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ABSTRACT 

An event related potential (ERP) is an electrical potential recorded from the nervous 

system of humans or other animals. An ERP is observed after the presentation of a stimulus. 

Some examples of the ERPs are P300, N400, among others. Although ERPs are used very 

often in neuroscience, its generation is not yet well understood and different theories have 

been proposed to explain the phenomena. ERPs could be generated due to changes in the 

alpha rhythm, an internal neural control that reset the ongoing oscillations in the brain, or 

separate and distinct additive neuronal phenomena. When different repetitions of the same 

stimuli are averaged, a coherence addition of the oscillations is obtained which explain the 

increase in amplitude in the signals.   

Two ERPs are mostly studied: N400 and P300. N400 signals arise when a subject tries to 

make semantic operations that support neural circuits for explicit memory. N400 potentials 

have been observed mostly in the rhinal cortex. P300 signals are related to attention and 

memory operations. When a new stimulus appears, a P300 ERP (named P3a) is generated in 

the frontal lobe. In contrast, when a subject perceives an expected stimulus, a P300 ERP 

(named P3b) is generated in the temporal – parietal areas. This implicates P3a and P3b are 

related, suggesting a circuit pathway between the frontal and temporal–parietal regions, 

whose existence has not been verified. 

A Brain-Computer Interface (BCI) is a communication system in which messages or 

commands that a subject sends to the external world comes from some brain signals rather 
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than the peripheral nerves and muscles. BCI uses sensory-motor rhythms or ERP signals, 

so a classifier is needed to distinguish among the correct stimuli and the incorrect ones. 

The majority of studies about ERPs classification uses the following scheme: when brain 

signals are acquired, they are pre-processed to get some features that serve as inputs to a 

classifier. Then, a classifier is proposed for discriminating ERP signals, without taking in 

account the nature of the process, in most of the cases.  

In this work, we propose to use probabilistic graphical models for the modeling of the 

temporal and spatial dynamics of the brain signals with applications to BCI. Our work 

will be focused on ERPs and the corresponding modeling of such phenomena. Graphical 

models have been selected for its flexibility and capacity to incorporate prior information. 

This flexibility has been used before for modeling temporal dynamics alone. We expect 

that the model reflects some aspects of the brain functioning related to the ERPs, by 

including spatial and temporal information. We might expect too an improvement in the 

performance of a BCI system when using the proposed model. 

  



Brain-computer interfaces  III 

 

ACKNOWLEDGEMENTS 

In the final part of the present chapter of my life, I have a lot to thank, as well as many 

people to thank for their support, presence, advice and even exhortations. All these 

contributions have been well received, even if I could not understand them at first. To God, 

who has been my shelter, sustenance and support at all times. To the life and the universe, 

who have not yet rejected me from this existential plane. To my parents, who rejoiced, 

suffered and celebrated with me or for me during all these years. To my sister, who many 

times helped me to keep calm in moments of restlessness, anxiety and uncertainty. To them: 

infinite thanks. 

I also have a lot to thank my extended family: my grandparents Juan and Lucila, who were 

and have been aware of my progress, as well as my uncles, aunts, and cousins. Special 

mention must be made to my uncle Adriano, who has been my support in this academic 

adventure, started since 2015, and to my aunt Lilí, who has received me with my uncle in 

their home for many years. I must also thank my cousin Andrés Camilo, from whom I have 

received valuable advice and counsel for the completion of this work. To Juan Manuel, 

Nicolás and Daniel, who in one way or another helped me in some administrative and form 

issues, along with their partners Alejandra, Linda, Yanan and Daniela. All of them have a 

place in my heart. 

To my classmates, colleagues and professors who shared space with me at Universidad 

del Norte, I remember them fondly. First of all, to the professors and administrative staff of 

the Department of Electrical and Electronic Engineering, with whom I had the privilege and 

opportunity to deal on countless occasions, from whom I received valuable support, 

invaluable advice and exhortations that are appreciated now and in my future. Special 

mention must be made to professors Juan Carlos Vélez, Luis Torres, Ingrid Oliveros, José 

Soto, César Viloria and Jaime Delgado, with whom I had the opportunity to work as a 

graduate assistant and learn from their experience as teachers and professionals. To the 

directors of the Electrical and Electronics Department, for their management and work over 

the years, to ensure the proper development of the doctoral program. To the professors of 

CEDU, especially those with whom I shared different spaces, especially the reading clubs: 

thank you very much for your advice, points of view and shared experiences. From all of 



Brain-computer interfaces  IV 

 

them I had something to learn for my personal, academic and professional life. To the 

UNINORTE scholarship program, I extend a special gratitude for the opportunity 

through them to carry out my doctoral studies, under the Grant 2015-29364 0. 

To my doctoral classmates, with whom we suffered and enjoyed many moments, I will 

always keep them in mind, especially those with whom I had the privilege of seeing 

subjects and fighting in the front line: Jamer, Liesle, Wendy, Sandra and Aura. To my 

colleagues in the BSPAI lab and research group, with whom I shared space and experience 

for years, and also received collaborations from them, I appreciate them immensely: 

Cristian, Catherine, Pedro, Mario, Daniela, Dayan, Harold and other colleagues. I also 

thank the teachers of the group immensely for their advice, appreciation and shared 

moments, regardless of time and current circumstances: Juan Pablo Tello, Winston 

Percybrooks, Norelli Schettini and Jaime Delgado. To my colleagues who were in the 

different masters offered by the Electrical and Electronics Department, with whom I also 

had the privilege of sharing time and space, I am immensely grateful to them. Special 

mention should be made to Loraine Navarro and Daniela Charris, with whom I had the 

privilege of working, being graduate assistants, and Ana Maria Lopez, from whom I 

learned about her dedication and effort to get her Master's degree. 

To my brothers in faith and leaders, with whom I have crossed paths from my childhood 

until today, and who have been accompanying me in this journey of life. Their names are 

so many that they would not fit in this space, but I remember them all fondly and thank 

them for their prayers, words of encouragement, shared moments and support in difficult 

times. To my friends, with whom we laughed, suffered, cried and enjoyed this time. In 

Bucaramanga, I especially mention Yenny Carolina, who has supported me with her 

advice and her time, Ana Milena, whose support and advise have given me breath in 

different situations, Viviana, who has been aware of my work and person, and Carolina 

Rueda, who came as reinforcement at this stage of the road; in Barranquilla, the combo of 

the Festival del Guandul Chino, Luz Marina (Lumi), the Adrianas (Anaya and Margarita), 

Karen Looren, Anita Mevania, Analuz, Dianita. 

To my psychologists and psychiatrists, who have helped me to direct my thoughts and 

feelings regarding my future as a researcher, professional and person. In particular, I 

would like to thank Milagro Villareal Bacareo and Julio Quijano, who were attentive to 



Brain-computer interfaces  V 

 

my case, and gave me advice and strategies to work on my thesis while I was dealing with 

my mental health, and also taught me the importance of closing cycles and completing stages. 

stages. 

A special mention must go to those people who, without sharing many genes, have become 

special to my life, so much so that I cannot imagine my doctoral (and personal) life without 

their presence as counselors, support and, in some cases, exhorters: Juliett Paola, from whom 

I have learned not to force and to let it flow; Diana Astrid, from whom I have learned that 

perseverance bears fruit; María Isabel, from whom I have learned to say yes and no; Diana 

Patricia, with whom I have had the opportunity to share and discuss my points of view; Ivette 

Rocío, whose friendship of years has led me to become a little more like her, even if she has 

not taken much from me. To them, a big “thank you” for everything I have received over the 

years, for their friendship, their appreciation. 

Finally, I cannot end these lines without special thanks to the professors and engineers 

Jaime Delgado, María Gabriela Calle, Lácides Ripoll and Ingrid Oliveros, from whom I have 

received their professional, academic and personal support in the development of this 

doctorate. Without them, this story could not have been told from beginning to end. 

  



Brain-computer interfaces  VI 

 

AGRADECIMIENTOS 

En la parte final del presente capítulo de mi vida, tengo mucho por agradecer, así como 

a muchos por quiénes agradecer sus apoyos, presencias, consejos y hasta exhortaciones. 

Todos estos aportes han sido bien recibidos, así yo no los haya podido comprender en un 

principio. A Dios, quien ha sido mi refugio, sustento y respaldo en todo momento. A la 

vida y al universo, que aún no me han rechazado de este plano existencial. A mis padres, 

quienes se alegraron, sufrieron y celebraron conmigo o por mí durante todos estos años. 

A mi hermana, quien muchas veces me ayudó a mantener la calma en momentos de 

inquietud, ansiedad e incertidumbre. A ellos: infinitas gracias. 

A mi familia extendida, también tengo mucho por agradecer: a mis abuelos Juan y 

Lucila, quienes estuvieron y han estado pendientes de mi progreso, al igual que mis tíos, 

tías, primos y primas. Especial mención he de hacer a mi tío Adriano, quien ha sido mi 

respaldo en esta aventura académica, emprendida desde 2015, y a mi tía Lilí, quien me ha 

recibido junto a mi tío en su hogar por muchos años. También he de agradecer a mi primo 

Andrés Camilo, de quien he recibido consejos y asesorías muy valiosas para la 

culminación de este trabajo. A Juan Manuel, Nicolás y Daniel, quienes de una u otra forma 

me ayudaron en algunas cuestiones administrativas y de forma, junto con sus parejas 

Alejandra, Linda, Yanan y Daniela. Tienen un lugar ganado en mi corazón. 

A mis compañeros, colegas y profesores que compartieron espacio conmigo en la 

Universidad del Norte, los recuerdo con cariño. En primera instancia, a los docentes y 

personal administrativo del departamento de Ingeniería Eléctrica y Electrónica, con 

quienes tuve el privilegio y la oportunidad de tratar en infinitas oportunidades, de quienes 

recibí valioso apoyo, invaluables consejos y exhortaciones que se aprecian ahora y en mi 

porvenir. Especial mención tienen los profesores Juan Carlos Vélez, Luis Torres, Ingrid 

Oliveros, José Soto, César Viloria y Jaime Delgado, con quienes tuve la oportunidad de 

trabajar como asistente graduado y aprender de su experiencia como docentes y 

profesionales. A las directivas del departamento de Eléctrica y Electrónica, por su gestión 

y labor en estos años, en procura del buen desarrollo del programa del doctorado. A los 

docentes del CEDU, en especial con quienes compartí en diferentes espacios, en especial 

los clubes de lectura: muchas gracias por sus consejos, puntos de vista y experiencias 



Brain-computer interfaces  VII 

 

compartidas. De todos ellos tuve algo por aprender para mi vida personal, académica y 

profesional. Al programa de becas UNINORTE, les doy un agradecimiento especial por la 

la oportunidad brindada a través de ellos para sacar adelante mis estudios de doctorado, bajo 

bajo la beca 2015-29364 0. 

