion, TB: truthful bidding,
LB: linear bidding, UM: uniform market price distribution. LR and LR+TB+UM are equivalent (LR+TB reduces to the
baseline LR when assuming the uniform market price distribution).

Model Setting EU (SE) Gradient RR (CE) Gradient

LR (baseline)
∂LSE

θ (x,y)

∂θ = (σ(θTx) − y) · σ(θTx)(1 − σ(θTx))x
∂LCE

θ (x,y)

∂θ = (σ(θTx) − y)x

LR+TB
∂REU

θ (x,y)

∂θ = v2(σ(θTx) − y) · pz(b(fθ(x))) · σ(θTx)(1 − σ(θTx))x
∂RRR

θ (x,y)

∂θ = v(σ(θTx) − y) · pz(b(fθ(x))) · x

LR+TB+UM
∂REU

θ (x,y)

∂θ = v2l(σ(θTx) − y) · σ(θTx)(1 − σ(θTx))x
∂RRR

θ (x,y)

∂θ = vl(σ(θTx) − y)x

LR+LB
∂REU

θ (x,y)

∂θ = ϕv2(ϕσ(θTx) − y) · pz(b(fθ(x)))

·σ(θTx)(1 − σ(θTx))x

∂RRR
θ (x,y)

∂θ = ϕv
(
− y

ϕσ(θT x)
+ 1−y

1−ϕσ(θT x)

)
· pz(b(fθ(x)))

·σ(θTx)(1 − σ(θTx))x

of the user response data. A logistic regression could be
trained with squared error loss to fit user response data:

LSE
θ (x, y) =

1

2
(y − σ(θTx))2,

∂LSE
θ (x, y)

∂θ
= (σ(θTx)− y)σ(θTx)(1− σ(θTx))x. (15)

More commonly, in a binary output case, a logistic re-
gression can be also trained with cross entropy loss:

LCE
θ (x, y) = −y log σ(θTx)− (1− y) log(1− σ(θTx)),

∂LCE
θ (x, y)

∂θ
= (σ(θTx)− y)x. (16)

We see that our solutions in Eq. (13) and Eq. (14) ex-
tend the original gradients in Eq. (15) and Eq. (16) by (i)
replacing the user response errors with the bid errors, and
(ii) adding the consideration from the market price and the
competition. Let us discuss them next.

User Response Errors v.s. Bid Errors. Directly opti-
mizing bid errors is particularly useful in RTB as advertisers
might not know exactly the true value of a click. Our so-
lution with a linear bidding function naturally calibrates
any discrepancy and adjusts that in the CTR estimation
accordingly. To see this, suppose advertisers know exactly
the true value v and perform truthful bidding [14, 22]:

b(fθ(x)) = v · fθ(x). (17)

With the truthful bidding and taking the logistic regres-
sion CTR estimator again, the gradients of the EU (7) and
RR (10) utilities are simplified as:

∂REU
θ (x, y)

∂θ
= v2(σ(θTx)− y) · pz(b(fθ(x))) (18)

· σ(θTx)(1− σ(θTx))x+ λθ,

∂RRR
θ (x, y)

∂θ
= v(σ(θTx)− y)pz(b(fθ(x)))x+ λθ, (19)

respectively, where the error term in the EU model becomes
the same as that of the squared error loss (15), while that of
the RR model goes back to the result from the cross entropy
loss (16), both of which are weighted by market sensitivity
pz(b(fθ(x))).

