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ABSTRACT
In real-time display advertising, ad slots are sold per impres-
sion via an auction mechanism. For an advertiser, the cam-
paign information is incomplete — the user responses (e.g,
clicks or conversions) and the market price of each ad im-
pression are observed only if the advertiser’s bid had won the
corresponding ad auction. The predictions, such as bid land-
scape forecasting, click-through rate (CTR) estimation, and
bid optimisation, are all operated in the pre-bid stage with
full-volume bid request data. However, the training data is
gathered in the post-bid stage with a strong bias towards the
winning impressions. A common solution for learning over
such censored data is to reweight data instances to correct
the discrepancy between training and prediction. However,
little study has been done on how to obtain the weights in-
dependent of previous bidding strategies and consequently
integrate them into the final CTR prediction and bid genera-
tion steps. In this paper, we formulate CTR estimation and
bid optimisation under such censored auction data. Derived
from a survival model, we show that historic bid information
is naturally incorporated to produce Bid-aware Gradient De-
scents (BGD) which controls both the importance and the
direction of the gradient to achieve unbiased learning. The
empirical study based on two large-scale real-world datasets
demonstrates remarkable performance gains from our solu-
tion. The learning framework has been deployed on Yahoo!’s
real-time bidding platform and provided 2.97% AUC lift for
CTR estimation and 9.30% eCPC drop for bid optimisation
in an online A/B test.

Keywords
Unbiased Learning, Censored Data, Real-Time Bidding, Dis-
play Advertising

1. INTRODUCTION
The rise of real-time bidding (RTB) based display adver-

tising and behavioural targeting provides one of the most
significant cases for machine learning applied to big data.
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The major supervised learning tasks range from predicting
the market price distribution and volume of a given ad im-
pression type [4], estimating the click-through rate (CTR)
[23] and conversion rate [17], to the optimisation of a bid [27,
38]. These data driven prediction and optimisation tech-
niques enable ads to be more relevant and targeted to the
underlying audience [38].

A challenging yet largely neglected problem in the afore-
mentioned learning tasks is that common supervised learn-
ing requires the training and prediction data to follow the
same distribution, but in the online display advertising case,
the training data is heavily censored by the ad auction se-
lection process [30]. For advertisers, specifically, the above
prediction algorithms, e.g., CTR estimation and bid optimi-
sation, are operated over the full volume bid request stream
in order to evaluate each potential impression and automat-
ically generate bid [39]. However, the auction selects the
ad with the highest bid and displays it to the user. Only
in this situation the corresponding user feedback, i.e., click
and conversion, to this ad impression, along with the second
price (or market price [1]) for this auction, are received by
the advertisers as the labels of this data instance. Thus, as
illustrated in Figure 1, the obtaining of a training instance is
heavily influenced by its bid value; data instances with high-
er bid price (than the expected market price) would generate
a higher probability of winning and thus higher chance to
be in the training data. A consequence is that the learning
will be overly focused on the instances with a high winning
probability (high bid), while neglecting the cases where the
probability is small. Such a bias is problematic as intuitively
conversions or clicks from those low market-valued impres-
sions are more crucial than those from high market-valued
impressions in order to obtain a more economic solution.
Ultimately advertisers not only need to identify the impres-
sions that have high chance to be clicks/converted, but also
(and equally importantly) require the cost of winning those
impressions is relatively small. Thus, we need to have an
unbiased learning framework that can take the final optimi-
sation objective into account.

Typically, the bias problem is a missing data problem,
which has been well-studied in the machine learning litera-
ture [8]. A direct solution would be to identify or assume
the missing process and correct the discrepancy (e.g, [25,
22]) during the training. However, the data missing in RTB
display advertising depends on both the advertiser’s previ-
ous bidding strategy and the market competition, neither of
them are known as a priori. There are some indirect solu-
tions of alleviating the data bias such as by adding random
ad selection probability in the bidding strategy [9], but a
better solution would be to decouple the solution with the
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Figure 1: From an advertiser’s perspective, the ad auction
selection acts as a dynamic data filter based on bid value,
which leads to distribution discrepancy between the post-bid
training data (red) and the pre-bid prediction data (blue).
The y-axis p(data) means the data p.d.f. while the x-axis is
a 1-dimension abstraction of the data feature space.

previously employed bidding strategy (when acquiring the
training data) and build a link to the final optimisation pro-
cess.

In this paper, we consider both CTR estimation [23, 17]
and bid optimisation [27, 38] together and propose a flexible
learning framework that eliminates such auction-generated
data bias towards a better learning and optimisation per-
formance. According to the RTB auction mechanism, the
labelled training data instance is observed only when the
bid is higher than the market price. Inspired by the cen-
sored learning work in [1], we explicitly model the auction
winning probability with a bid landscape based on a non-
parametric survival model, i.e., [14], which is then estimat-
ed from the advertiser’s historic bid. By importance sam-
pling with the auction winning probability as propensity s-
core [12], we naturally incorporate it into gradient derivation
to produce a Bid-aware Gradient Descent (BGD) training
scheme for both CTR prediction and bid optimisation tasks.
Intuitively, our BGD shows that (i) the higher bid price the
impression was won with, the lower valued gradient such
data should generate; (ii) to generate a bid, historic bids
will further adjust the gradient direction and provide a low-
er average budget for lower-bidden training instance when
learning the bidding function. It is worth noticing that the
proposed learning framework is generally applicable to var-
ious supervised learning and optimisation tasks mentioned
above.

Besides the theoretical derivations, we also conduct em-
pirical studies with the tasks of CTR estimation and bid
optimisation on two large-scale real-world datasets. The re-
sults demonstrate large improvements brought from our so-
lution over the start-of-the-art models. Moreover, the learn-
ing framework was also deployed on Yahoo! DSP in Sep.
2015 and brought 2.97% AUC lift for CTR estimation and
9.30% eCPC drop for bid optimisation over 9 campaigns in
an online A/B test.