A mis compañeros de doctorado, con quienes sufrimos y gozamos muchos momentos, los 

tendré siempre presentes, en especial con quienes tuve el privilegio de ver asignaturas y 

luchar en primera línea: Jamer, Liesle, Wendy, Sandra y Aura. A mis compañeros del 

laboratorio y grupo de investigación BSPAI, con quienes compartí espacio y conviví por 

años, y también recibí colaboraciones de su parte, los aprecio inmensamente: Cristian, 

Catherine, Pedro, Mario, Daniela, Dayan, Harold y demás compañeros. A los docentes del 

grupo también agradezco inmensamente por sus consejos, aprecio y momentos compartidos, 

independiente del tiempo y circunstancias actuales: Juan Pablo Tello, Winston Percybrooks, 

Norelli Schettini y Jaime Delgado. A mis colegas que estuvieron en las diferentes maestrías 

ofrecidas por el departamento de Eléctrica y Electrónica, con quienes también tuve el 

privilegio de compartir tiempo y espacio, tengo un agradecimiento inmenso con ellos. Cabe 

mencionar en especial a Loraine Navarro y Daniela Charris, con quienes tuve el privilegio 

de trabajar, siendo ellas asistentes graduadas, y Ana María López, de quien aprendí su 

dedicación y esfuerzo por sacar adelante su maestría. 

A mis hermanos en la fe y líderes, con quienes he cruzado camino desde mi infancia hasta 

hoy, y me han estado acompañando en este trayecto de la vida. Sus nombres son tantos que 

no cabrían en este espacio, pero a todos ellos los recuerdo con cariño y les agradezco sus 

oraciones, palabras de aliento, momentos compartidos y apoyo en momentos difíciles. A mis 

amigos, con quienes reímos, sufrimos, lloramos y nos gozamos este tiempo. En 

Bucaramanga, menciono especialmente a Yenny Carolina, quien me ha apoyado con sus 

consejos y su tiempo, Ana Milena, cuyo apoyo y consejos me han brindado aliento en 

diversas oportunidades, Viviana, que ha estado pendiente de mi trabajo y persona,  y Carolina 

Rueda, quien llegó como refuerzo en esta etapa del camino; en Barranquilla, al combo del 

Festival del Guandul Chino, a Luz Marina (Lumi), las Adrianas (Anaya y Margarita), Karen, 

Anita Mevania, Analuz, Dianita. 

A mis psicólogos y psiquiatras, quienes me han ayudado a encaminar mis pensamientos y 

sentimientos respecto a mi devenir como investigador, profesional y persona. En especial, 



Brain-computer interfaces  VIII 

 

quiero agradecer a Milagro Villareal Bacareo y a Julio Quijano, quienes estuvieron 

pendientes de mi caso, y me brindaron consejos y estrategias para trabajar mi tesis 

lidiaba con mi salud mental, y me enseñaron también la importancia de cerrar ciclos y 

culminar etapas. 

Mención aparte tiene aquellas personas que, sin compartir tantos genes, se han vuelto 

especiales para mi vida, tanto así que no imagino mi vida de doctorado (y personal) sin 

ellas como consejeras, apoyo y, en algunos casos, exhortadoras: Juliett Paola, de quien he 

aprendido a no forzar y dejar fluir; Diana Astrid, de quien he aprendido que la 

perseverancia brinda sus frutos; de María Isabel, de quien he aprendido a decir sí y no; de 

Diana Patricia, con quien he tenido la oportunidad de compartir y debatir mis puntos de 

vista; de Ivette Rocío, cuya amistad de años me ha llevado a parecerme un poco más a 

ella, así ella no haya tomado mucho de mí. A ellas, un agradecimiento enorme por todo lo 

recibido en estos años, por su amistad, su aprecio. 

Finalmente, no puedo terminar estas líneas sin un agradecimiento especial a los 

profesores e ingenieros Jaime Delgado, María Gabriela Calle, Lácides Ripoll e Ingrid 

Oliveros, de quienes he recibido su apoyo profesional, académico y personal en el 

desarrollo de este doctorado. Sin ellos, esta historia no habría podido ser contada desde el 

principio hasta el final.  



Brain-computer interfaces  IX 

 

LIST OF FIGURES 

Figure 1-1. Graphical models from some linear Conditional Random Fields. .................. 8 

Figure 2-1. Place of used electrodes in the dataset. ......................................................... 18 

Figure 2-2. Averaged results of all subjects, for LSVM .................................................. 23 

Figure 2-3. Averaged results of all subjects, for Log Reg. .............................................. 25 

Figure 2-4. Averaged results of all subjects, for SWLDA ............................................... 27 

Figure 2-5. Averaged results of all subjects, for BLDA .................................................. 29 

Figure 3-1. Location of primary sensorimotor cortex, indicated in red and green. ......... 34 

Figure 4-1. Electrodes location in the dataset BCI Competition IV, dataset 2b, and their 

interactions. .......................................................................................................................... 45 

Figure A-1-1. A linked MVHCRF graphical model (left) and a coupled MVHCRF 

graphical model (right) with three timestamps and two HCRF models. .............................. 60 

Figure A-1-2. A graphical model of HUCRF .................................................................. 61 

Figure A-1-3. Summarization of results of CRF implementation with CSP features. .... 67 

 

  



Brain-computer interfaces  X 

 

LIST OF TABLES 

Table 2-1. Averaged metrics by subject, for LSVM. .................................................. 24 

Table 2-2. Averaged metrics by subject, for Log Reg. ............................................... 26 

Table 2-3. Averaged metrics by subject, for SWLDA. .............................................. 28 

Table 2-4. Averaged metrics by subject, for BLDA. .................................................. 30 

Table 3-1. Results of Accuracy, by subject and type of data. Overall performance: 

0,526 ................................................................................................................................ 36 

Table 3-2. Results of Cohen’s kappa index, by subject and type of data. Average 

performance: 0,394 .......................................................................................................... 37 

Table 3-3. Results of Accuracy, by subject and classifier. Overall performance: 

0,433 ................................................................................................................................ 38 

Table 3-4. Results of Cohen’s kappa index, by subject and classifier. Overall 

performance: 0,278. ......................................................................................................... 39 

Table 3-5. Confusion Matrix across all subjects for CRF, LDA and LSVM classifiers. 

Grayscale indicates the degree of distribution of assigned labels. .................................. 42 

Table 3-6. Results of balanced accuracy, by subject and classifier. ........................... 42 

Table 4-1. Results of Accuracy in LDA model, with and without correlation. Overall 

performance: 0,74. ........................................................................................................... 49 

Table 4-2. Results of Accuracy in LDA, with and without Jaccard Distance Overall 

performance: 0,741. ......................................................................................................... 49 

Table 4-3. Results of Accuracy in LDA model with correlation as additional feature, 

by varying the window size in the sliding window algorithm. Overall performance: 0,751.

 ......................................................................................................................................... 50 

Table 4-4. Results of Accuracy in LDA model with correlation as additional feature, 

by varying the slide size in the sliding window algorithm. Overall performance: 0,751. 50 

Table 4-5. Results of Accuracy in LDA model with Jaccard Distance as additional 

feature, by varying the window size in the sliding window algorithm. Overall 

performance: 0,752. ......................................................................................................... 52 



Brain-computer interfaces  XI 

 

Table 4-6. Results of Accuracy in LDA model with Jaccard Distance as additional feature, 

by varying the slide size in the sliding window algorithm. Overall performance: 0,752. .... 52 

Table 4-7. Results of Accuracy in HCRF model, with and without correlation. Overall 

performance: 0,757. .............................................................................................................. 53 

Table 4-8. Results of Accuracy in HCRF, with and without Jaccard Distance. Overall 

performance: 0,758. .............................................................................................................. 53 

Table 4-9. Results of Accuracy in HCRF model with correlation as additional feature, by 

varying the window size in the sliding window algorithm. Overall performance: 0,777. ... 54 

Table 4-10. Results of Accuracy in HCRF model with correlation as additional feature, by 

varying the slide size in the sliding window algorithm. Overall performance: 0,777. ......... 54 

Table 4-11. Results of Accuracy in HCRF model with Jaccard Distance as additional 

feature, by varying the window size in the sliding window algorithm. Overall performance: 

0,778. .................................................................................................................................... 56 

Table 4-12. Results of Accuracy in HCRF model with Jaccard Distance as additional 

feature, by varying the slide size in the sliding window algorithm. Overall performance: 

0,778. .................................................................................................................................... 56 

Table A-1-1. Results of LDA, HCRF and MVHCRF implementation, by patient. ........ 62 

Table A-1-2. Results of HUCRF implementation, by patient. ........................................ 63 

Table A-1-3. Results of HUCRF implementation, by patient. ........................................ 64 

Table A-1-4. Results of CRF implementation with Alpha and Beta power band features, 

by patient. ............................................................................................................................. 65 

Table A-1-5. Results of CRF implementation with CSP features, by patient. ................ 68 

  



Brain-computer interfaces  XII 

 

LIST OF ACRONYMS 

ANOVA: analysis of variance. 

BCI: brain-computer interface. 

BLDA: bayesian linear discriminant analysis. 

CAR: common average reference. 

CRF:conditional random fields. 

CSP: common spatial patterns. 

d.o.f.: degrees of freedom. 

ECoG: Electrocorticography. 

EEG: Electroencephalography. 

EOG: Electro-oculography. 

ERP: event-related potential. 

FBCSP: Filter bank common spatial patterns. 

HCRF: hidden conditional random fields. 

HG: high gamma band. 

HMM: hidden Markok model. 

HUCRF: hidden-unit conditional random fields. 

LDA: linear discriminant analysis. 

LDCRF: latent dynamic conditional random fields. 

LFC: low frequency components. 