Market Price. Note that, we adopt a non-parametric
pz(z) directly obtained from each campaign’s winning price
data. Furthermore, we discuss in a special case when we
have no prior knowledge about the market and assume the
market price distribution is uniform:

pz(z) = l, (20)

Eq. (18) is simplified as

∂REU
θ (x, y)

∂θ
= v2l(σ(θTx)− y) · σ(θTx)(1− σ(θTx))x+ λθ

(21)

which becomes equivalent to the traditional LR learning
with squared loss as in Eq. (15). Eq. (19) is simplified as:

∂RRR
θ (x, y)

∂θ
= vl(σ(θTx)− y)x+ λθ, (22)

which is equivalent to the traditional LR learning with cross-
entropy loss as in Eq. (16).
As a result, we discover that, under the assumption of (i)

truthful bidding function and (ii) uniform market price dis-
tribution, our proposed learning models which directly opti-
mize the profit-related utility are equivalent to the standard
logistic regression with square error loss or cross entropy
loss. Table 2 summarizes and provides a straightforward
comparison among various model settings with the EU and
RR loss. But in our settings, we adopt more reasonable
bidding function and market price distribution, to achieve
substantial improvement against the traditional regression
loss methods.

3.6 Joint Optimization with Bidding Function
Once the CTR model has been trained, we can also use

the newly updated model to fine-tune the bidding function
such as the one in Eq. (12). The rational is that with the
CTR estimator fθ(x), the distribution of predicted CTR
changes, thus it is possible that the bidding function should
also be updated to fit the new CTR distribution [32].
The click maximization framework in [32] limits its dis-

cussion by regarding the bid price as the upper bound cost.
In this paper, we further extend the study by focusing on
the strict second price cost. Another difference lies in that
we consider the linear bidding function in Eq. (12) and in-
tend to derive the optimal solution of parameter ϕ 3.
Specifically, once we fixed fθ(x), with the auction volume

T and campaign budget B, we optimize ϕ in Eq. (12) as:

argmax
ϕ

T

∫
r

∫ ϕvr

0

(vr − z)pz(z)dz · pr(r)dr

s.t. T

∫
r

∫ ϕvr

0

zpz(z)dz · pr(r)dr = B,

(23)

where to simplify our notation, we substitute fθ(x) with its
predicted CTR variable r. The Lagrangian L(ϕ, µ) =

T

∫
r

∫ ϕvr

0

[vr − (µ+ 1)z] pz(z)dz · pr(r)dr + µB, (24)

where µ is the Lagrangian multiplier. Taking the derivative
equal to zero, we get that

∂L(ϕ, µ)
∂ϕ

= 0 ⇒ ϕ =
1

µ+ 1
. (25)

3As proven in [30], the theoretic optimal bidding function
under the second price auction is linear w.r.t. CTR.
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Algorithm 1 Joint optimization of CTR & bidding

Input: Training set D, learning rate α, total budget B
Output: Optimal b() and fθ()
1: Initially set parameter θ and ϕ
2: while not converged do
3: (E-Step)
4: for each sample (x, y) ∈ D do
5: Calculate the gradient via Eq. (13) or (14)
6: Optimize θ with gradient descent
7: end for
8: (M-Step)
9: Update bidding function b(·) via solving Eq. (26)
10: end while

To solve µ, we take the Lagrangian derivative w.r.t. to µ
ant let it be zero, which obtains the constaint equation

T

∫
r

∫ vr
1+µ

0

zpz(z)dz pr(r)dr = B, (26)

which normally has no analytic solution of µ except for some
trivial implementation of pz(z) and pr(r). Fortunately, the
numeric solution of µ is easy to find because the left part
of the equation monotonously decreases against µ in the
bidding function.

From Eq. (26), we find that the distribution of the pre-
dicted CTR pr(r) directly influences the optimal value of µ
in the bidding function Eq. (25). It means that if we update
the CTR estimation model fθ(x), then pr(r) will change ac-
cordingly, which in turn leads to the change of optimal µ.
On the contrary, from Eqs. (13) and (14) we can see that if
the bidding function b(fθ(x)) updates, the CTR estimation
model fθ(x) will be updated too. Thus the CTR estimation
and the bid function mutually influence each other.

As such, it is not ideal to simply optimize either of the
CTR estimation model or the bidding function. We thus
propose to jointly learn there two parts via an EM-like al-
gorithm as given in Algorithm 1. Such iterations will surely
get converged because each E or M-step will at least not re-
duce the objective value. Empirical study will be given in
Section 4 to investigate the convergence properties and the
quality of local minima of the proposed algorithms.