The rest of this paper is organised as follows. In Section 2
we discuss related work and compare it with ours. We then
formulate the problem and propose our solutions for unbi-
ased CTR estimation and bid optimisation under censored
auction data in Section 3. Extensive offline empirical study

based on two real-world datasets and online A/B test are
provided in Section 4. Finally we conclude this paper and
discuss future work in Section 5.

2. RELATED WORK
User Response Prediction. Click-through rate (CTR)
estimation and conversion rate (CVR) estimation are criti-
cal in data driven targeted advertising as these techniques
provide a quantification of the user’s interest on a specific
displayed ad, which in turn help advertisers better allocate
budget across audiences [28, 33]. Essentially, CTR/CVR es-
timation is a probability regression problem where the pos-
itive instances are extremely sparse [11]. Various machine
learning models with probability-related loss, such as cross
entropy and log-likelihood, are used for user response esti-
mation, including linear models such as logistic regression
[17], Bayesian probit regression [9], FTRL regression [23],
and non-linear ones such as factorisation machines [24] and
gradient boosting tree models [11]. Nevertheless, to our best
knowledge, none of the existing work considered the bias
coming from the ad auction selection for the user response
prediction purpose.

RTB Optimisation. Based on user response prediction,
advertisers can estimate the value of a specific ad impression,
which is the value of a response (click or conversion) mul-
tiplied by the predicted response rate (CTR or CVR) [17].
According to auction theory [7], the truth-telling bidding
is the optimal strategy in second price auctions. However,
when considering repeated auctions with volume and budget
constraints, the optimal bidding strategy is not necessarily
truth-telling [38, 37]. In RTB display advertising, with user
response prediction and bid landscape forecasting [4], the
bidding strategy determines how much to bid on a certain
ad inventory. The authors in [27] proposed a linear bidding
function w.r.t. the predicted CTR and the scaling param-
eter is tuned based on the market competition. In [3] the
authors proposed to set the bid price as the truth-telling bid
minus a value, which is dynamically tuned according to the
current performance. In [38], the authors proposed a func-
tional optimisation framework to induce the optimal bidding
functions that maximises the target key performance indi-
cator (KPI). Recently, a lift-based bidding strategy was pro-
posed [32], where the bid price was set proportional to the
user’s CVR lift after seeing the ad impression. The authors
claimed that such lift-based bidding strategy could substan-
tially bring more customers to the advertisers. Again, none
of the investigated work discussed the data bias problem
which causes the data distribution discrepancy between the
training and prediction stages.

Unbiased Offline Evaluation. As pointed out in [18], di-
rect online evaluation and optimisation for a new solution
are expensive and risky, which is also a dilemma in online
advertising [2]. However, it is cheap and risk-free if the
model can be optimised and evaluated using offline historic
data that was previously collected using another (usually un-
known) model. The authors in [19] proposed to use historic
data for unbiased offline evaluation of news article recom-
mendation models by replay and rejection sampling. Prereq-
uisites of this approach are that the previous model gener-
ating the training data (called exploration model) is known,
and that the evaluated policy has sufficiently explored all
possible actions [15]. For cases where historic data is col-
lected using a biased or non-stationary policy, the authors
in [6] suggested an adaptive rejection sampling approach.



The authors in [36] further built a reinforcement learning
framework which directly optimised the lower bound of in-
verse propensity score based policy value to reduce the train-
ing data bias from the historic policy. For cases where the
exploration model is unknown, an evaluation scheme with
estimated propensity scores and a lower bound of the data
observation probability was proposed in [29]. In our case,
the exploration model is known as we know the historic bid
price for each bid request.

Learning with Missing Data. Handling missing data is
a well-studied problem in machine learning [8]. A classic
application is item recommendation with implicit feedback
[25, 22]. The authors in [25] proposed uniform sampling of
negative items for each user’s positive-feedback item. The
authors in [22] further proposed user response models to
learn the missing data distribution instead of regarding it
as completely random observations. With the idea that the
popular but unrated items were more possible to be the true
negative items for a user, the authors in [21, 26] proposed to
sample the negative items more from the popular items and
obtained significant recommendation improvement. More
generally, the authors in [35] hypothesised that the unrated
items with high predicted interest could actually be the neg-
ative samples to the user, and proposed dynamic negative
item sampling which substantially improved the recommen-
dation performance on implicit feedback data.

In online advertising, our work is closely related to [1, 31].
Similar to [1], we also employ a survival model [13] to esti-
mate the market price. However, our purpose and setup are
significantly different. The work in [31] specifically focused
on forecasting and employing censored regression, while we
aim at CTR estimation and bid optimisation. The authors
in [1] considered bidding as a Markov decision process and
formulated an online learning algorithm under the censored
data. The underlying data bias was not considered in the bid
optimisation and another potential drawback of this work is
that a large amount of existing historic bidding data would
not be utilised. Instead, we consider two distinctive training
and prediction stages and develop models that can make use
of any existing historic bidding data independent of previous
bidding strategies. The main novelty of our work lies in de-
riving bid-aware gradient descent that directly incorporates
the auction bias into the CTR prediction and bid generation
processes to learn unbiased models.