Log. Reg.: logistic regression. 

LSVM: linear-kernel support vector machine. 

MVHCRF: multi-view hidden conditional random fields. 

PGM: probabilistic graphical model 

QDA: quadratic discriminant analysis. 

SVM: support vector machine. 

SWT: sliding window technique. 

SWLDA: step-wise linear discriminant analysis. 

  



Brain-computer interfaces  XIII 

 

TABLE OF CONTENT 

1 Introduction ................................................................................................................. 1 

1.1 Brain-computer interfaces .................................................................................... 1 

1.2 Some classifiers used in BCI ................................................................................ 2 

1.2.1 Linear and Quadratic Discriminant Analysis ................................................ 3 

1.2.2 Step-wise LDA ............................................................................................. 3 

1.2.3 Bayesian LDA ............................................................................................... 3 

1.2.4 Linear SVM .................................................................................................. 4 

1.2.5 Logistic regression ........................................................................................ 5 

1.3 Conditional random fields .................................................................................... 5 

1.3.1 Probabilistic graphical model ....................................................................... 5 

1.3.2 Linear CRF ................................................................................................... 6 

1.3.3 Latent dynamic conditional random fields ................................................... 7 

1.3.4 Hidden Conditional Random Fields.............................................................. 7 

1.4 Some performance metrics used in BCI ............................................................... 9 

1.4.1 Accuracy ....................................................................................................... 9 

1.4.2 Cohen’s kappa index κ .................................................................................. 9 

1.4.3 Balanced accuracy ...................................................................................... 10 

1.5 Instantaneous interactions .................................................................................. 11 

1.5.1 Pearson correlation...................................................................................... 11 

1.5.2 Jaccard distance .......................................................................................... 11 

1.6 Background ........................................................................................................ 12 

1.7 Problem statement .............................................................................................. 13 

1.8 Justification ........................................................................................................ 13 

1.9 Hypotheses ......................................................................................................... 14 

1.9.1 First Hypothesis .......................................................................................... 14 

1.9.2 Second Hypothesis ...................................................................................... 14 



Brain-computer interfaces  XIV 

 

2 A Bootstrapping Method for Improving a P300 Speller Classification Performance

 15 

2.1 Preliminaries ............................................................................................. 15 

2.2 Methods ..................................................................................................... 17 

2.2.1 Experiment and dataset description ............................................... 17 

2.2.2 Data processing .............................................................................. 17 

2.2.3 Classifiers ....................................................................................... 20 

2.2.4 Performance metrics ...................................................................... 20 

2.2.5 Statistical analysis .......................................................................... 20 

2.3 Results and discussion ............................................................................... 21 

2.3.1 Number of bootstrapped samples................................................... 21 

2.3.2 Type of training samples ................................................................ 22 

2.3.3 Discussion ...................................................................................... 26 

2.4 Conclusions ............................................................................................... 31 

3 A First Approximation to Linear CRF classifiers for Finger Movement 

Classification ................................................................................................................... 32 

3.1 Preliminaries ............................................................................................. 32 

3.2 Materials and methods .............................................................................. 33 

3.2.1 Experiment and dataset description ............................................... 33 

3.2.2 Data pre-processing ....................................................................... 33 

3.2.3 Classifiers to be compared ............................................................. 34 

3.2.4 Performance metrics ...................................................................... 35 

3.2.5 Statistical analysis .......................................................................... 35 

3.3 Results and Discussion .............................................................................. 36 

3.3.1 Type of Data: High Gamma Band vs. Low-Frequency 

Component 36 

3.3.2 CRF and LDCRF against other classifiers ..................................... 37 

3.3.3 Discussion ...................................................................................... 38 



Brain-computer interfaces  XV 

 

3.4 Conclusions ........................................................................................................ 41 

4 Analysis of instantaneous brain interactions contribution to a motor imagery 

classification task .................................................................................................................. 43 

4.1 Preliminaries ...................................................................................................... 43 

4.2 Materials and methods ....................................................................................... 44 

4.2.1 Experiment and dataset description ............................................................ 44 

4.2.2 Data pre-processing .................................................................................... 46 

4.2.3 Sliding window technique .......................................................................... 46 

4.2.4 Pearson correlation...................................................................................... 46 

4.2.5 Jaccard distance .......................................................................................... 47 

4.2.6 Performance metrics ................................................................................... 47 

4.2.7 Statistical analysis ....................................................................................... 47 

4.3 Results and Discussion ....................................................................................... 48 

4.3.1 Results with LDA model ............................................................................ 48 

4.3.2 Results with HCRF model .......................................................................... 51 

4.3.3 Discussion ................................................................................................... 55 

4.4 Conclusions ........................................................................................................ 57 

Appendices ....................................................................................................................... 58 

Appendix 1. Additional models and multivariate BCI datasets tested ...................... 59 

A-1 1. Additional models tested............................................................................. 60 

A-1.1.1. Multi-view hidden conditional random fields (MVHCRF) .................. 60 

A-1.1.2. Hidden-Unit CRF (HUCRF) ................................................................ 61 

A-1 2. Additional Results ....................................................................................... 61 

A-1.2.1. MVHCRF ............................................................................................. 62 

A-1.2.2. CRF ....................................................................................................... 63 

A-1.2.3. HUCRF ................................................................................................. 64 

A-1.2.4. CRF – Alpha and Beta power band ...................................................... 65 

A-1.2.5. CRF – Filter bank Common Spatial Patterns (FBCSP) ........................ 66 



Brain-computer interfaces  XVI 

 

References ................................................................................................................... 70



1 

 

1 INTRODUCTION 

1.1 Brain-computer interfaces 

A Brain–Computer Interface (BCI) is a communication and control system that sends 

messages and commands to the external world without the normal use of nerves and muscles 

[1]. A typical BCI system is composed of a brain monitoring system, a signal pre-processing 

stage, a stage for extracting features of the pre-processed signal, and a decision stage where 

features are translated into commands or messages [2]. Some methods for monitoring the 

brain activity, for a BCI, are electroencephalography (EEG), electrocorticography (ECoG), 

functional magnetic resonance imaging (fMRI), among others [1]. Pre-processing signals 

from the brain activity monitor allows to drop undesired components of the signal that carries 

non useful information [2]. After pre-processing, some features of the signal are extracted, 

in order to be translated into commands and messages. Features may be extracted in one or 

more of the following domains of the signal: temporal, frequency, or spatial [2]. 

In health applications, BCIs have been used for brain-controlled wheelchairs [3], spelling 

devices [4], attention-deficit hyperactivity disorder (ADHD) disorder rehabilitation [5], and 

the interaction of Locked-in Syndrome (LIS) patients [6], [7]. Some explored applications 

further health care are games [8]–[10], attention monitors [11], tools for mobile devices [12], 

[13], control of items [14], navigation in virtual environments [3], [15], [16], gesture 

recognition [17], among others. 

Some modalities of BCI activation are by evoked potentials [18], [19], brain rhythms and 

motor imagery [20], [21], readiness potentials [8], [22], slow cortical potentials [23], and 

error potentials [17], [24]. Some works have proposed to use steady – state evoked potentials 

as EEG patterns for developing visual [25], auditory [26], and vibratory [27] BCIs. Other 

studies propose to combine BCI with other electrophysiological signals [28]–[31]. Some 

studies implement brain–computer interfaces to detect mental states, as mental load [32] and 

drowsiness [33]. Other works treat to prove associations between emotions and BCIs, to 

study or control them [34]–[36]. 
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1.2 Some classifiers used in BCI 

Some features are extracted from a pre-processed signal recorded from the brain 

monitor activity, to be translated into commands and messages [2]. In most of BCI 

systems, a vector data groups features extracted from the brain signals. A classifier 

performs mostly the translation to commands [37], [38], assigning a vector data 

automatically to one of a finite number of discrete categories [39].  

For BCI systems, the main problem is finding an adequate classifier algorithm for EEG 

signals [38], taking into account their unique features: 1) Signals are noisy and have many 

outliers, so their signal-to-noise ratio (SNR) is poor [19], [38]. 2) Since EEG signals are 

recorded from multiple channels, they are concatenated, therefore their dimensionality is 

high. 3) Temporal [40], [41], frequency [42], [43] or spatial domain from EEG data [2] 

provide the adequate information. 4) Signals of interest are non-stationary. 5) Training 

and testing datasets are small, due to the difficulty of getting enough volunteers for the 

experiments, as well as the difficulty that they do the tasks to run without exhaustion or 

other problems. 

In general terms, the classification task consists of assigning a label or class to a vector 

of features x and K classes, employing some mathematical criteria. For optimal 

classification, is necessary to know the probability of a class C = k, given x, namely the 

posterior probability p(C = k | X = x). By using the Bayes theorem, we get the posterior 

probability of a class k with class-conditional density probability fk(x), given a vector of 

features x, and a set of prior probabilities by class 𝜋𝑘 [44]: 

𝑝(𝐶 = 𝑘|𝑋 = 𝒙) =
𝑓𝑘(𝒙)𝜋𝑘

∑ 𝑓𝑗(𝒙)𝜋𝑗
𝐾
𝑗=1

𝑘 = 1, … , 𝐾 ( 1-1 ) 

The classification task could be seen from one of two potential points of view. The first 

one divides the classification problem into two stages. The inference stage learns a 

probabilistic model of data given the class. Then, the decision stage implements the 

theorem of Bayes to determine the class of each sample data. A classifier implemented in 

this way is a generative classifier [39]. Based linear discriminant analysis 

(LDA) classifiers are generative because they assume Gaussian distributions in the data 

[39], [44]. The second viewpoint specifies that data could map directly to a class by a 
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classification model. The model comes from either a probabilistic discriminant model of the 

class, given data, or a deterministic discriminant function. A classifier that uses the latter 

approach is a discriminative classifier [39]. Logistic regression (Log Reg) and the support-

vector machine (SVM) are examples of discriminative classifiers that use a probabilistic 

model and a discriminant function, respectively. 