4. EXPERIMENTS
In this section, we first present the datasets and the ex-

periment settings with evaluation metrics. Secondly we will
present the user response prediction model performance and
show the reason behind the improvement of our models.
Thirdly, we also discuss the experimental results for jointly
optimization framework and finally we will show our online
A/B test experiments. We use an online learning paradigm,
that is stochastic gradient descent, for training.

4.1 Datasets
We use two real-world datasets: iPinYou and YOYI, and

provide repeatable offline empirical studies4.

iPinYou is a leading DSP company in China. The iPinYou
dataset5 was released to promote the research on real-
time bidding. The entire dataset contains 64.75M
bid records including 19.5M impressions, 14.79K clicks
and 16K CNY expense on 9 different campaigns over
10 days in 2013. The auctions during the last 3 days
are set as test data while the rest as training data.

YOYI runs a major DSP focusing on multi-device display
advertising in China. YOYI dataset6 contains 402M

4Repeatable experiment code: http://goo.gl/GzkCFQ.
5iPinYou Dataset link: http://goo.gl/9r8DtM.
6YOYI Dataset link: http://goo.gl/xaao4q.

impressions, 500K clicks and 428K CNY expense dur-
ing 8 days in Jan. 2016. The first 7 days in the time
sequence are set as the training data while the last 1
day is as the test data.

For the repeatable experiments, we focus on our study on
iPinYou dataset. Our algorithms are further evaluated over
the YOYI dataset for multi-device display advertising.
In real-time bidding, the training data contains much

fewer positive samples than negative ones. Thus similar
to [10], the negative down-sampling and the corresponding
calibration methods are adopted in the experiment. The
online A/B test is conducted on an operational real-time
bidding platform run by YOYI.

4.2 Experiment Setup
Experiment Flow. We take the original impression his-
tory log as full volume bid request data. The data contains
a list of bid record triples with user response (click) label,
the corresponding market price and request features. We
follow the previous work [32] for feature engineering and
the whole experiment flow, which is as follows: the bid re-
quests are received along with the time sequence, which is
the same as the procedure that history log is generated.
When received one request, our bid engine will decide the
bid price to participate the real-time bidding auction. It
wins if its bid price is higher than the market price, oth-
erwise loses. On one hand, a truthful or linear bidding
function is employed as our bidding strategy. On the other
hand, we deploy different CTR estimation models to predict
the user response probability, which then can be compared
against each other. After bidding, the labelled clicks of the
winning impressions will act as user feedback information.
It is worth mentioning that this evaluation methodology
works well for evaluating user response prediction and bid
optimization [2, 32] and has been adopted in display adver-
tising industry [16].

Budget Constraints. It is obvious that if our bid en-
gine bids very high price each time, the cost and profit
will stay the same as the original test log. Thus the bud-
get constraints plays a key role in evaluation [32]. For the
CTR estimation models, we only report for the test results
without budget constraints since we care more about the
prediction performance. For the joint optimization, we re-
spectively run the evaluation test using 1/128, 1/64, 1/32,
1/16, 1/8, 1/4, 1/2 of the original total cost in the test log
as the budget constraints.

4.3 Evaluation Measures
Since our objective is to improve the profit of a perfor-

mance campaign and cut down the unnecessary cost in bid-
ding, in our evaluation we measure profit and ROI w.r.t
the corresponding cost in bidding phase. When the bid en-
gine wins the auction, the corresponding market price will
be added into the total cost. While the user response (click)
is positive, we will take the campaign’s value of this action
as return. In our settings, this campaign value is set equal
to eCPC in the history data log. The profit is regarded as
the total gross profit (

∑
return−

∑
cost) for the whole test

data auctions. ROI is another important measurement re-
flecting the cost-effectiveness of a bidding strategy. It can
be regarded as a relatively orthogonal metric to auction
volume and bid cost. We calculate ROI via profit/cost.
We also adopt commonly used AUC (Area Under ROC

Curve)7 and RMSE (Root Mean Squared Error) to mea-
7It has been shown that AUC is equal to the probability
that a regressor correctly ranks a randomly chosen positive
example higher than a randomly chosen negative one.
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Table 3: Regression performances over campaigns. AUC:
the higher, the better. RMSE: the smaller, the better.