3. METHODOLOGY
In online RTB display advertising, a bid request can be

represented as a high dimensional feature vector [17]. Let us
denote the vector as x. Without loss of generality, we regard
the bid requests as generated from an i.i.d. x ∼ px(x) with-
in a short period [38]. Based on the bid request x, the ad
agent (or demand-side platform, a.k.a. DSP) will then pro-
vide a bid bx following a bidding strategy. If such bid wins
the auction, the corresponding labels, i.e., user response y
(either click or conversion) and market price z, are observed.
Thus, the probability of a data instance (x, y, z) being ob-
served relies on whether the bid bx would win or not and we
denote it as P (win|x, bx). Formally, with the p.d.f. qx(x)
denoting how the feature vector x is distributed within the
observed training data D = {(x, y, z)}, the generative pro-
cess of creating the training data is summarised as:

qx(x)︸ ︷︷ ︸
impression

= P (win|x, bx)︸ ︷︷ ︸
auction selection

· px(x)︸ ︷︷ ︸
bid request

, (1)

where the normaliser of qx(x) has been omitted for formula
simplicity. Eq. (1) indicates the relationship (bias) between
the p.d.f. of the pre-bid full-volume bid request data (predic-
tion) and the post-bid winning impression data (training);
in other words, the predictive models would be trained on
D, where x ∼ qx(x), and be finally operated on prediction
data x ∼ px(x). In the following sections, we shall focus
on the estimation of the winning probability P (win|x, bx)
and then introduce our solutions of using it for creating bid-
aware gradients to solve CTR estimation and bid optimisa-
tion problems.

3.1 Auction Winning by Survival Models
The RTB display advertising uses the second price auc-

tion [34]. In the auction, the market price z is defined as
the second highest bid from the competitors for an auction.
In other words, it is the lowest bid value one should have in
order to win the auction. Following [1], we take a stochas-
tic approach rather than game theoretical, and assume the
market price z is a random variable generated from a fixed
yet unknown p.d.f. pxz (z); then the auction winning prob-
ability is the probability when the market price z is lower
than the bid bx:

w(bx) ≡ P (win|x, bx) =

∫ bx

0

pxz (z)dz, (2)

where to simplify the solution and reduce the sparsity of the
estimation, the market price distribution is estimated on a
campaign level rather than per impression x [4, 38]. Thus
for each campaign, there is a pz(z) to estimate, resulting the
simplified winning function w(bx), similar to [1, 38].

If we assume there is no data censorship, i.e., the ad agent
wins all the bid requests and observes all the market prices,
the winning probability wo(bx) can directly come from the
observation counting:

wo(bx) =

∑
(x′,y,z)∈D δ(z < bx)

|D| , (3)

where z is the historic market price of the bid request x′, the
indicator function δ(z < bx) = 1 if z < bx and 0 otherwise.
We use it as a baseline of w(bx) modelling.

However, the above treatment is rather problematic as it
does not take into account that in practice there are always a
large portion of the auctions the advertiser loses (z ≥ bx)1,
in which the market price is not observed in the training
data. Thus, the observations of the market price are right-
censored : when we lose, we only know that the market price
is higher than our bid, but do not know its exact value. In
fact, wo(bx) is a biased model and over-estimates the win-
ning probability. One way to look at this is that it ignores
the counts for lost auctions where the historic bid price is
higher than bx in the denominator of Eq. (3). In this sit-
uation, the market price should have been higher than the
historic bid price and thus higher than bx. As we will show
in our experiment such estimator consistently over-estimate
the actual winning probability.

In this paper, we use survival models [13] to handle the
biased auction data. Survival models were originally pro-
posed to predict patients’ survival rate for a given time after
certain treatment. As some patients might leave the inves-
tigation, researchers do not know their exact final survival

1In the iPinYou dataset [39] we tested, the overall auction
winning rate of 9 campaigns is 23.8%, which is already a
very high rate in practice.



period but only know the period is longer than the investi-
gation period. Thus the data is right-censored. The auction
scenario is quite similar: the integer market price2 is regard-
ed as the patient’s underlying survival period from low to
high and the bid price as the investigation period from low
to high. If the bid b wins the auction, the market price z is
observed, which is analogous to the observation of the pa-
tient’s death on day z. If the bid b loses the auction, one
only knows the market price z is higher than b, which is
analogous to the patient’s left from investigation on day b.

Specifically, we follow [1] by leveraging the non-parametric
Kaplan-Meier Product-Limit method [14] to estimate the
market price distribution pz(z) based on the observed im-
pressions and the lost bid requests.

Suppose there is a campaign that has participated in N
RTB display ad auctions. Its bidding log is a list of N tuples
〈bi, wi, zi〉i=1...N , where bi is the bid price of this campaign
in the auction i, wi is the boolean value of whether this cam-
paign won the auction i, and zi is the corresponding market
price if wi = 1. The problem is to model the probability of
winning an ad auction w(bx) with bid price bx.

If we transform our data into the form of 〈bj , dj , nj〉j=1...M ,
where the bid price bj < bj+1. dj denotes the number of ad
auction winning cases with the market price exactly valued
bj − 1 (in analogy to patients die on day bj). nj is the num-
ber of ad auction cases which cannot be won with bid price
bj − 1 (in analogy to patients survive to day bj), i.e., the
number of winning cases with the observed market price no
lower than bj − 13 plus the number of lost cases when the
bid is no lower than bj − 1. Then with bid price bx, the
probability of losing an ad auction is

l(bx) =
∏
bj<bx

nj − dj
nj

, (4)

which just corresponds to the probability a patient survives
from day 1 to day bx. Thus the winning probability will be

w(bx) = 1−
∏
bj<bx

nj − dj
nj

. (5)

Note the calculation is Eq. (5) is highly efficient, i.e.,
O(N). Table 1 gives an example of transforming the his-
toric 〈bi, wi, zi〉 data into the survival model data 〈bj , dj , nj〉
and the corresponding winning probabilities calculated by
Eqs. (5) and (3). We see that the Kaplan-Meier Product-
Limit model, which is a non-parametric maximum likelihood
estimator of the data [5], makes use of all winning and lost
data to estimate the winning probability of each bid, where-
as the observation-only counting model wo(bx) does not. As
we can see in the table wo(bx) is consistently higher than
w(bx). Later in experiment, we will further demonstrate
such comparisons with real-world data in Figure 5.

