44 research outputs found

    openHTML: Assessing Barriers and Designing Tools for Learning Web Development

    Get PDF
    In this dissertation, I argue that society increasingly recognizes the value of widespread computational literacy and that one of the most common ways that people are exposed to creative computing today is through web development. Prior research has investigated how beginners learn a wide range of programming languages in a variety of domains, from computer science majors taking introductory programming courses to end-user developers maintaining spreadsheets. Yet, surprisingly little is known about the experiences people have learning web development. What barriers do beginners face when authoring their first web pages? What mistakes do they commonly make when writing HTML and CSS? What are the computational skills and concepts with which they engage? How can tools and practices be designed to support these activities? Through a series of studies, interleaved with the iterative design of an experimental web editor for novices called openHTML, this dissertation aims to fill this gap in the literature and address these questions. In drawing connections between my findings and the existing computing education literature, my goal is to attain a deeper understanding of the skills and concepts at play when beginners learn web development, and to broaden notions about how people can develop computational literacy. This dissertation makes the following contributions: * An account of the barriers students face in an introductory web development course, contextualizing difficulties with learning to read and write code within the broad activity of web development. * The implementation of a web editor called openHTML, which has been designed to support learners by mitigating non-coding aspects of web development so that they can attend to learning HTML and CSS. * A detailed taxonomy of errors people make when writing HTML and CSS to construct simple web pages, derived from an intention-based analysis. * A fine-grained analysis of HTML and CSS syntax errors students make in the initial weeks of a web development course, how they resolve them, and the role validation plays in these outcomes. * Evidence for basic web development as a rich activity involving numerous skills and concepts that can support foundational computational literacy.Ph.D., Information Studies -- Drexel University, 201

    Contention techniques for opportunistic communication in wireless mesh networks

    Get PDF
    Auf dem Gebiet der drahtlosen Kommunikation und insbesondere auf den tieferen Netzwerkschichten sind gewaltige Fortschritte zu verzeichnen. Innovative Konzepte und Technologien auf der physikalischen Schicht (PHY) gehen dabei zeitnah in zelluläre Netze ein. Drahtlose Maschennetzwerke (WMNs) können mit diesem Innovationstempo nicht mithalten. Die Mehrnutzer-Kommunikation ist ein Grundpfeiler vieler angewandter PHY Technologien, die sich in WMNs nur ungenügend auf die etablierte Schichtenarchitektur abbilden lässt. Insbesondere ist das Problem des Scheduling in WMNs inhärent komplex. Erstaunlicherweise ist der Mehrfachzugriff mit Trägerprüfung (CSMA) in WMNs asymptotisch optimal obwohl das Verfahren eine geringe Durchführungskomplexität aufweist. Daher stellt sich die Frage, in welcher Weise das dem CSMA zugrunde liegende Konzept des konkurrierenden Wettbewerbs (engl. Contention) für die Integration innovativer PHY Technologien verwendet werden kann. Opportunistische Kommunikation ist eine Technik, die die inhärenten Besonderheiten des drahtlosen Kanals ausnutzt. In der vorliegenden Dissertation werden CSMA-basierte Protokolle für die opportunistische Kommunikation in WMNs entwickelt und evaluiert. Es werden dabei opportunistisches Routing (OR) im zustandslosen Kanal und opportunistisches Scheduling (OS) im zustandsbehafteten Kanal betrachtet. Ziel ist es, den Durchsatz von elastischen Paketflüssen gerecht zu maximieren. Es werden Modelle für Überlastkontrolle, Routing und konkurrenzbasierte opportunistische Kommunikation vorgestellt. Am Beispiel von IEEE 802.11 wird illustriert, wie der schichtübergreifende Entwurf in einem Netzwerksimulator prototypisch implementiert werden kann. Auf Grundlage der Evaluationsresultate kann der Schluss gezogen werden, dass die opportunistische Kommunikation konkurrenzbasiert realisierbar ist. Darüber hinaus steigern die vorgestellten Protokolle den Durchsatz im Vergleich zu etablierten Lösungen wie etwa DCF, DSR, ExOR, RBAR und ETT.In the field of wireless communication, a tremendous progress can be observed especially at the lower layers. Innovative physical layer (PHY) concepts and technologies can be rapidly assimilated in cellular networks. Wireless mesh networks (WMNs), on the other hand, cannot keep up with the speed of innovation at the PHY due to their flat and decentralized architecture. Many innovative PHY technologies rely on multi-user communication, so that the established abstraction of the network stack does not work well for WMNs. The scheduling problem in WMNs is inherent complex. Surprisingly, carrier sense multiple access (CSMA) in WMNs is asymptotically utility-optimal even though it has a low computational complexity and does not involve message exchange. Hence, the question arises whether CSMA and the underlying concept of contention allows for the assimilation of advanced PHY technologies into WMNs. In this thesis, we design and evaluate contention protocols based on CSMA for opportunistic communication in WMNs. Opportunistic communication is a technique that relies on multi-user diversity in order to exploit the inherent characteristics of the wireless channel. In particular, we consider opportunistic routing (OR) and opportunistic scheduling (OS) in memoryless and slow fading channels, respectively. We present models for congestion control, routing and contention-based opportunistic communication in WMNs in order to maximize both throughput and fairness of elastic unicast traffic flows. At the instance of IEEE 802.11, we illustrate how the cross-layer algorithms can be implemented within a network simulator prototype. Our evaluation results lead to the conclusion that contention-based opportunistic communication is feasible. Furthermore, the proposed protocols increase both throughput and fairness in comparison to state-of-the-art approaches like DCF, DSR, ExOR, RBAR and ETT