1.2.1 Linear and Quadratic Discriminant Analysis 

A discriminant classifier is a function that allocates an input vector x to one of 𝐾 classes 

𝒞𝑘 [39]. If we assume that fk(x) in Equation ( 1-1 ) is multivariate Gaussian with vector of 

mean 𝜇𝑘 and covariance matrix Σ𝑘, we get the following discriminant function 𝛿𝑘(𝐱) [44]: 

𝛿𝑘(𝒙) = −
1

2
𝑙𝑜𝑔|𝛴𝑘| −

1

2
(𝒙 − 𝜇𝑘)𝑇𝛴𝑘

−1(𝒙 − 𝜇𝑘) + 𝑙𝑜𝑔 𝜋𝑘 ( 1-2 ) 

If each class has its covariance matrix Σ𝑘, the discriminant function is quadratic, by 

making the decision boundary between a pair of classes k and l as 𝛿𝑘(𝐱) = 𝛿𝑙(𝐱). However, if 

we suppose a shared covariance matrix Σ for all classes, the discriminant 𝛿𝑘(𝐱) becomes linear 

[39], [44]. Notice that based Linear Discriminant Analysis (LDA) classifiers are generative 

since they mostly assume Gaussian distributions in the data [40]. Also, notice that LDA and 

QDA are static models, since the time is not taken into account as a parameter. 

1.2.2 Step-wise LDA 

A Step-wise LDA (SWLDA) classifier is an LDA modified version where a stepwise 

regression is used before the classification duty [45]. Unlike other LDA-based classifiers, it 

chooses the coefficients of the model regression iteratively, according to a statistical standard 

[46]. As a result, the model obtained is more compact than the model defined in Equation ( 

1-2 ). Additional details about SWLDA are can be found in [47]. 

1.2.3 Bayesian LDA 

When the coefficients of the LDA model are chosen according to Bayesian criteria, we 

get an LDA classifier based on Bayesian interpolation (BLDA). According to the literature, 

BLDA provides better results than LDA or SWLDA [48], [49]. Like the SWLDA classifier, 

the coefficients are achieved by iteration. However, the statistical standards for choosing 
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corrections are based on the Bayes rule, and they are not added or removed from the model 

[50]. Further details about BLDA can be obtained from [48]. 

1.2.4 Linear SVM 

For a two-class classification problem, a training set contains N feature vectors {x1, …, 

xn, …, xN}with their corresponding label values {𝑡1, … , 𝑡𝑛, … , 𝑡𝑁} where 𝑡𝑛 ∈ {−1,1}. We 

assume the following linear classification model [39]: 

𝑦(𝒙) = 𝒘𝑻𝒙 + 𝑏 ( 1-3 ) 

Where w is a vector of parameters and b is a bias term. Equation ( 1-3 ) satisfies 

𝑡𝑛𝑦(𝒙𝑛) > 0 for all training feature vectors. Here, the problem is to find the parameters 

w and b that maximizes the distance of the nearest xn training vectors to a separation 

hyperplane that satisfies the requirements of Equation ( 1-3 ). The distance is known as 

the margin, the separation hyperplane is the decision boundary and the nearest xn training 

vectors to the decision boundary are the vector supports [44].  

The perpendicular distance between an arbitrary point x and a hyperplane is calculated 

by |𝑦(𝒙)| ‖𝒘‖⁄ . Since the interest relies in the correct classification of xn that satisfies 

𝑡𝑛𝑦(𝒙𝑛) > 0, the distance of any feature vector to the decision boundary becomes [39]: 

𝑡𝑛𝑦(𝒙𝑛)

‖𝒘‖
=

𝑡𝑛(𝒘𝑻𝒙𝑛 + 𝑏)

‖𝒘‖
 

( 1-4 ) 

Since the optimization problem consists of maximizing the margin between the vector 

supports and the decision boundary with a minimum quantity of vector supports, the 

optimal solution is found by solving [39], [44]: 

𝑎𝑟𝑔 𝑚𝑎𝑥
𝒘,𝑏

{
1

‖𝒘‖
𝑚𝑖𝑛

𝑛
[𝑡𝑛(𝒘𝑻𝒙𝑛 + 𝑏)]} ( 1-5 ) 

By making the term inside the minimization equal to 1 as the margin distance, the 

distance restriction becomes 𝑡𝑛𝑦(𝒙𝑛) ≥ 1 for any vector of the training set, there will be, 

as minimum, two points that satisfies the minimum margin distance [39], so the 

optimization problem is reduced to maximize 1 ‖𝒘‖⁄ , which is equivalent to minimize 

‖𝒘‖2, so the solution is simplified by solving [39], [44]: 
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𝑎𝑟𝑔 𝑚𝑖𝑛
𝒘,𝑏

1

2
‖𝒘‖2 ( 1-6 ) 

Support-vector machine (SVM) classifiers have been implemented in various earlier 

studies associated to BCIs, including P300 spellers [51]–[55], motor imagery [56]–[62] and 

finger flexion classification [63]–[66].  

1.2.5 Logistic regression 

Fewer works related to BCIs implement logistic regression classifiers [67], [68]. Logistic 

regression belongs to the log-linear models family, implemented in discriminative classifiers 

[39], [44]. More specifically, the logistic regression models the probability of K classes given 

a feature vector x via linear functions, in terms of K – 1 log-odds [44]: 

𝑙𝑛 (
𝑝(𝐶 = 𝑘|𝑋 = 𝒙)

𝑝(𝐶 = 𝐾|𝑋 = 𝒙)
) = 𝑤0𝑘 + 𝒘𝑘

𝑇𝒙 𝑘 = 1, … , 𝐾 − 1 ( 1-7 ) 

Where wk is a vector of parameters and w0k is a bias term for each class k = {1, …, K – 

1}. Ensuring that the sum of all probabilities is 1 and each one remains in [0, 1], we get the 

logistic regression [44]: 

𝑝(𝐶 = 𝑘|𝑋 = 𝒙) =
𝑒𝑥𝑝(𝑤0𝑘 + 𝒘𝑘

𝑇𝒙)

1 + ∑ 𝑒𝑥𝑝(𝑤0𝑗 + 𝒘𝑗
𝑇𝒙)𝐾−1

𝑗=1

𝑘 = 1, … , 𝐾 − 1 ( 1-8 ) 

Further details about logistic regression are available in [39]. 

1.3 Conditional random fields 

1.3.1 Probabilistic graphical model 

A probabilistic graphical model (PGM) is a graph-based representation of a probabilistic 

function [69], [70]. It is based on two or more variables, represented as nodes, interacting in 

a one or more local functions, represented as edges. When a local function expresses a 

probability, it is represented as a directed edge. Conversely, if the local function represents a 

product of functions involving the nodes, it is represented as an undirected edge [69], [70]. 

In the study, we chose only probabilistic models represented with undirected edges.  

The use of probabilistic graphical models (PGM) as classifiers for BCI has been proposed 

since 2000s [71]. The most used PGMs are hidden Markov models (HMM) and conditional 
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random fields (CRF). The main difference lies in HMM graphs are directed, while CRF 

graphs are undirected, that implies some differences in the statistical inference [72].  

Some applications that use a PGM as classifier are the following:  

 P300-based language models and word predictors using HMMs [40], [73]–[75].  

 Motor imagery tasks (HMM [71], [76]–[78], and Hidden CRF (HCRF) [79]–[81].  

 Finger movement decoding with Latent Dynamics CRF (LDCRF) [82].  

 EEG rhythms with HMM and input/output HMM (IOHMM) [83]. 

1.3.2 Linear CRF 

The conditional random field classifier is a member of the PGM family. CRF represents 

complex distributions through products of local factors on small subsets of variables [69]. 

Unlike other PGM models, CRF does not consider the dependencies among entries but 

models directly the conditional distribution between a set of input vectors 𝐱 =

{𝒙1, 𝒙2, … , 𝒙𝑡−1, 𝒙𝑡 , … , 𝒙𝑇−1, 𝒙𝑇} and its corresponding output labels 𝒚 =

{𝑦1, 𝑦2, … , 𝑦𝑡−1, 𝑦𝑡 , … , 𝑦𝑇−1, 𝑦𝑇} as 𝑝(𝒚|𝐱). It makes CRF a discriminative classifier. In 

its linear form, the CRF model is as Equation ( 1-9 ) shows. 

𝑝(𝒚|𝒙) =
1

𝑍
∏ 𝑒𝑥𝑝 {∑ 𝜃𝑘𝑓𝑘(𝑦𝑡 , 𝑦𝑡−1, 𝒙𝑡)

𝐾

𝑘=1

}

𝑇

𝑡=1

=
1

𝑍
𝑒𝑥𝑝 {∑ ∑ 𝜃𝑘𝑓𝑘(𝑦𝑡, 𝑦𝑡−1, 𝒙𝑡)

𝐾

𝑘=1

𝑇

𝑡=1

}

 

 

( 1-9 ) 

Here, 𝜃 = {𝜃𝑘} ∈ ℝ𝐾 is a parameter vector, and {𝑓𝑘(𝑦𝑡 , 𝑦𝑡−1, 𝐱𝑡)}𝑘=1
𝐾  is a set of real-

valued feature functions. Z is the partition function, a normalization function along 𝐲 of 

Equation ( 1-9 ). Figure 1-1 a) illustrates the graphical representation of a linear CRF 

model, where undirected edges represent feature functions that link any 𝑦𝑡 outputs with 

their corresponding 𝐱𝑡 inputs or their previous outputs 𝑦𝑡−1. 

Feature functions does not indicate any probabilistic relationship among engaged 

variables, as other PGM does. However, it has an important property that comes from 

Markov chains: each output variable 𝑦𝑡 depends exclusively of its predecessor 𝑦𝑡−1 and 

the current input variables, being conditionally independent of other predecessors. 
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1.3.3 Latent dynamic conditional random fields 

To expand the CRF models, we could add a set of hidden variables 𝐡 = {ℎ𝑚} ∈ ℝ𝑀 not 

not observed during the training stage [84]. Specifying the model to have disjoint sets of 

hidden states associated with each value 𝑦𝑗 of output label: ℎ𝑗 ∈ ℋ𝑦𝑗
, a Latent Dynamic 

Conditional Random Field takes the form as in Equation ( 1-10 ). 