AUC RMSE (×10−2)
iPinYou SE CE EU RR SE CE EU RR
1458 .948 .987 .987 .977 3.01 1.94 2.42 2.32
2259 .542 .692 .674 .691 2.01 1.77 1.76 1.79
2261 .490 .569 .622 .619 1.84 1.68 1.71 1.68
2821 .511 .620 .608 .639 2.56 2.43 2.39 2.46
2997 .543 .610 .606 .608 5.98 5.82 5.84 5.82
3358 .863 .974 .970 .980 3.07 2.47 3.32 2.67
3386 .593 .768 .761 .778 2.95 2.84 3.32 2.85
3427 .634 .976 .976 .960 2.78 2.20 2.61 2.34
3476 .575 .957 .954 .950 2.50 2.32 2.39 2.33

Average .633 .794 .795 .800 2.97 2.61 2.86 2.69

YOYI .882 .891 .912 .912 11.9 11.7 11.8 11.6

sure the accuracy of a regression model. We also take ad
related metrics such as eCPC, cost per thousand impres-
sions (CPM), CTR, and the winning rate to compare
the bidding performance of the different prediction models.

4.4 Compared Settings
Test Settings without Budget Constraint. For the
first part of our experiment, the unlimited budget is tested.
All the CTR models are embedded with the same truthful
bidding function. We compare 4 models in this part:

CE - The logistic regression model [10, 18] is widely used
in many DSP platforms to make predictions of user
feedback. This model takes cross entropy as its opti-
mization objective and has the gradient as Eq. (16).

SE - This logistic regression model takes the squared loss
as the objective function, which takes the gradient
update as Eq. (15).

EU - Our proposed expected utility model, which takes the
gradient update as Eq. (13).

RR - Our proposed risk-return model, which takes the gra-
dient update as Eq. (14).

Test Settings with Budget Constraint. CTR learning
and bid joint optimization with budget constraint is the
second part of experiment. Here we test 4 solutions:

CELIN - As in [22, 32], the bid value is linearly propor-
tional to the predicted CTR. We implement an LR
model with a linear bidding strategy.

EUEM - This method combines our expected-utility model
with bid optimization, which is described in Section 3.6
and trained with Algorithm 1.

RREM - This is our risk-return model with the consider-
ation of a budget constraint, embedded in the joint
optimization framework, also trained Algorithm 1.

RR NOEM - The risk-return model without bid optimiza-
tion is also considered to show the effectiveness of our
joint optimization method. The truthful bidding func-
tion is used in this setting.

4.5 Accuracy of CTR Estimation
In this section, we compare the accuracy of the CTR esti-

mation models, measured by AUC and RMSE. As our mod-
els are designed to optimize performance campaign revenue
rather than user response accuracy, the evaluation here is
to see whether our proposed solutions would still be able to
achieve comparable performance against the conventional
estimators that directly optimize the prediction accuracy.
Table 3 shows the AUC and RMSE for each model over
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Figure 3: Training on iPinYou (left) and YOYI (right).