3.2 Task 1: CTR Estimation
Generally, given a training dataset D = {(x, y, z)}, where

the data instance x follows the training data distribution
qx(x), (the red data distribution in Figure 1), an unbiased
supervised learning problem can be formalised into a loss-
minimisation problem on prediction data distribution px(x)

2The mainstream ad exchange auctions require integer bid
prices. Without a fractional component, it is reasonable to
analogise bid price to survival days.
3We assume that if there is tie in the auction, the campaign
will not get winning.

Table 1: An example of data transformation of 8 instances
with bid price between 1 and 4. Left: tuples of bid, win and
cost 〈bi, wi, zi〉i=1...8. Right: transformed survival model tu-
ples 〈bj , dj , nj〉j=1...4 and the calculated winning probabili-
ties. Here we also provide a calculation example of n3 = 4
shown as blue in the right table. The counted cases of n3 in
the left table are 2 winning cases with z ≥ 3 − 1 and the 2
lost cases with b ≥ 3, shown highlighted in blue color.

bi wi zi
2 win 1
3 win 2
2 lose ×
3 win 1
3 lose ×
4 lose ×
4 win 3
1 lose ×

bj nj dj
nj−dj
nj

w(bj) wo(bj)

1 8 0 1 1− 1 = 0 0

2 7 2 5
7

1− 5
7

= 2
7

2
4

3 4 1 3
4

1− 5
7

3
4

= 13
28

3
4

4 2 1 1
2

1− 5
7

3
4

1
2

= 41
56

4
4

(the blue data distribution in Figure 1):

min
θ

Ex∼px(x)[L(y, fθ(x))] + λΦ(θ), (6)

where fθ(x) is θ-parametrised prediction model to be learned;
L(y, fθ(x)) is the loss function based on the ground truth
y and the prediction fθ(x); Φ(θ) is the regularisation term
that penalises the model complexity; λ is the regularisation
weight. With Eqs. (1) and (2), one can use importance sam-
pling to reduce the bias of the training data:

Ex∼px(x)[L(y, fθ(x))] =

∫
x

px(x)L(y, fθ(x))dx

=

∫
x

qx(x)
L(y, fθ(x))

w(bx)
dx = Ex∼qx(x)

[L(y, fθ(x))

w(bx)

]
(7)

=
1

|D|
∑

(x,y,z)∈D

L(y, fθ(x))

w(bx)
=

1

|D|
∑

(x,y,z)∈D

L(y, fθ(x))

1−
∏
bj<bx

nj−dj
nj

,

where the last equation is our empirical estimation. Based
on this framework, if we obtain the auction winning proba-
bility w(bx), e.g., Eq. (5), we can eliminate the bias for each
observed training data instance. Let us look at the case of
CTR estimation with logistic regression [28]. With the lo-
gistic loss between the binary click label {−1,+1} and the
predicted probability and L2 regularisation, the framework
of Eq. (7) is written as

min
θ

1

|D|
∑

(x,y,z)∈D

log(1 + e−yθ
Tx)

w(bx)
+
λ

2
||θ||22, (8)

where the winning probability w(bx) is estimated for each
observation instance, which is independent from the CTR
estimation parameter θ; the update rule of θ is routine using
stochastic gradient descent with the learning rate η. The
derived Bid-aware Gradient Descent (BGD) of Eq. (8) is

θ ← (1− η · λ)θ +
η · y · e−yθ

Tx · x
(1 + e−yθTx)(1−

∏
bj<bx

nj−dj
nj

)
. (9)

Discussion. From the equation above, we observe that with

a lower winning bid bx, the probability 1−
∏
bj<bx

nj−dj
nj

of

seeing the instance in the training set is lower. However, the
corresponding gradient from the data instance is higher and
vice versa as it is in the denominator.

This is intuitively correct as when a data instance x is
observed with low probability, e.g., 10%, we can infer there
are 9 more such kind of data instances missed because of
auction losing. Thus the training weight of x should be



Figure 2: Winning probability and reweighting term in Eq.
(9) against historic bid price.

multiplied by 10 in order to recover statistics from the full-
volume data. By contrast, if the winning bid is extremely
high, which leads 100% auction winning probability, then
such data is observed from the true data distribution. Thus
there will be no gradient reweighting on this data. Such
nonlinear relationship has been well captured in our model
in the gradient updates, as illustrated in Figure 2.

3.3 Task 2: Bid Optimisation
Another important problem in online advertising is bid

optimisation, i.e. to find the optimal bidding strategy to
maximise a campaign KPI, restricted by the campaign bud-
get. Essentially, the bidding function is abstracted as a func-
tion mapping from the estimated CTR f(x) to the bid price
b(f(x)).4 According to [38], with the auction volume T and
campaign budget B, it is a functional optimisation problem:

arg max
b()

T

∫
x

f(x)w(b(f(x)))px(x)dx (10)

subject to T

∫
x

b(f(x))w(b(f(x)))px(x)dx = B.

With the auction selection, the observed data distribution
is actually qx(x). By Eq. (1), Eq. (10) is written as

arg max
b()

T

∫
x

f(x)w(b(f(x)))
qx(x)

w(bx)
dx (11)

subject to T

∫
x

b(f(x))w(b(f(x)))
qx(x)

w(bx)
dx = B.

Note that w(bx) is different from w(b(f(x))), where bx is
the historic bid price for the bid request x while b(f(x)) is
the bid price we want to optimise.