𝑝(𝒚|𝒙) =
1

𝑍
∑ 𝑒𝑥𝑝 {∑ ∑ 𝜃𝑘𝑓𝑘(ℎ𝑡 , ℎ𝑡−1, 𝒙𝑡 , 𝑦𝑡)

𝐾

𝑘=1

𝑇

𝑡=1

}

ℎ𝑗,ℎ𝑗′∈ℋ𝑦𝑗

 ( 1-10 ) 

The partition function Z is the normalization function that takes all possible values of 

hidden variables along 𝐲 of Equation ( 1-10 ). As CRF, a hidden variable ℎ𝑗,𝑡 depends only 

on its predecessor ℎ𝑗′,𝑡−1 and the current input variables. Figure 1-1 b) illustrates the graphical 

representation of a linear LDCRF model, where undirected edges represent feature functions 

that link any hj,t hidden states with their corresponding 𝐱𝑡 inputs and 𝑦𝑡 outputs or their 

previous hidden states ℎ𝑗′,𝑡−1. 

1.3.4 Hidden Conditional Random Fields 

To expand CRF models, we could include a set of hidden variables 𝐡 = {ℎ1, ℎ2, … , ℎ𝑚} 

not observed during training stage, associated with a singular output label y [85]. Restricting 

the model to have disjoint sets of hidden states associated with a value y of output label: ℎ𝑗 ∈

ℋ𝑦, a Hidden Conditional Random Fields (HCRF) takes the following form: 

𝑝(𝑦|𝒙) =
1

𝑍
∑ 𝑒𝑥𝑝 {∑ ∑ 𝜃𝑘𝑓𝑘(ℎ𝑡, ℎ𝑡−1, 𝒙𝑡 , 𝑦)

𝐾

𝑘=1

𝑇

𝑡=1

}

ℎ𝑗,ℎ𝑗′∈ℋ𝑦

 ( 1-11 ) 

The partition function is defined as the normalization function along all possible values of 

hidden variables along y. As CRF, a hidden variable ℎ𝑗,𝑡 depends only of its predecessor 

ℎ𝑗′,𝑡−1 and the corresponding input variables. Figure 1-1 c) illustrates the graphical 

representation of a linear LDCRF model, where undirected edges represent feature functions 

that link any hj,t hidden states with their corresponding 𝐱𝑡 inputs and the output y or their 

previous hidden states ℎ𝑗′,𝑡−1.  
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a) Linear Conditional Random Field (CRF) 

 

 
b) Latent Conditional Random Field (LDCRF) 

 

 
c) Hidden Conditional Random Field (HCRF) 

Figure 1-1. Graphical models from some linear Conditional Random Fields. 

Source: Adapted from [86]. 
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1.4 Some performance metrics used in BCI 

1.4.1 Accuracy 

A recurrent measure of performance for classification is accuracy. It estimates the 

closeness between measured or predicted values and their actual values [87]. A measure 

commonly used for the accuracy, with 𝑀𝑐 classes, is defined as the rate between the trace of 

a confusion matrix H and the total number of samples 𝑁𝑠 [88] as Equation ( 1-12 ) shows: 

𝑝0 =
𝑡𝑟𝑎𝑐𝑒(𝐻)

𝑁𝑠
 ( 1-12 ) 

Where trace(H) is the number of samples correctly classified. The accuracy varies from 0 

to 1, where 1 denotes a perfect classification. Since accuracy closely relates to the binomial 

distribution definition ℬ(𝑁𝑠, 𝑝0) with success probability 𝑝0 and number of trials 𝑁𝑠, 𝑝0 

could be approximated to a normal distribution with its standard deviation defined in 

Equation ( 1-13 ): 

𝑆𝑒(𝑝0) = √
𝑝

0
(1 − 𝑝

0
)

𝑁𝑠
 

( 1-13 ) 

However, a high accuracy does not always mean a high performance of a classifier. When 

the number of members by class is highly unbalanced, the classifier tends to bias toward the 

class with the highest number of occurrences in the dataset. It is known as the accuracy 

paradox [89]. 

1.4.2 Cohen’s kappa index κ 

A typically used estimation of precision is the Cohen's kappa index κ [88], [90], [91]. It 

is an alternative method of measuring the predictive capability of a classifier that associates 

the accuracy with the probability to classify by chance, as expressed in Equation ( 1-14 ) 

𝜅 =
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒
 ( 1-14 ) 

The numerator is the subtraction between the accuracy and the expected probability to 

classify correctly by chance (pe). The denominator is the subtraction between the maximum 

accuracy and pe. Consequently, κ defines the rate between the subtraction of the accuracy 
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and pe and its maximum value. Possible values for κ come from −1 to 1 [92]. A value of 

1 means perfect classification, whereas a value of 0 shows indicates random assignments 

between actual classes and predicted values. Finally, −1 indicates an opposite relationship 

between actual and predicted values. The expected probability pe is defined in the 

Equation ( 1-15 ). 

𝑝𝑒 =
1

𝑁𝑠
2

∑ 𝑛𝑖:𝑛:𝑖

𝑀𝑐

𝑖=1

 
( 1-15 ) 

Where the sum of all elements for the i-th row 𝑛𝑖: and the sum of all elements for the 

i-th column 𝑛:𝑖 are expressed in Equations ( 1-16 ) and ( 1-17 ): 

𝑛𝑖: = ∑ 𝐻𝑖𝑗

𝑀𝑐

𝑗=1

 
( 1-16 ) 

𝑛:𝑖 = ∑ 𝐻𝑗𝑖

𝑀𝑐

𝑗=1

 

( 1-17 ) 

 

The standard deviation of κ is calculated using Equation ( 1-18 ): 

𝑆𝑒(𝜅) =
√𝑝0 + 𝑝𝑒

2 − ∑ 𝑛𝑖:𝑛:𝑖(𝑛𝑖: + 𝑛:𝑖)𝑀𝑐
𝑖=1 𝑁𝑠

3⁄

1 − 𝑝𝑒√𝑁𝑠

 
( 1-18 ) 

The standard error can be used to create confidence intervals and compute statistical 

significances when accuracy or kappa values are compared. 

1.4.3 Balanced accuracy 

The balanced accuracy metric is the average of the accuracy obtained by each class, 

when the symmetry about the class is assumed [93], [94]. If the symmetry assumption is 

dropped, the balanced accuracy is defined as the weighted average of class-specific 

accuracies, using a cost associated with misclassification by class as weights [94]. In the 

current work, the symmetry about the class is assumed.  
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1.5 Instantaneous interactions 

1.5.1 Pearson correlation 

Pearson correlation, defined for two zero-mean and real-valued random variables 𝑥, 𝑦, is 

the coefficient between the cross-correlation of the random variables 𝐸[𝑥𝑦] and the product 

of the square root of their variances 𝜎𝑥𝜎𝑦 [95], [96]: 

𝜌(𝑥, 𝑦) =
𝐸[𝑥𝑦]

𝜎𝑥𝜎𝑦
 ( 1-19 ) 

1.5.2 Jaccard distance 

By the other hand, the Jaccard distance comes from its counterpart, the Jaccard index J. 

The latter is a similarity measure for two arbitrary finite discrete sets 𝐴, 𝐵, defined as the 

coefficient between the size of the intersection |𝐴 ∩ 𝐵| and the size of its union |𝐴 ∪ 𝐵| [97]. 

It can be extended as the ratio between the measure of the intersection 𝜇(𝐴 ∩ 𝐵)  and its 

union 𝜇(𝐴 ∪ 𝐵), with an arbitrary measure μ. If we define μ as the dot product between two 

sets, expressed as multivariate variables 𝐴, 𝐵: 𝜇(𝐴 ∩ 𝐵) = 𝐴 ∙ 𝐵, and 𝜇(𝐴) = ‖𝐴‖2, being 

‖𝐴‖ the Euclidean norm of A, and using the relationship between the intersection and the 

union of two sets, the Jaccard Index J becomes: 

𝐽(𝐴, 𝐵) =
𝐴 ∙ 𝐵

‖𝐴‖2 + ‖𝐵‖2 − 𝐴 ∙ 𝐵
=

𝐴 ∙ 𝐵

‖𝐴 − 𝐵‖2 + 𝐴 ∙ 𝐵
 ( 1-20 ) 

With this definition, Jaccard Index takes values between -1/3 (when B = -A) and 1 (for B 

= A). However, for obtaining a non-negative metric, the Jaccard Distance JD = 1 – J is defined 

as follows [98]: 

𝐽𝐷(𝐴, 𝐵) =
‖𝐴 − 𝐵‖2

‖𝐴‖2 + ‖𝐵‖2 − 𝐴 ∙ 𝐵
=

‖𝐴 − 𝐵‖2

‖𝐴 − 𝐵‖2 + 𝐴 ∙ 𝐵
 

( 1-21 ) 

With this definition, Jaccard Distance takes values between 0 and 4/3, becoming a non-

negative measure. 
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1.6 Background 

The area of BCIs has had a major surge in the last 10 years. As evidence of this, in the 

last year there have been more than fifty-three thousand papers related to the development 

of BCI applications, according to the website Google Scholar [99]. A more refined search 

on specialized search engines gives more than 450 papers related to BCI in PubMed [100] 

and 850 documents in SCOPUS [101]. The majority of topics about BCI is related to new 

applications and changes in BCI modalities. 

Another indicator of the growing importance of BCIs is the allocation of resources for 

the study of brain activity. In Europe, the Blue Brain Project [102] has a budget of 1.3 

billion dollars, and the Brain Initiative in the United States [103], with 470 million dollars 

per year during the next 10 years. A recent project, named The BrainCom Project, has a 

budget of 8.35 million euros for the next five years [104]. In addition, there are two major 

BCI research projects in Europe: The Berlin Brain – Computer Interface (BBCI), 

supported by the Ministry of Education and Research of Germany [105], and The BNCI 

Horizon 2020 Project, supported by more than 10 European institutions, and coordinated 

by the Graz University of Technology [106], in Austria.  