Table 4: Direct campaign profit over baselines.
profit(×107) ROI

iPinYou SE CE SE CE
1458 3.2 3.6 4.2 6.6
2259 -0.32 0.40 -0.080 0.18
2261 0.29 0.63 0.26 0.40
2821 0.11 0.08 0.21 0.023
2997 0.11 0.14 0.42 0.71
3358 1.76 2.4 5.4 5.2
3386 0.51 1.6 0.16 1.2
3427 0.33 2.9 0.11 3.4
3476 0.65 3.1 0.36 3.5

Average 0.74 1.7 1.2 2.3

YOYI 665.6 669.5 1.8 1.9

all campaigns. First, the baseline CE achieves better per-
formance than the baseline SE on all campaigns, confirm-
ing the previous study that cross entropy as an objective
naturally works on the binary classification problem with
probabilistic predictions, whereas the squared error is more
suitable for regression problems with a continuous target
value [8]. Second, both our EU and RR models achieve
similar or higher AUC values over the strong baseline CE
model, while maintaining comparable RMSE performances.
From our derivation in Section 3, we know that a key advan-
tage of our EU model over the baseline SE model is that it
considers the market price in the gradient updating. Here,
we find that our EU model not only compensates the rel-
atively weakness of the SE model, but also gains better in
some campaigns, e.g. iPinYou campaign 2261 and YOYI.
Moreover, the EU model achieves similar (sometimes bet-
ter) performances compared with the CE model. Finally,
we also observe that our RR model performs more stably in
most campaigns and achieves higher AUC than other three
models in most campaigns, e.g. iPinYou campaigns 2821,
3358, 3386 and YOYI, suggesting that combining the cross
entry loss with the market price density is the best option.

4.6 Campaign Profit Optimization
As we have found in the previous section that our mod-

els have at least comparable performances for predicting
CTR, we are now ready to examine the performance of
profit optimization for each campaign in an unlimited bud-
get setting (we will present the results under limited budget
in Section 4.8). Figure 3 plots the obtained profit against
the training rounds for the 4 models in both the iPinYou
and YOYI datasets. The model will learn on the whole
train set in one round. While the figures show the con-
vergence of each estimation model, SE does not well gen-
eralize its CTR prediction to the profit optimization in
iPinYou dataset. Compared to RR, EU’s prediction focuses
on medium-valued CTR cases, which is indeed the range
with high volume of clicks in YOYI’s market data, while
RR focusing more on higher-valued cases. This results EU
in winning more quality cases than RR.
We further examine the two baselines, SE and CE, with

more details in Table 4. Both models achieve positive ROIs
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Figure 4: Analysis of bid price and market price distribution
(iPinYou campaign 2259)

in almost all campaigns. And, in most campaigns except
for iPinYou campaign 2821, the baseline CE outperforms
the baseline SE in terms of the profit and ROI. This is
consistent with our finding in the previous section that the
CE model outperforms SE for CTR prediction accuracy.

We next pick up the best baseline CE model and use
it as the base to compare the profit gain and ROI gain
with our proposed EU and RR models, which are shown
in Table 5. From the table, we can find that (i) Both the
EU and the RR models consistently achieve higher profit
than the CE baseline. Only in iPinYou campaign 3386, EU
gains less profit. In average, our proposed models improve
the profit about 71.2% for EU and 78.2% for RR, respec-
tively. (ii) For the ROI metric, EU and RR get even higher
overall improvements against the baseline CE. The average
ROI gains are 202% for EU and 217% for RR, respectively.
Those results suggest that our proposed models are much
more cost-effective, meaning that they are capable of bet-
ter budget allocation via bidding high value yet low cost
impressions. (iii) the RR model is the best and in aver-
age, it gains 7.0% and 15% than EU in profit and ROI,
respectively.

Finally, Table 6 provides other statistics to summarize
the overall campaign performance for the 4 CTR estima-
tion models. (i) CTR reflects the quality of the winning
impressions, thus indicates whether a model would be able
to target high CTR impressions. Our models, both EU
and RR, outperform the baselines. (ii) CPM measures the
cost of the winning impressions, thus indicating whether the
model would be able to target impression economically. Our
models achieve comparable CPM with baselines. (iii) Com-
bining CTR and CPM leads to eCPC, which is the most
relevant metric to profit and ROI. Both our models, EU
and RR, pay less in most campaigns for each click, which
explains why they gain much more profit and higher ROI.
(iv) EU and RR lead to quite low winning rates to avoid
over spending on low quality ad inventory and thus achieve
relatively better profit and ROI performance.

