4 research outputs found

    A Cooperative Game Using the P300 EEG-Based Brain-Computer Interface

    Get PDF
    In this paper, we present a cooperative game, Brainio Bros 300, using a brain-computer interface (BCI). The game is cooperatively controlled by two people using P300-generating color discrimination. The two users advance through the game together, one as the “player” and the other as the “supporter” providing assistance. We assumed that players would be able-bodied, while supporters would include people with severe disabilities. Through experiments using human subjects, we evaluated the subjects’ impressions of the game and its usefulness. The results of the impression evaluation showed that the subjects generally had good impressions, and there were many opinions that such cooperative games are interesting. We also discuss the possibilities of using the P300 BCI

    Effects of P300-based BCI use on reported presence in a virtual environment

    Get PDF
    Brain-computer interfaces (BCIs) are becoming more and more popular as an input device for virtual worlds and computer games. Depending on their function, a major drawback is the mental workload associated with their use and there is significant effort and training required to effectively control them. In this paper, we present two studies assessing how mental workload of a P300-based BCI affects participants" reported sense of presence in a virtual environment (VE). In the first study, we employ a BCI exploiting the P300 event-related potential (ERP) that allows control of over 200 items in a virtual apartment. In the second study, the BCI is replaced by a gaze-based selection method coupled with wand navigation. In both studies, overall performance is measured and individual presence scores are assessed by means of a short questionnaire. The results suggest that there is no immediate benefit for visualizing events in the VE triggered by the BCI and that no learning about the layout of the virtual space takes place. In order to alleviate this, we propose that future P300-based BCIs in VR are set up so as require users to make some inference about the virtual space so that they become aware of it,which is likely to lead to higher reported presence

    Probabilistic Graphical Models for ERP-Based Brain Computer Interfaces

    Get PDF
    An event related potential (ERP) is an electrical potential recorded from the nervous system of humans or other animals. An ERP is observed after the presentation of a stimulus. Some examples of the ERPs are P300, N400, among others. Although ERPs are used very often in neuroscience, its generation is not yet well understood and different theories have been proposed to explain the phenomena. ERPs could be generated due to changes in the alpha rhythm, an internal neural control that reset the ongoing oscillations in the brain, or separate and distinct additive neuronal phenomena. When different repetitions of the same stimuli are averaged, a coherence addition of the oscillations is obtained which explain the increase in amplitude in the signals. Two ERPs are mostly studied: N400 and P300. N400 signals arise when a subject tries to make semantic operations that support neural circuits for explicit memory. N400 potentials have been observed mostly in the rhinal cortex. P300 signals are related to attention and memory operations. When a new stimulus appears, a P300 ERP (named P3a) is generated in the frontal lobe. In contrast, when a subject perceives an expected stimulus, a P300 ERP (named P3b) is generated in the temporal – parietal areas. This implicates P3a and P3b are related, suggesting a circuit pathway between the frontal and temporal–parietal regions, whose existence has not been verified. Un potencial relacionado con un evento (ERP) es un potencial eléctrico registrado en el sistema nervioso de los seres humanos u otros animales. Un ERP se observa tras la presentación de un estímulo. Aunque los ERPs se utilizan muy a menudo en neurociencia, su generación aún no se entiende bien y se han propuesto diferentes teorías para explicar el fenómeno. Una interfaz cerebro-computador (BCI) es un sistema de comunicación en el que los mensajes o las órdenes que un sujeto envía al mundo exterior proceden de algunas señales cerebrales en lugar de los nervios y músculos periféricos. La BCI utiliza ritmos sensorimotores o señales ERP, por lo que se necesita un clasificador para distinguir entre los estímulos correctos y los incorrectos. En este trabajo, proponemos utilizar modelos probabilísticos gráficos para el modelado de la dinámica temporal y espacial de las señales cerebrales con aplicaciones a las BCIs. Los modelos gráficos han sido seleccionados por su flexibilidad y capacidad de incorporar información previa. Esta flexibilidad se ha utilizado anteriormente para modelar únicamente la dinámica temporal. Esperamos que el modelo refleje algunos aspectos del funcionamiento del cerebro relacionados con los ERPs, al incluir información espacial y temporal.DoctoradoDoctor en Ingeniería Eléctrica y Electrónic
    corecore