The Lagrangian is

L(b(f), λ) =

∫
x

f(x)w(b(f(x)))
qx(x)

w(bx)
dx (12)

− λ
∫
x

b(f(x))w(b(f(x)))
qx(x)

w(bx)
dx+

λB

T
,

According to the derivation of [38], the Euler-Lagrangian
condition of Eq. (11) is

f(x)
qx(x)

w(bx)

∂w(b(f(x)))

∂b(f(x))
− λ qx(x)

w(bx)

[
w(b(f(x)))

+b(f(x))
∂w(b(f(x)))

∂b(f(x))

]
= 0, (13)

⇒ λw(b(f(x))) =
[
f(x)− λb(f(x))

]∂w(b(f(x)))

∂b(f(x))
, (14)

4We drop the CTR estimation parameter θ here as it is not
the parameter to optimise in this task.

where we see that the optimal bidding function b(f(x)) de-
pends on the winning function w(b). For example, if

w(b(f(x))) =
b(f(x))

c+ b(f(x))
, (15)

where c is a constant, then the corresponding optimal bid-
ding function is

bORTB(f(x)) =

√
c

λ
f(x) + c2 − c. (16)

For the solution of λ, the Euler-Lagrangian condition w.r.t.
λ is

∂L(b(f(x)), λ)/∂λ = 0 (17)

⇒
∫
x

b(f(x), λ)w(b(f(x), λ))
qx(x)

w(bx)
dx =

B

T
(18)

⇒ 1

|D|
∑

(x,y,z)∈D

b(f(x), λ)
w(b(f(x), λ))

w(bx)
=

B

|D| . (19)

The numeric solution of λ is highly efficient. A feasible
solution of Eq. (19) is

min
λ

∑
(x,y,z)∈D

1

2

( b(f(x), λ)w(b(f(x), λ))

1−
∏
bj<bx

nj−dj
nj

− B

|D|

)2
. (20)

As b(f(x), λ) always monotonically decreases w.r.t. λ and
w(bx) monotonically increases w.r.t. b(f(x), λ), the objec-
tive of Eq. (20) is convex w.r.t. λ, which makes the solution
of λ easy to obtain. The BGD to solve λ is via updating

λ←λ− η

instance reweighting︷ ︸︸ ︷
1

1−
∏
bj<bx

nj−dj
nj

( gradient direction︷ ︸︸ ︷
b(f(x), λ)w(b(f(x), λ))

1−
∏
bj<bx

nj−dj
nj

−
B

|D|

)
·

( ∂b(f(x), λ)

∂λ
w(b(f(x), λ)) + b(f(x), λ)

∂w(b(f(x), λ))

∂λ︸ ︷︷ ︸
bidding function gradient

)
.

(21)

Discussion. Highlighted in Eq. (21), there are two factors
related with the historic bid for updating λ: (i) the instance
reweighting, similar with Eq. (9): a small historic bid bx
would generate a large weight, amplifying the importance
of the training instance. (ii) The historic bid of the train-
ing instance also has an impact on the gradient direction,
evidenced by the second factor of the update in Eq. (21).

The parameter λ converges when the second factor be-
comes zero. The ratio B/|D| would ensure the budget to be
allocated evenly across the new bids. The ratio between the
winning rate of the new bid price w(b(f(x), λ)) and that of
the historic bid 1−

∏
bj<bx

(1−dj/nj) would adjust the dis-

crepancy of the probability of seeing the impression in the
training and that in the prediction.

To further understand this, Figure 3 illustrates the sec-
ond factor (the gradient direction term) in Eq. (21) against
historic bid price bx on two sample campaigns with two new
bids (b(f(x), λ) = 50 and 100). We observe that when the
historic bid is small, the gradient direction is more likely to
stay positive and leads to higher λ value (as bidding func-
tion gradient term in Eq. (21) is always negative) in order to
decrease the bid. For example, for a data instance that its
historic bid bx is low, the probability of observing the data
instance is low, which means there are more similar or the
same data instances that are missing in the training. If the



Figure 3: The gradient direction term in Eq. (21) against
historic bid price bx with two new bids b(f(x), λ).

new bid price b(f(x), λ) is high, then the optimal bid price
b(f(x), λ) should be lower to avoid budget overspending in
full-volume data, which is reflected on the positive value of
the gradient direction factor to make λ higher and b(f(x), λ)
lower.

Please note that with the pre-calculated reweighting factor

1/w(bx) = 1/(1 −
∏
bj<bx

nj−dj
nj

), it is highly efficient to

calculate the above BGD updating and solve λ.

4. EXPERIMENT

4.1 Datasets
Two real-world datasets are used in our repeatable offline

empirical study5: iPinYou and TukMob.

iPinYou runs the largest DSP in China. The publicly avail-
able6 iPinYou dataset consists of 64.75M bid records,
19.50M impressions, 14.79K clicks and 16K CNY ex-
pense on 9 conventional display ad campaigns from d-
ifferent advertisers during 10 days in 2013. According
to iPinYou [20], the last 3-day data for each campaign
is set as test data while the rest is training data.

TukMob is a major DSP focusing on mobile game and
video display ads in China. TukMob dataset is our
proprietary dataset which consists of 3.00M impres-
sions, 96.45K clicks and 2.51K CNY expense on 63
campaigns in a video display ad market from Feb. to
Aug. 2015. The first 5/6 data in the time sequence is
set as training data while the rest is test data.

Each data instance of both datasets can be represented
as a triple (x, y, z), where y is the user click binary feed-
back, z is the historic winning price of the auction, and x
is the bid request and ad features of that auction. The auc-
tion features contain the information of the user (e.g. the
user interest segments, IP address, browser, operation sys-
tem, location), advertiser (e.g. the creative format and size),
publisher (e.g. the auction reserve price, ad slot size, page
domain and URL).

We mainly report the experimental results on iPinYou
dataset for experiment reproducibility while the study on
TukMob acts as an auxiliary part particularly for the high-
CTR video ad marketplace to make our experiment more
comprehensive.

The online A/B testing experiment is conducted based
on Yahoo! DSP, a mainstream DSP in United States ad
market. The training dataset comes from its ad log in Aug.