4.7 Bidding Data Analysis
In this section, we further analyze the bidding data to

gain more insights into why our models outperform the
baselines. As we discussed in our formulation, a key ad-
vantage of our models is the introduction of the market
price distribution and the utility of the bid to the learning
of CTR model parameters. To understand the impact, in
the left subfigure of Figure 4, we plot the distribution of bid
values for our EU (similar to RR) model and the baseline
CE model and compare them with the market price distri-
bution and also the market price of the impressions that
received clicks. We cut off the figure for price > 300 since
the market price never goes beyond 300 in the dataset, and
we will discuss the situations for high price soon later.

Firstly, we see that the bid prices generated from CE

Table 5: Campaign profit improvement over baseline CE.
Profit gain ROI gain

iPinYou EU RR EU RR
1458 7.10% 9.00% 233% 267%
2259 81.6% 99.3% 233% 472%
2261 26.3% 31.1% 44.4% 91.2%
2821 573% 615% 1334% 943%
2997 5.00% 0.700% -3.60% -11.4%
3358 1.70% 6.70% 77.1% 77.7%
3386 -1.20% 2.50% 20.6% 58.3%
3427 5.50% 8.70% 52.0% 175%
3476 4.20% 8.60% 16.0% 91.1%
YOYI 9.04% 0.600% 14.8% 2.11%

Average +71.2% +78.2% +202% +217%

Table 6: Overall statistics in offline evaluation.

CTR (×10−4) eCPC
iPinYou SE CE EU RR SE CE EU RR
1458 34 33 59 190 17 11 4.3 3.4
2259 3.3 3.6 3.7 5.8 303 235 172 136
2261 2.4 2.7 3.0 2.8 234 212 188 168
2821 5.5 5.9 4.8 7.0 116 137 105 112
2997 31 25 26 27 9.8 8.2 8.3 8.6
3358 51 41 69 61 18 19 12 12
3386 7.8 11 13 15 90 48 43 36
3427 7.2 25 29 72.8 98 25 17.3 10
3476 6.4 16 17 33.1 111 34 30 20

Average 16 18 25 46 110 81 64 57
YOYI 16 18 26 24 12.9 12.4 11.3 12

CPM Win Rate
iPinYou SE CE EU RR SE CE EU RR
1458 57 37 25 65 0.22 0.24 0.13 .041
2259 100 84 64 78 0.89 0.63 0.44 0.24
2261 57 56 56 46 0.55 0.81 0.71 0.67
2821 63 80 50 78 0.12 0.63 0.48 0.45
2997 30 20 21 22 0.55 0.63 0.65 0.63
3358 92 77 80 70 0.11 0.20 0.11 0.13
3386 71 54 55 55 0.82 0.45 0.36 0.29
3427 70 60 49 75 0.75 0.26 0.22 .082
3476 71 55 50 65 0.49 0.31 0.31 0.15

Average 68 58 50 62 0.50 0.46 0.38 0.30
YOYI 20 23 29 30 0.36 0.30 0.22 0.22

Table 7: High bid price (> 300) statistics
Model Auctions Budget Largest Bid Price

Baseline CE 92.5% 14.0% 37,795
Our Model EU 10.3% 1.49% 13,901

deviate significantly from the market prices; a large portion
of the bids from CE are very high, whereas the distribution
(in log scale) of the market prices gently descends from 50
to 300, with its peak in the region between 0 and 30.
By contrast, our model EU nicely reduces the difference

between the distributions of bid price and the market price
by focusing the training on the cases that the bid is close
to the market price (see the discussion in Section 3).
Moreover, considering the market price distribution of the

impressions with clicks, we find that the bid distribution of
EU fits it much better than that of CE, which means the
bids from EU are more unlikely to miss high quality ad
impressions than those from CE.
The right subfigure in Figure 4 further shows the distribu-