    WRITING A COMMUNITY GUIDEBOOK FOR EVALUATING LOW-GRADE GEOTHERMAL ENERGY FROM FLOODED UNDERGROUND MINES FOR HEATING AND COOLING BUILDINGS

    Get PDF
    When underground mines close they often fill with water from ground and surface sources; each mine can contain millions to billions of gallons of water. This water, heated by the Earth’s geothermal energy, reaches temperatures ideal for heat pumps. The sheer scale of these flooded underground mines presents a unique opportunity for large scale geothermal heat pump setups which would not be as economically, socially, and environmentally feasible anywhere else. A literature search revealed approximately 30 instances of flooded underground mines being used to heat and cool buildings worldwide. With thousands of closed/abandoned underground mines in the U.S. and a million estimated globally, why hasn’t this opportunity been more widely adopted? This project has found perception and lack of knowledge about the feasibility to be key barriers. To address these issues, this project drafted a guidebook for former mining communities titled A Community Guide to Mine Water Geothermal Heating and Cooling

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Routes for extending the lifetime of wind turbines

    Get PDF

    Adaptive Distributed Architectures for Future Semiconductor Technologies.

    Full text link
    Year after year semiconductor manufacturing has been able to integrate more components in a single computer chip. These improvements have been possible through systematic shrinking in the size of its basic computational element, the transistor. This trend has allowed computers to progressively become faster, more efficient and less expensive. As this trend continues, experts foresee that current computer designs will face new challenges, in utilizing the minuscule devices made available by future semiconductor technologies. Today's microprocessor designs are not fit to overcome these challenges, since they are constrained by their inability to handle component failures by their lack of adaptability to a wide range of custom modules optimized for specific applications and by their limited design modularity. The focus of this thesis is to develop original computer architectures, that can not only survive these new challenges, but also leverage the vast number of transistors available to unlock better performance and efficiency. The work explores and evaluates new software and hardware techniques to enable the development of novel adaptive and modular computer designs. The thesis first explores an infrastructure to quantitatively assess the fallacies of current systems and their inadequacy to operate on unreliable silicon. In light of these findings, specific solutions are then proposed to strengthen digital system architectures, both through hardware and software techniques. The thesis culminates with the proposal of a radically new architecture design that can fully adapt dynamically to operate on the hardware resources available on chip, however limited or abundant those may be.PHDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102405/1/apellegr_1.pd
    corecore