5Experiment code link: https://github.com/wnzhang/rtb-
unbiased-learning.
6Dataset link: http://data.computational-advertising.org

Figure 4: Experiment flow chart.

and Sep. 2015 while the online A/B testing is performed
on 9 campaigns during 7 days of Sep. 2015, which involves
117.1M impressions, 95.4K clicks and 68.6K USD expense.

4.2 Experiment Flow
The experiment flow chart is shown in Figure 4. The

original impression log data is reasonably assumed as full-
volume bid request data in our experiment7. A truth-telling
bidding strategy [17] is performed to simulate the historic
bidding process and produce the winning (labelled but bi-
ased) impression data and lost (unlabelled) bid request data.
Based on these two datasets, the bid landscape forecasting
module as in Eq. (5) estimates the market price distribution
which acts as the winning function in Eq. (1). Thus the ob-
servation bias of each data instance from the impression log
is estimated. With Eq. (8), the unbiased CTR estimation
is performed. Furthermore, with the unbiased CTR estima-
tor and the winning function, the unbiased bid optimisation
is performed via Eq. (11) to get the new bidding function,
which is in turn operated in the next prediction stage.

4.3 Compared Settings
CTR estimation and bid optimisation are the two tasks we

investigate in this work. For each of these tasks, we compare
the following four training schemes:

• bias - The CTR estimation and bid optimisation are
performed based on the impression data without con-
sidering any data bias, i.e., all w(bx) in Eqs. (8) and
(11) are equal to 1. This is the routine training proce-
dure used in most previous work [17, 27, 38].

• uomp - The bias of each training data instance is esti-
mated by the bid landscape forecastor purely based on
the observed market prices from impression log, with-
out using the lost bid request data, i.e., all w(bx) in
Eqs. (8) and (11) are estimated by Eq. (3).

• kmmp - The bias of each training data instance is esti-
mated by the bid landscape forecastor based on both
observed market prices from impression log and the
lost bid request data using Kaplan-Meier estimation,
i.e., all w(bx) in Eqs. (8) and (11) are estimated by
Eq. (5).

7This assumption is reasonable as this dataset is collected
with fixed large bid to reduce the auction-selection bias [20].



Figure 5: Winning probability against bid price (iPinYou).

• full - A progressive bidding strategy is performed to
win all the bid requests via bidding extremely high.
In such case the full-volume bid requests are collected
with labels to train the CTR estimator and bid optimi-
sation. In such setting, the data has no bias and is of
full volume, and thus it is regarded as the (unrealistic)
upper bound setting of the training.

4.4 Winning Probability Estimation
Before evaluating the practical CTR estimation and bid

optimisation tasks, let us first take an analysis of the com-
pared models’ performance on winning probability estima-
tion, i.e., w(bx) in Eq. (2).

First, Table 2 demonstrates the statistics of the full-volume
data and the winning impression data by the ‘historic’ truth-
telling bidding strategy as described in Section 4.2. As can
be observed, for both datasets the winning impression data
which is fed into bias, uomp and kmmp training schemes
is much smaller than the full-volume data which is fed into
full training scheme.

Figure 5 shows the curves of winning probability w.r.t.
the bid price with three compared settings, i.e., uomp, k-
mmp and full, on iPinYou dataset. As expected, all the
curves start from 0 given the bid 0 and then increase as
the bid price increases and finally converge to 1 when the
bid price surpasses a threshold (300 for iPinYou dataset).
The truth curve is built from all the market price observa-
tions from the full-volume prediction data, regarded as the
ground truth here. We observe that full curve is the closest
one to truth curve since full makes use of the full-volume
training data and is naturally unbiased. The only reason of
the slight difference between full and truth is the data

Table 2: Winning data statistics: the full-volume data is
used in full training scheme, while the winning data is used
in bias, uomp and kmmp training schemes (both datasets).

iPinYou Camp. Full Vol. Win Vol. Win rate
1458 2,055,371 257,077 12.51%
2259 557,038 239,328 42.96%
2261 458,412 213,930 46.67%
2821 881,708 305,134 34.61%
2997 208,292 60,556 29.07%
3358 1,161,403 336,769 29.00%
3386 1,898,535 332,223 17.50%
3427 1,729,177 563,592 32.59%
3476 1,313,574 303,341 23.09%
all 10,263,506 3,973,989 38.72%

TukMob Camp. Full Vol. Win Vol. Win rate
all 2,500,000 962,690 38.51%

Table 3: Winning probability estimation (iPinYou).

Pearson Correlation KL-Divergence
Camp. uomp kmmp full uomp kmmp full
1458 0.9067 0.9903 0.9995 0.4053 0.1204 0.0407
2259 0.7811 0.9959 0.9980 0.7163 0.1870 0.0713
2261 0.9018 0.9947 0.9972 0.3483 0.1057 0.0346
2821 0.8234 0.9947 0.9931 0.5659 0.1421 0.0697
2997 0.8535 0.9285 0.9955 0.3862 0.1761 0.0210
3358 0.9269 0.9772 0.9926 0.5243 0.2652 0.1521
3386 0.9116 0.9821 0.9995 0.3232 0.1391 0.0444
3427 0.9743 0.9977 0.9996 0.1838 0.0762 0.0525
3476 0.9303 0.9979 0.9993 0.3807 0.1147 0.0451
all 0.9795 0.9958 0.9988 0.0893 0.0385 0.0237

distribution shift between the training and prediction peri-
od. uomp always over-estimates the winning probability, as
pointed out in Section 3.1. Compared to uomp, kmmp curve
is much closer to truth, which shows its advantage of mak-
ing use of the lost bid request data to improve the winning
probability estimation.

Table 3 presents the detailed Pearson correlation and KL-
divergence between each of the three compared settings and
truth on iPinYou dataset. We observe that for all investi-
gated campaigns, kmmp provides a much better estimation,
i.e., higher Pearson correlation and lower KL-divergence,
than uomp, and it is even highly comparable with full on
Pearson correlation. These results demonstrate the surpris-
ingly large improvement that the lost and free bid request
data brings to the estimation of winning probability (market
price distribution).