tions of the price difference between the bids (from EU and
CE respectively) and the true market prices. We find that
CE has a rather biased bidding strategy — a large portion
of the bids are much higher than the corresponding market
prices. For EU, on the contrary, the major proportion of the
bids are in the “sensitive zone” where bid price is close to
the market price. The peak is located at zero, which shows
that EU can well model the market price distribution and
perform more cost-effective bidding.
It is particularly important to control the over spending

as some of RTB auctions are in fact the first price auction
or with soft floor prices [29]. Table 7 gives the statistics
related to high bid prices, where the bid value exceeds the
highest market price 300 in our dataset. Specifically, for the
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Figure 5: Performances with budgets on iPinYou.

Table 8: Profit improvements over CELIN (%).

Model
Budget Proportions−1

2 4 8 16 32 64 128
EUEM +2.9 +4.0 +7.8 +11 +11 +48 +75
RREM +5.6 +6.7 +10 +6.3 -12 +12 + 5.7

baseline CE there are 14.0% winning auctions with bid value
exceeding 300. By contrast, our model EU substantially
reduces the number of high bids and controls the high price
auctions fewer than 1.5% in the whole bidding process.

4.8 Joint Optimization with Budgets
As formulated in Section 3.6, our model would be able

to jointly optimize both the CTR estimation and bidding
function by alternatively fixing one of them and optimizing
the other. In this section, we evaluate our joint optimiza-
tion models under budget constraints. We mainly compare
three models: CELIN, EUEM and RREM as discussed in
Section 4.4. And we set the test budget as 1/2, 1/4, 1/8,
1/16, 1/32, 1/64 and 1/128 of the original total cost in the
history log respectively.

In Figure 5, we compare the overall performance for those
three models over the tested campaigns. We find that in al-
most all the settings and the metrics, our proposed joint op-
timization models, EUEM and RREM, outperform CELIN.
Table 8 further lists the detailed profit improvement over
all budget settings.

From Figure 5, we also see that CELIN achieve higher
ROI than our models when the budget relatively abundant
(1/16 or more), but is instantly outperformed by our mod-
els in relatively limited budget settings (less than 1/16),
which are more practical in real world. This phenomenon
is reasonable since the bid optimization does not lead sig-
nificant performance improvement in high budget settings,
as also reported in [32], and our optimization goal is the
direct profit instead of ROI. We also have the similar ob-
servations as those in Section 4.6 about CPM that RREM
achieves higher CPM than EUEM because of the well con-
trol of the RR model for the risk and cost. The detailed
achieved direct profit in each budget settting is listed in
Table 9.

Figure 6 further shows the effectiveness of our joint opti-
mization framework against the ones only optimizing CTR.
RR NOEM is the setting that uses only RR model with
truthful bidding function. The result shows that RR NOEM
model plays well when the budget is abundant, but its per-
formance drops largely with the budget is limited compared
to the whole volume expense, which is the practical situa-

Table 9: Achieved direct profit (×106) with budgets−1

iPinYou
CELIN EUEM RREM

128 64 32 128 64 32 128 64 32
1458 12 25 39 37 39 39 15 25 40
2259 .77 .98 2.2 .49 .71 2.2 1.0 1.5 2.5
2261 .07 .44 1.5 .66 .74 1.5 .67 1.0 2.4
2821 .027 .47 1.4 .59 1.7 1.6 .31 1.3 2.6
2997 .017 .033 .081 .059 .10 .35 .045 .23 .39
3358 6.7 11 22 16 22 24 5.1 7.8 16
3386 .90 1.5 2.5 1.8 2.1 5.8 2.1 3.8 7.0
3427 4.3 9.0 18 4.7 10 20 3.6 6.7 10
3476 3.0 4.3 10 2.2 4.5 8.0 3.7 9.4 10