Other BCI projects, laboratories and research groups are: 

a) The Institute of Neural Engineering Graz Brain – Computer Interface Lab, Austria [107] 

b) Penso and Brain – Computer Interface, Australia [108] 

c) The Brain – Computer Interface project, Canada [109] 

d) Brain – Computer Interface Laboratory, Denmark [110] 

e) Tools for Brain Computer Interaction – TOBI, Europe [111] 

f) Cognitive and Social Systems – Centre of Excellence in Computational Complex Systems 

Research, Finland [112] 

g) Software for Brain – Computer Interfaces and Real – Time Neurosciences – OpenViBE, 

France [113] 

h) Riken Brain Science Institute, Japan [114] 

i) Brain Computer Interface research at NUST, Pakistan [115] 

j) Laboratory for Neurophysiology and Neuro – Computer Interfaces, Russia [116] 

k) Multimedia Signal Processing Group – MMSPG, Switzerland [117] 
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l) TUBITAK BCI – Sabanci University, Turkey [118] 

m) Human Computer Interaction – University of Twente, The Netherlands [119] 

n) BCI Group – University of Essex, United Kingdom [120] 

o) Wadsworth Center – New York Department of Health, United States [121] 

1.7 Problem statement 

Given the growing importance of the topic, this investigation proposal is framed within 

the area of the BCIs. In addition, there are few published studies that propose modeling the 

ERPs with temporal and spatial features to develop or improve a classifier for a brain–

computer interface. For this reason, the proposed study will explore the extraction of spatial 

and temporal features of brain signals during the execution of mental tasks. These features 

will be used as the input for a probabilistic graphical model whose structure may include 

prior physiological information about the functioning of the brain. We expect that the model 

to reflect some aspects of the brain functioning related to ERPs, by including spatial and 

temporal information. Therefore, we might expect the performance of a BCI system to 

improve when using the proposed model. 

1.8 Justification 

The importance of modeling brain signals and applying the proposed models on BCI may 

be observed from different activities. The first one is the provision of a non-muscular 

communication path with the environment for patients suffering from neuro-degenerative 

and muscular diseases such as amyotrophic lateral sclerosis (ALS). The development of BCIs 

may be extended to other activities related to rehabilitation, as in the case of development of 

devices for people with loss of mobility in a part of the body.  

Another activity with high potential for application of brain-computer interfaces is in the 

development of elements handling equipment for hazardous environments, both civilian and 

military. The purpose is to reduce the response time in the remote control equipment, and 

increase the precision of the movements. These developments may be extended to designing 

new devices whose purpose is to enhance the capacity for humans to interact with electrical 

and electronic devices, both at home and industry. Other activities where it is possible to 

implement a BCI are the restoration of the senses of sight and hearing, the establishment of 
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new connections between brain regions, object recognition in surveillance footage, 

restoration and enhancement of memory, development of interactive games based in 

reality, among others. 

Finally, the modeling of temporal and spatial features of the EEG signals can give 

insight in the functioning of neural circuits within the brain, leading to a better 

understanding of specific brain functions. 

1.9 Hypotheses 

This thesis proposal has two major hypotheses: 

1.9.1 First Hypothesis 

The occurrence of ERP can be predicted more accurately if the spatial and temporal 

relationships between the EEG signals are taken into account simultaneously. Given that 

the brain is highly interconnected and the processing of different aspect of the sensory 

information is achieved in different areas, we expect that the inclusion of spatial modeling 

will provide a better model for the generation of the ERPs. 

1.9.2 Second Hypothesis 

The ERPs are likely to show a probabilistic distribution of the times when the brain 

responds to an event. This approach is considerably different from what the BCI 

community uses. However, experiments in animals suggest this hypothesis [122]. We 

suggest that the averaged ERP could be used as prior information in the detection of ERP 

components from single trials. 
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2 A BOOTSTRAPPING METHOD FOR IMPROVING A 

P300 SPELLER CLASSIFICATION PERFORMANCE 

2.1 Preliminaries 

A Brain–Computer Interface (BCI) is a communication and control system that sends 

messages and commands to a device without the normal use of nerves and muscles [123]. An 

usual BCI system is comprised of a brain monitoring system, a signal pre-processing phase, 

a phase for extracting features of the pre-processed signal, and a decision phase where 

features are translated into commands or messages [2]. Some modalities of BCI activation 

are by evoked potentials, brain rhythms and motor imagery, among others [19], [21]. Initially 

focused on EEG signals [63], [124], it was moved quickly to ECoG signals [64], [125] 

because of the advantages provided by the latter signals. 

A remarkable application for Brain–Computer Interfaces is the P300 speller, proposed 

initially by Farwell and Donchin [126], revised and improved in many other studies [127]–

[130]. A basic speller consists of a character set, distributed and displayed in rows and 

columns on a screen. Rather than unveiling one character, the speller randomly highlights a 

row or column of characters. When the user watches the chosen character in a highlighted 

row or column, the brain generates a P300 signal related to memory and attention processes 

in the brain [131]. 

A P300 speller takes the brain activity by electroencephalography (EEG) and attempts to 

distinguish between P300 and non-P300 signals. When the speller detects a P300 signal in a 

specific row and column, it takes the corresponding character and displays it. The described 

speller is one of the bases for developing online BCI applications [130], [132]–[134]. It 

means that the goal of the classification task is not to recognize P300 signals but identify the 

row and column of a specific character from the P300 recognition.  

In literature, there are mainly three approaches to process input features to feed a classifier 

of a P300 speller. The first one consists of training and evaluating the classifier from single 

trials [128], [133], [135]. The second strategy makes use of averaged data over a fixed 

number of trials, for training and testing the system [55], [130], [132], [134], [136]–[139]. 

The third approach consists of training the classifier in single trials, and evaluating the 
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classifier with averaged ones [45], [53], [140], [141]. The last method (labeled as 

the traditional approach in the present work) is commonly used in the literature. However, 

the statistical properties of signals during the training phase are different from those 

signals used during the testing phase. It violates the assumption of any classification 

problem that training and testing data should come from the same population [39]. 

Consequently, the classifier has reduced capacity to differentiate between P300 and non-

P300 trials.  

Different statistical properties of training and testing features have another problem. 

Estimation of the posterior probabilities from probabilistic classification would not be 

correct. The latter issue is crucial for P300 applications that use language models [40], 

[73], [74], [132] since the posterior probability of the classifier output is usually combined 

with the probability of the presence of a symbol in a particular language to determine the 

most likely sequence of characters.  

In addition, as the P300 speller works based on the oddball paradigm, where a P300 

signal is a deviant stimulus, the number of events is unbalanced since the number of non-

P300 trials is larger than the number of P300 trials [142]. Both unbalanced classes and 

small datasets could affect the performance of a classifier [143], [144]. So, the number of 

samples by class should be balanced to get a more confident performance. Some 

researchers have proposed removing samples randomly from the class with more members 

to reach a 1:1 proportion [53], [54], [138], [139], [141], trying to preserve as many samples 

as possible in the training phase [145]. It solves the problem of unbalanced classes at the 

expense of reducing the number of training samples. In the same way, since P300 and 

non-P300 classes are unbalanced, performance measures as accuracy are inclined to 

biasing. It occurs because the classifier assigns most samples to the class with higher prior 

probability [144]. Some studies have proposed the Cohen's kappa index κ as an alternative 

measure of performance that does not have the matters previously described [79], [88], 

[146]. 

This work presents a method for training linear classifiers to identify the presence of 

P300 potentials. We propose a bootstrapping approach for training and testing linear 

classifiers from averaged samples. Here, we show that the traditional approach could lead 

to misinterpretation of the actual performance of these classifiers. It happens because the 
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performance metric based on accuracy is not well suited for the cases of unbalanced classes. 

Results show a significant improvement using the proposed method for detecting P300 

potentials. 

2.2 Methods 

2.2.1 Experiment and dataset description 

The experiment comprised of stating one of 36 possible characters (26 letters and ten 

digits). A subject observed a six-by-six character array on a screen, focusing on the 

prescribed character above the array speller. The matrix was unveiled for a 2.5 s period, 

where all characters had the same intensity. Afterward, each column and row were randomly 

intensified for 100 ms, followed by a blank period of 75 ms after each intensification. Hence, 

there were 12 different row/column stimuli by round and 15 rounds of intensifications by 

character, for a total of 31.5 s. Each subject spelled 32 characters in total. Fourteen healthy 

subjects participated in the study. 

The dataset contains EEG signals recorded by a cap embedded with 64 electrodes, 

according to the modified 10–20 system [147]. All electrodes were referenced to the right 

earlobe and grounded to the right mastoid. Raw EEG signals were band-pass filtered between 

0.1 and 60 Hz and amplified with a 20000X SA Electronics amplifier [45]. Each experiment 

took into account only 16 EEG channels, motivated by the study presented by Krusienski et 

al. [45]: F3, Fz, F4, FCz, C3, Cz, C4, CPz, P3, Pz, P4, PO7, PO8, O1, O2, and Oz, as Figure 

2-1. Each channel was sampled at 240 Hz for one subject and 256 Hz for the others. All 

aspects of data collection and experimental control were controlled by the BCI2000 system 

[137]. Each subject has two datasets: one is used for training, and the other one is 

implemented for testing. Both datasets were taken on different days and were obtained from 

the Wadsworth Center, NYS Department of Health [45]. Data for two subjects are available 

at https://www.bbci.de/competition/iii/ [148]. 

2.2.2 Data processing 

We band-pass filtered, separated in trials, and decimated the data. Then, a single vector 

concatenated all of the input features. We took data either directly as the training input of a 

https://www.bbci.de/competition/iii/
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classifier or as the new population for obtaining averaged samples. The following 

subsections give additional details. 

 

Figure 2-1. Place of used electrodes in the dataset.  

Source: adapted from https://archive.physionet.org/physiobank/database/eegmmidb/?C=M;O=A   

2.2.2.1 Pre-processing 

First, we band-pass filtered the raw data between 1 and 20 Hz using a 4th fourth-order 

Butterworth filter. The chosen bandwidth eliminates the trend of each channel and 

prevents aliasing, allowing the posterior decimation of the signal. Afterward, a 600 ms 

window separated the data in trials after the presentation of each visual stimulus (the 

highlighted row or column), as proposed in a previous work [73].  

Signals from all channels were decimated by a factor of 4 and concatenated in a single 

feature vector. We chose it because the maximum analog frequency of the EEG signal is 

60 Hz [45]. In addition, frequencies higher than the beta band reflect unrelated neural 

processes to P300 in attention [149]. For the averaged process, signal segments were 

https://archive.physionet.org/physiobank/database/eegmmidb/?C=M;O=A
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averaged across repetitions, up to the maximum repetitions by character (15 repetitions). 

Then, concatenated channels were used as the inputs of the classifier, as described in [45]. 

2.2.2.2 Re-sampling of training data 

In the traditional approach, the classifier is trained with single trials and tested on averaged 

trials to increase the signal-to-noise ratio. Note that besides the issue of having unbalanced 

data, the statistical properties of the training data do not match those of the testing data. To 

avoid these problems, we implement an approach based on bootstrap resampling 

(bootstrapping) [44], [150].  