4.5 CTR Estimation Results
With different biased or unbiased settings, we train the

logistic regression model and evaluate its performance. Ta-
ble 4 presents the detailed AUC and cross entropy perfor-
mance of these 4 compared training schemes for each cam-
paign in iPinYou dataset. Table 5 presents the AUC per-
formance comparison on TukMob dataset. We can observe
that (i) the proposed unbiased training schemes uomp and
kmmp always outperform the biased but widely adopted bias
training scheme on all the test campaigns (except for 3476).
Such consistent outperformance shows the effectiveness of
our models in eliminating the training data instance bias
which makes the prediction model generalise better on pre-
diction data. (ii) Comparing the unbiased settings uomp
and kmmp and the upper bound oracle setting full, we can
see kmmp outperforms uomp for all the campaigns (except
for 3476). For some campaigns, e.g., 1458 and 2997, kmmp



Table 4: CTR performance on iPinYou dataset.

AUC (%) Cross Entropy (‰)
Camp. bias uomp kmmp full bias uomp kmmp full
1458 98.26 98.56 99.13 98.57 2.42 2.39 2.39 2.32
2259 60.27 60.94 62.00 67.37 4.04 4.03 4.02 4.00
2261 57.49 58.86 59.05 60.91 3.75 3.74 3.74 3.72
2821 59.25 59.69 60.28 62.36 7.07 7.06 7.04 6.92
2997 59.35 60.50 60.79 59.28 32.89 32.84 32.81 32.38
3358 96.59 96.78 97.01 97.32 4.48 4.47 4.38 4.36
3386 73.74 74.01 74.16 78.23 8.84 8.83 8.83 8.64
3427 96.04 96.42 96.78 97.02 3.37 3.37 3.33 3.31
3476 93.66 93.55 92.19 95.93 4.35 4.34 4.34 4.08
all 71.76 73.84 74.80 78.38 7.71 7.61 7.55 7.31

Table 5: CTR performance on TukMob dataset.

AUC (%)
Camp. bias uomp kmmp full

all 60.49 60.51 60.67 60.96

even slightly outperforms full8 which again shows the ad-
vantages of making use of the lost auction information for
better estimating the instance bias.

Figure 6 shows the AUC and cross entropy on predic-
tion data of all iPinYou campaigns for each training round.
We can observe the unbiased uomp and kmmp models learn
stably and consistently outperform bias. full substantial-
ly outperforms other compared training schemes, which is
not surprising as full obtains much more training data in-
stances (as shown in Table 2) and the data distribution is
unbiased.

Note that we do not compare calibration techniques [11] in
our experiment because it is another dimension of reducing
the model bias. If the training data is auction-biased, then
the calibration based on that is still biased.

4.6 Bid Optimisation Results
For bid optimisation experiment, we mainly focus on the

click performance improvement from bidding strategy pa-
rameter optimisation via Eqs. (16) and (19) instead of the
difference of CTR estimation. Thus in our training/prediction
environment, the logistic regression CTR estimator is trained
based on a separate unbiased training data and is shared in
all 4 compared training schemes of bid optimisation. For
each training scheme, we train the optimal parameter λ in
Eq. (19) via the biased or unbiased training data, then apply
the corresponding bidding strategy Eq. (16) on prediction
data to observe its performance.

We follow [38] to set the budget proportions to perform
offline bid optimisation, where the train/test budget is set
as 1/64, 1/32, 1/16, 1/8, 1/4 and 1/2 of the total expense
of the train/test dataset. We cannot set the proportion as 1
because in such case one may simply bid infinity to win all
the impressions and clicks in the data and just spend all the
budget.

Table 6 shows the click performance of the 4 compared
training schemes with 1/64 and 1/4 budget settings respec-
tively for each iPinYou campaign. Table 7 shows the overall
click and eCPC performance comparison against different
budget settings on TukMob dataset. We can observe that
the unbiased uomp and kmmp consistently outperform the
traditional bias which were used in the most of the previ-
ous bid optimisation work [16, 27, 38]. This shows the great
potential of our proposed unbiased training schemes in bid
optimisation. Furthermore, kmmp outperforms uomp and it

8This is mainly caused by the local data distribution, which
is not significant.

Figure 6: CTR performance training convergence (iPinYou).

Table 6: Bid optimisation click performance (iPinYou).

1/64 budget setting 1/4 budget setting
Camp. bias uomp kmmp full bias uomp kmmp full
1458 363 400 460 468 469 470 471 482
2259 5 5 5 7 49 51 51 50
2261 5 5 7 7 35 36 35 45
2821 18 18 23 27 65 91 106 134
2997 37 39 42 44 156 188 222 226
3358 86 117 137 140 183 198 220 221
3386 9 9 22 38 69 78 144 165
3427 103 119 154 169 242 262 286 314
3476 6 8 11 13 59 99 108 106
all 268 372 462 521 1,584 1,740 1,871 2,087

Table 7: Bid optimisation click performance (TukMob).

Budget Click Number eCPC
Setting bias uomp kmmp full bias uomp kmmp full
1/32 846 848 866 871 9.25 9.23 9.04 8.99
1/16 1,829 1,831 1,863 1,838 8.56 8.55 8.40 8.52
1/8 3,721 3,721 3,774 3,775 8.42 8.42 8.30 8.29
1/4 7,181 7,178 7,226 7,257 8.72 8.72 8.67 8.63
1/2 13,127 13,132 13,163 13,019 9.54 9.54 9.52 9.62

is very close to the theoretic upper bound from full, in 17
out of 20 test cases, suggesting it is generally much better
to leverage the winning probability obtained from the cen-
sored observations of both winning impressions and lost bid
requests.