Average 3.1 4.6 11 7.1 9.0 11 3.5 6.3 10
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Figure 7: Demonstration for EM convergence.

tion. And the profit achieved by the joint optimization
models stay relatively high under those tighter budgets.
We also experimentally illustrate the EM convergence of

our joint optimization methods embedded with EU model
in Figure 7. Truncate is the parameter value θ0 of the
weight for the constant additional feature in the CTR es-
timation function fθ(x). And µ is the parameter in the
linear bidding function (25). The figure shows the value
changes of Truncate and µ over EM-like training rounds.
We see that our optimization converges in about Round 7
and the fluctuation of the observed parameters is small dur-
ing the whole training stage, which shows the efficiency of
our EM-alike algorithm.

4.9 Online Deployment and A/B Test
Our user response prediction models are deployed and

tested in a live, commercial environment provided by YOYI
PLUS (Programmatic Links Us) platform, which is a lead-
ing DSP in China. There are 4 deployed models: EU,
RR, CE and FM, where the first three have been discussed
in Section 4.4 and FM is a factorization machine model
[21] with non-hierarchical feature engineering. To show the
comparable performance of user response prediction, we set
the same linear bidding function for all prediction models
including baselines. The only difference is the embedded
prediction model. The unit of money is CNY. We test over
10 campaigns during 25-26 January, 2016. The whole tested
bid flow contains over 89 million auctions including 3.3 mil-
lion impressions, 8,440 clicks and 1,403 CNY budget cost.
All the models are trained on 7 days data which have more
than 380 million impressions log and 52.5K CNY cost in to-
tal. The received bid requests are randomly selected to send
to each model at each time according to the user cookie ID,
while the chance controlled by the DSP platform for each
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Figure 8: Online A/B testing results on YOYI PLUS.

model is set equal among all the 4 compared models. We
set the same budget constraint for all deployed models. The
overall result are presented in Figure 8.

From the comparison, we have the following conclusions:
(i) EU and RR achieve higher profit and ROI than CE and
FM. Specifically, EU has twice ROI as FM, and RR achieves
more than 50% return of FM. EU gains 25.5% and 53.0%
more profit than CE and FM respectively. (ii) eCPC con-
sistently has inverse relationship with the trend of ROI.
The online result also reflects this relationship: EU and RR
have lower eCPC than other two baseline models. (iii) As
for CTR, we find that EU achieves the highest CTR and
RR also performs better than CE. Here FM has higher CTR
than the CE model because it could learn feature interac-
tions via the latent vector inner product [21]. However,
FM obtains relatively less profit gain and ROI than CE,
which shows that FM does not care enough about those
auctions with high return value. (iv) EU and RR win fewer
impressions but achieve more profit, which again indicates
our proposed models are cost-effective. (v) Compared to
the other 3 models, CE leads to higher winning rate with
lower CPM. This suggests that CE allocates its budget on
cheap ad inventory.

In sum, the online A/B testing results demonstrate the
effectiveness of our proposed EU and RR training schemes
in optimizing campaign profit. As for the difference be-
tween offline and online experimental results, it is reason-
able because of the rapidly change of the market and vari-
ance among different campaigns.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a novel user response model

training scheme for directly optimizing campaign profit in
RTB display advertising. Our mathematical derivations
showed that the market price distribution and the bid util-
ity contribute to the gradient updates as additional re-
weighting factors, which haven’t been studied before. We
tested our prediction models with other state-of-the-art es-
timation models under various budget settings. Up to 78.5%
and 25.5% profit improvements were observed in the offline
experiment and the online A/B testing, respectively, which
verify the practical efficacy of our proposed training scheme
of user response models.

A potential drawback of our current model is that al-
though it works, we have a rather simple treatment for
modeling the market price, that is obtained from the statis-
tics of the history bidding logs. In the future, we plan to
extend our model by considering more advanced bid land-
scape forecasting [27] and combining censored data learning
[2] with the parameters jointly optimized in our framework.
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