Here, a new dataset is obtained by re-sampling N trials with replacement, where N is the 

number of trials used to get a new averaged sample. The process is repeated M times by class 

to get M averaged samples for each class. The new dataset helps training a classifier such 

that 1) the number of samples is equal for each class in the training set, and 2) the statistical 

properties of training and testing data remain identical. It is worth mentioning that N may 

not be defined a priori in practical scenarios. However, the procedure can be performed for 

any value of N. Additionally, it does not imply any additional significant computational load, 

as the re-sampling is computationally inexpensive. 

In this work, we used training dataset as a new population to implement the resampling. 

We changed the number of recurrences (single trials) used to get a new averaged trial, 

with N = {2, 3, ..., 14, 15}, because 15 is the maximum number of repetitions available by 

character. Then, we replicated the process M times by class. Single trials were not used 

because resampling only allows acquiring repeated samples, reducing the variability of the 

training samples. We tested a classifier trained with one of the following types of samples: 

unbalanced classes with single trials (as in the traditional approach) and balanced classes by 

resampling M = {1000, 2000, 3000} averaged trials by class. The value of M is chosen 

according to the statistical importance obtained in the results. Averaged trials were used as 

testing data.  
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2.2.3 Classifiers 

In the speller, the classification problem implicates identifying the row and the column 

corresponding to a character. In the present study, the target of the classification is to 

determine whether a signal is P300 or not. We implemented four classifiers in the study: 

stepwise linear discriminant analysis (SWLDA), Bayesian linear discriminant analysis 

(BLDA), linear support-vector machine (LSVM), and logistic regression (Log Reg). 

While based-LDA-based algorithms are generative classifiers, LSVM and Log Reg lie lies 

in the category of linear discriminative classifiers [39], [151]. Results come from test data, 

unknown by the implemented classifiers during the training process. 

For discriminative classifiers, it is crucial to choose the value of a regularization 

factor C. The training process implements four-fold cross-validation to get the best value 

of C. The number of values tested for C was 25, all located between 0.01 and 1. After the 

process, the final classifier is trained using the whole training dataset and the chosen value 

of C. The process is repeated by each user and each type of training sample [151]. 

2.2.4 Performance metrics 

All performance measures described below are used rather than precision, recall, or 

area under the curve. It is due to the unbalanced nature in the data, even if the problem is 

a two-class classification task. All measures were obtained by five-fold cross-validation, 

being training data used to tune the model parameters. 

Briefly, accuracy is the rate between the number of correct predictions over the total 

number of predictions [68], [135], [93]. Cohen's kappa index relates the accuracy with the 

classification by chance probability as a rate between their subtraction by its maximum 

value [87], [135], [152]. 

2.2.5 Statistical analysis 

The statistical significance of differences among the number of bootstrapped samples 

for averaged training data was tested by a one-way randomized blocks ANOVA by 

performance index and classifier. ANOVA was chosen rather than a Student's t-test 

because the latter does not consider the random effects of the number of averages and 

subjects, whereas ANOVA does. The number of training data (M) was the design variable, 
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and each performance index was the output variable. Subjects and number of averaged 

samples by a testing trial were taken as randomized blocks. 

The study also tested the statistical significance of differences between the previously 

described types of training data by two procedures. First, we performed a one-way 

randomized blocks ANOVA by metric and classifier. Type of training data (traditional 

approach or proposed) was the design variable. Also, we performed a paired Student’s t-test 

for each subject, by assembling the metrics and their corresponding standard deviations. 

Their purpose was to estimate the significance of the differences between the traditional and 

the proposed method for training data. 

2.3 Results and discussion 

Results refer to the average performance obtained by each classifier, measured by the 

accuracy and Cohen's kappa index metrics. First, we tried to find an optimal value for the 

number of bootstrapped samples M. Then, we implemented the chosen value of M to compare 

the performance of classifiers with bootstrapped samples and the traditional approach. In all 

cases, we changed the number of trials to get an averaged trial N = {2, 3, ..., 14, 15}. All 

metrics were obtained from testing data. 

2.3.1 Number of bootstrapped samples 

The statistical significance of differences among the number of bootstrapped samples for 

averaged training data was tested by a one-way randomized blocks ANOVA by each 

performance index and classifier. The numbers of samples used were M = {1,000, 2,000, 

3,000}.  

For Log Reg, the ANOVA test does not reveal any significant statistical differences 

among the number of bootstrapped samples for neither accuracy nor Cohen’s kappa index, 

indicated by a p-value higher than the significance level greater than 0.05 (accuracy: F = 

1.72, p = 0.18; Cohen's kappa index: F = 0.51, p = 0.60). In the case of LSVM, there is no 

statistical difference in the number of samples, indicated by a p-value higher than the 

significance level greater than α = 0.05 (accuracy: F = 0.92, p = 0.40; Cohen's kappa index: 

F = 0.02, p = 0.98).  
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Similar conclusions are obtained by analyzing the results of ANOVA tests for SWLDA 

(accuracy: F = 0.61, p = 0.55; Cohen's kappa index: F = 0.13, p = 0.88) and BLDA 

(accuracy: F = 0.67, p = 0.51; Cohen's kappa index: F = 0.39, p = 0.25), by analyzing 

p-values, greater than the significance level α = 0.05. Although there is no significant 

difference, 2,000 averaged bootstrapped samples allowed to get the highest performance 

values. Hence, the chosen number of M is 2,000 in the remaining sections of the chapter. 

2.3.2 Type of training samples 

2.3.2.1 Linear SVM 

Figure 2-2 shows the average performance obtained to use the LSVM classifier by 

subject and training data type. The ANOVA test gives significant differences for both 

metrics (accuracy: F = 216.92, p < 0.01; Cohen's kappa index: F = 1380.10, p < 0.01). 

According to the results, when we trained the classifier with 2,000 averaged samples by 

class, classifier performance was significantly higher than training with the traditional 

approach with a significance level of 5%. 

Table 2-1 discriminates the average of the results and pooled standard deviations 

obtained by each subject for accuracy and kappa. We performed a Student’s t-test to yield 

the statistical significance of the difference between the methods. Results indicate that the 

difference is highly significant (p < 0.01) for most metrics and subjects for the proposed 

method. 

2.3.2.2 Logistic regression 

Figure 2-3 shows the average performance reached by employing the Logistic 

Regression classifier on each subject and type of training data. The ANOVA test gives 

significant differences for both metrics (accuracy: F = 215.10, p < 0.01; Cohen's kappa 

index: F = 843.29, p < 0.01). Results reveal that the classifier performance is higher with 

the proposed method for training. 

Table 2-2 contrasts the averaged accuracy and kappa results and their standard 

deviations by each subject. The student’s t-tests indicate that the statistical difference is 

highly significant (p < 0.01) for most subjects in the proposed method. The consistency 
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in the statistical analyses for Log Reg supports the improvement in the results with our 

approach. It also applies to the LSVM results. 

 

 

Accuracy 

 

 

Cohen’s kappa index 

Figure 2-2. Averaged results of all subjects, for LSVM 
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Table 2-1. Averaged metrics by subject, for LSVM. 

Subject 
Traditional Approach Proposed Method 

Accuracy kappa Accuracy kappa 

1 0,95 ± 0.11 0.78 ± 0.33 0.98 ± 0.08* 0.93 ± 0.33* 

2 0.88 ± 0.12 0.43 ± 0.27 0.95 ± 0.10* 0.83 ± 0.33* 

3 0.84 ± 0.13 0.01 ± 0.07 0.90 ± 0.12* 0.55 ± 0.33* 

4 0.84 ± 0.13 0.06 ± 0.18 0.95 ± 0.10* 0.81 ± 0.30* 

5 0.88 ± 0.12 0.36 ± 0.26 0.97 ± 0.08* 0.90 ± 0.30* 

6 0.83 ± 0.13 0.00 ± 0.00 0.84 ± 0.13 0.52 ± 0.27* 

7 0.83 ± 0.13 0.00 ± 0.00 0.87 ± 0.12* 0.48 ± 0.27* 

8 0.83 ± 0.13 0.00 ± 0.00 0.87 ± 0.12* 0.59 ± 0.28* 

9 0.89 ± 0.12 0.43 ± 0.27 0.94 ± 0.10* 0.81 ± 0.29* 

10 0.84 ± 0.12 0.06 ± 0.15 0.94 ± 0.10* 0.79 ± 0.30* 

11 0.85 ± 0.13 0.18 ± 0.22 0.94 ± 0.10* 0.80 ± 0.29* 

12 0.83 ± 0.13 0.00 ± 0.00 0.90 ± 0.12* 0.53 ± 0.28* 

13 0.88 ± 0.12 0.44 ± 0.27 0.81 ± 0.13 0.50 ± 0.26* 

14 0.83 ± 0.13 0.02 ± 0.27 0.90 ± 0.11* 0.59 ± 0.29* 

Average 0.86 ± 0.12 0.20 ± 0.19 0.91 ± 0.11 0.69 ± 0.29 

* The difference is highly significant, with a Student’s t-test (p < 0.01). Number of samples: 372 for subject 1, 

504 for the rest. 

2.3.2.3 Stepwise and Bayesian LDA 

Figure 2-4 displays the average performance obtained by using the SWLDA classifier 

on each subject and type of training data. The ANOVA test gives significant differences 

for both metrics (accuracy: F = 28.15, p < 0.01; Cohen's kappa index: F = 20.86, p < 

0.01). When the Student’s t-test contrasts the metrics, there is no statistical significance in 

most cases, as presented in the Table 2-3. 

Identical results were obtained for BLDA, as illustrated in Figure 2-5. Although the 

ANOVA test gives significant differences between the traditional and the proposed 

methods (accuracy: F = 13.21, p < 0.01; Cohen's kappa index: F = 6.21, p = 0.013), the 

Student’s t-tests do not reject the null hypothesis of equality of metrics, as shown in Table 

2-4. 
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Figure 2-3. Averaged results of all subjects, for Log Reg. 
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Table 2-2. Averaged metrics by subject, for Log Reg. 