Figure 7 further provides the click, impression improve-
ment percentages and eCPC drop percentage of the unbiased
training schemes against bias with different budget settings.
The improvements for clicks and impressions are positive
for all budget settings and the eCPC drops are negative for
all budget settings (except full on 1/2), which show the
robustness of the unbiased training schemes. Also we can
observe that kmmp dominates uomp and heavily approach
the upper bound full.

4.7 Online A/B Testing
We deployed the unbiased kmmp training scheme on Ya-

hoo! DSP and performed online A/B testing for 9 campaigns
during 7 days in Sep. 2015. For each campaign, we created
two experiment buckets: control and treatment. Each was
allocated 50% of the bid request traffic (based on user ID to
avoid attribution conflicts), and 50% of the campaign’s bud-
get. The control bucket used gradient boosting decision tree



Figure 7: Improvement over bias w.r.t. budget proportions.

Table 8: Online A/B testing of CTR estimation (Yahoo!).

Camp. bias AUC. kmmp AUC AUC Lift
C1 63.78% 64.12% 0.34%
C2 87.45% 88.58% 1.13%
C3 69.73% 75.52% 5.79%
C4 88.82% 89.55% 0.73%
C5 69.71% 72.29% 2.58%
C6 89.33% 90.70% 1.37%
C7 77.76% 78.92% 1.16%
C8 74.57% 76.98% 2.41%
C9 71.04% 73.12% 2.08%
all 73.48% 76.45% 2.97%

click predictor [11] trained with bias, while the click model
used in the treatment bucket was trained with kmmp. The
deployed bidding strategy is the conventional truth-telling
bidding [17].

In order to perform an unbiased evaluation of the CTR
estimation, we deployed a bidding agent performing very
high constant bid in Sep. 2015 to collect an ad impressions
dataset which can be regarded as full-volume unbiased test
data. The training data was still the traditional biased ad
impression dataset during Aug. and early Sep. 2015. Ta-
ble 8 provides the detailed CTR estimation performance for
each campaign and the overall performance. As can be ob-
served, kmmp provided a consistent AUC improvement over
BIAS across all investigated campaigns. The overall AUC
was 73.48% for bias and 76.45% for kmmp, which was a very
large improvement for CTR estimation task in practice.

Table 9 further presents the detailed performance of A/B
testing of bid optimisation on the 9 campaigns. Figure 8
depicts the relative difference comparing the performance of
kmmp againt bias. We found that with the same campaign
budget the kmmp-trained model acquired more clicks (most
of the time) but fewer impressions than the bias-trained one,
which made its CTR much higher than bias. This is because
there was less over-prediction on many cheap cases. In the
biased training data, the over-predicted CTR on cheap cases
were more likely to be sampled because the historic bidding
strategy overbid on these cheap cases, vice versa on expen-
sive cases. With the kmmp training scheme, the bidding
strategy to-some-extent got rid of such bias to avoid over-
prediction on cheap cases, which provided fewer impressions
but more clicks.

Table 9: Online A/B testing of bid optimisation (Yahoo!).

Impressions (M) Clicks (K) CTR (%) eCPC ($/click)
Camp. bias kmmp bias kmmp bias kmmp bias kmmp

C1 1.07 0.89 0.62 0.67 0.06 0.08 4.54 4.16
C2 7.73 6.02 0.94 1.19 0.01 0.02 7.49 5.89
C3 22.18 16.96 27.18 30.06 0.12 0.18 0.26 0.23
C4 0.37 0.12 0.61 0.61 0.16 0.49 2.46 2.48
C5 9.57 7.51 6.42 6.93 0.07 0.09 0.45 0.42
C6 0.32 0.22 0.46 0.46 0.14 0.21 2.17 2.18
C7 10.13 7.31 2.99 3.28 0.03 0.04 0.37 0.34
C8 1.04 0.52 1.04 1.13 0.10 0.22 1.92 1.78
C9 13.67 11.46 5.12 5.71 0.04 0.05 1.76 1.58
all 66.07 51.01 45.37 50.03 0.07 0.10 0.76 0.69

Figure 8: Relative performance difference between kmmp
and bias in Yahoo! online A/B testing: (kmmp-bias)/bias.

Overall, with the same budget, the bidding strategy trained
with kmmp achieved much better eCPC (9.30% drop) and
CTR (42.8% rise) than the conventional one trained with
bias. The kmmp-trained click model effectively alleviated
over-prediction especially in the low-CTR region and thus
became more efficient in acquiring clicks. Therefore, with
the bidding strategy with unbiased kmmp-trained click mod-
el, campaigns could acquire clicks in a more cost-effective
way.

5. CONCLUSIONS
In this paper, we studied the data observation bias prob-

lem in display advertising generated from the auction se-
lection that would hurt the performance of various super-
vised learning models. To address this problem, we pro-
posed a model-free learning framework that eliminates the
model bias generated from censored auction data. The de-
rived Bid-aware Gradient Descent (BGD) learning scheme



naturally incorporates the historic auction and bid informa-
tion, which is the main novelty of this paper. We found
that the historic bid for each instance could influence both
BGD learning weight and update direction. Comprehen-
sive empirical study based on iPinYou and TukMob datasets
demonstrated the large improvement of our learning frame-
work over strong baselines in both CTR estimation and bid
optimisation tasks. With light engineering work, the learn-
ing framework was deployed on Yahoo! DSP and brought
2.97% AUC lift in CTR estimation and 9.30% eCPC drop
in bid optimisation over 9 campaigns.

It is important to point out that such learning framework
is flexible with other supervised learning tasks than the in-
vestigated ones in this work, such as budget pacing and fre-
quency capping in online advertising as well as other data
science problems, such as interactive recommender systems
[40], off-policy reinforcement learning [10], which are our
planned future work.
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