Subject 
Traditional Approach Proposed Method 

Accuracy kappa Accuracy kappa 

1 0.97 ± 0.09 0.88 ± 0.33 0.98 ± 0.09 0.92 ± 0.33 

2 0.92 ± 0.11 0.65 ± 0.29 0.96 ± 0.09* 0.86 ± 0.30* 

3 0.84 ± 0.13 0.03 ± 0.14 0.93 ± 0.11* 0.68 ± 0.29* 

4 0.85 ± 0.13 0.15 ± 0.22 0.95 ± 0.10* 0.84 ± 0.30* 

5 0.91 ± 0.11 0.56 ± 0.29 0.97 ± 0.08* 0.91 ± 0.30* 

6 0.84 ± 0.13 0.05 ± 0.13 0.86 ± 0.12* 0.59 ± 0.27* 

7 0.83 ± 0.13 0.00 ± 0.07 0.88 ± 0.12* 0.51 ± 0.28* 

8 0.83 ± 0.13 0.00 ± 0.07 0.88 ± 0.12* 0.62 ± 0.28* 

9 0.92 ± 0.11 0.64 ± 0.29 0.95 ± 0.09* 0.84 ± 0.29* 

10 0.85 ± 0.13 0.15 ± 0.21 0.95 ± 0.09* 0.83 ± 0.30* 

11 0.88 ± 0.12 0.41 ± 0.27 0.95 ± 0.09* 0.82 ± 0.30* 

12 0.83 ± 0.13 0.00 ± 0.04 0.90 ± 0.11* 0.55 ± 0.29* 

13 0.91 ± 0.11 0.60 ± 0.29 0.84 ± 0.13 0.57 ± 0.26 

14 0.84 ± 0.13 0.03 ± 0.13 0.91 ± 0.11* 0.61 ± 0.29* 

Average 0.87 ± 0.12 0.30 ± 0.22 0.92 ± 0.11 0.72 ± 0.29 

* The difference is highly significant, with a Student’s t-test (p < 0.01). Number of samples: 372 for subject 1, 

504 for the rest. 

2.3.3 Discussion 

According to Figure 2-2 and Figure 2-3, results of LSVM and logistic regression are 

identical. When we trained the classifiers with the traditional approach, Cohen's kappa 

index reduced as the number of averaged samples increased in testing samples. The 

observed kappa reduction is due to the probability of classifying by chance pe. The value 

of pe increases as the increment in the number of averaged samples does. Meanwhile, the 

accuracy only had non-significant changes when the number of averaged samples by trial 

increased. Consequently, pe was closer to the accuracy as the number of trials to get the 

averaged samples increased, so kappa decreased. 

When we trained the classifiers with the proposed method, kappa improved 

significantly. It indicates that the classifiers learn features from P300 and non-P300 

classes because the accuracy gets higher values than pe when the number of averaged 
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samples by trial also increases. Consequently, accuracy, and thus kappa, will be higher, as 

seen in Figure 2-2 and Figure 2-3.  

 

 

Accuracy 

 

 

Cohen’s kappa index 

Figure 2-4. Averaged results of all subjects, for SWLDA 
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Table 2-3. Averaged metrics by subject, for SWLDA. 

Subject 
Traditional Approach Proposed Method 

Accuracy kappa Accuracy kappa 

1 0.98 ± 0.08 0.95 ± 0.33 0.98 ± 0.08 0.94 ± 0.33 

2 0.96 ± 0.09 0.88 ± 0.30 0.95 ± 0.10 0.84 ± 0.29 

3 0.86 ± 0.12 0.26 ± 0.25 0.87 ± 0.12 0.36 ± 0.26* 

4 0.95 ± 0.10 0.83 ± 0.30 0.94 ± 0.10 0.79 ± 0.30 

5 0.98 ± 0.07 0.94 ± 0.31 0.98 ± 0.08 0.92 ± 0.30 

6 0.88 ± 0.12 0.63 ± 0.28 0.84 ± 0.13 0.53 ± 0.27 

7 0.89 ± 0.12 0.54 ± 0.28 0.86 ± 0.12 0.48 ± 0.27 

8 0.90 ± 0.11 0.68 ± 0.28 0.87 ± 0.12 0.60 ± 0.28 

9 0.94 ± 0.10 0.82 ± 0.29 0.93 ± 0.10 0.80 ± 0.29 

10 0.94 ± 0.10 0.78 ± 0.30 0.94 ± 0.10 0.78 ± 0.30 

11 0.95 ± 0.10 0.82 ± 0.30 0.94 ± 0.10 0.79 ± 0.29 

12 0.90 ± 0.12 0.50 ± 0.28 0.89 ± 0.12 0.48 ± 0.28 

13 0.83 ± 0.13 0.54 ± 0.26 0.80 ± 0.13 0.48 ± 0.26 

14 0.90 ± 0.12 0.57 ± 0.29 0.87 ± 0.12 0.47 ± 0.28 

Average 0.92 ± 0.11 0.69 ± 0.29 0.90 ± 0.11 0.66 ± 0.29 

* The difference is highly significant, with a Student’s t-test (p < 0.01). Number of samples: 372 for subject 1, 

504 for the rest. 

The reasons are balanced data, similar statistical properties for training and test 

samples, and more statistical divergence by class due to the boost in sample size. It is 

necessary to remark that the trouble of using the traditional approach for training 

discriminative classifiers is due to the difference in statistical properties of training data 

and testing data. Again, the benefit of training with re-sampled and averaged samples is 

statistically significant. 

Although stepwise and Bayesian LDA results were identical, they differ from the 

discriminative classifiers. ANOVA tests give significant differences in the methods, while 

the Student’s t-test does not reject the statistical parity of the results, as presented Table 

2-3 and Table 2-4. The disparity in the statistics is due to the origin of the standard 

deviation in each test. The Student’s test employs a weighted pooling of the variances, 

whereas ANOVA uses the mean square of the error from data. For example, standard 

deviations lie between 0.07 and 0.13 for accuracy and between 0.25 and 0.33 for kappa. 
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Meanwhile, mean squares of error lie around 0.0006 for accuracy and 0.006 for kappa. It 

means that the differences of magnitude between standard deviations are around 183 for 

accuracy and 48 for Cohen’s kappa index. So, with the same averaged metrics, both types of 

tests give different results: while ANOVA catches a gap between the groups of the design 

variable, the Student’s t-test gives small values of the statistics. 
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Figure 2-5. Averaged results of all subjects, for BLDA 



Results and discussion  30 

 

Table 2-4. Averaged metrics by subject, for BLDA. 

Subject 
Traditional Approach Proposed Method 

Accuracy kappa Accuracy kappa 

1 0.99 ± 0.08 0.95 ± 0.33 0.98 ± 0.08 0.94 ± 0.33 

2 0.96 ± 0.09 0.87 ± 0.30 0.95 ± 0.09 0.85 ± 0.30 

3 0.86 ± 0.12 0.30 ± 0.25 0.86 ± 0.12 0.33 ± 0.26 

4 0.95 ± 0.10 0.82 ± 0.30 0.95 ± 0.10 0.79 ± 0.30 

5 0.98 ± 0.07 0.94 ± 0.31 0.98 ± 0.10 0.92 ± 0.30 

6 0.86 ± 0.12 0.58 ± 0.27 0.84 ± 0.13 0.53 ± 0.27 

7 0.88 ± 0.12 0.48 ± 0.28 0.87 ± 0.12 0.49 ± 0.28 

8 0.90 ± 0.11 0.67 ± 0.28 0.88 ± 0.12 0.62 ± 0.28 

9 0.95 ± 0.09 0.86 ± 0.30 0.94 ± 0.10 0.82 ± 0.29 

10 0.95 ± 0.10 0.79 ± 0.30 0.94 ± 0.10 0.78 ± 0.30 

11 0.95 ± 0.09 0.83 ± 0.30 0.94 ± 0.10 0.80 ± 0.29 

12 0.89 ± 0.12 0.43 ± 0.27 0.89 ± 0.12 0.45 ± 0.27 

13 0.85 ± 0.12 0.58 ± 0.27 0.82 ± 0.13 0.52 ± 0.26 

14 0.89 ± 0.12 0.46 ± 0.28 0.88 ± 0.12 0.46 ± 0.28 

Average 0.92 ± 0.29 0.68 ± 0.11 0.91 ± 0.29 0.66 ± 0.11 

* The difference is highly significant, with a Student’s t-test (p < 0.01). Number of samples: 372 for subject 1, 

504 for the rest. 

Another issue worth regarding is the nature of the LDA-based classifiers. They try to 

fit data to a set of Gaussian models, with a mean by class and a common covariance matrix 

[39]. When new data get in the classifier, the classifier compares new data with each 

model. Subsequently, a class is designated when the highest score or probability value is 

obtained from the corresponding model. This score or probability comes from the distance 

between the data and each model. In our study, both classifiers map data to a score value, 

according to a regression model before the Gaussian models. It means that the models are 

also scalar rather than multivariate, unlike discriminative classifiers, where the mapping 

to the class is direct [39]. Consequently, discriminative models are more affected by the 

statistical nature of the data, as the difference between generative and discriminative 

classifiers results reflects. 
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2.4  Conclusions 

The study presents a bootstrapping method to solve some issues in the P300 speller. It 

generates a new training set by re-sampling with replacement from the original set, reaching 

two key goals.  

First, the number of trials across classes is balanced. It avoids ignoring data, as suggested 

in other methods [53], [54], [138], [139], [141], while preventing a possible bias in the 

classification results. Second, the statistical properties of training data and test sets are 

equivalent. It is achieved when the number of averaged trials for each instance in training 

equals the number of averaged samples during testing. 

Unbalanced classes and the difference in statistical properties are subjects present in the 

cutting-edge implementations of the P300 classification task. Results demonstrate that the 

proposed method improves the classification of P300 and non-P300 brain activity in linear 

discriminative classifiers significantly by dealing with the above issues. 
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3 A FIRST APPROXIMATION TO LINEAR CRF 

CLASSIFIERS FOR FINGER MOVEMENT 

CLASSIFICATION  

3.1 Preliminaries 

A Brain-Computer Interface (BCI) is a communication and control scheme that sends 

messages and commands to the external world without using nerves and muscles in the 

usual way [123]. A regular BCI system has a brain monitoring system, a signal pre-

processing stage, a stage for extracting features of the pre-processed signal, and a 

classification stage where features are decoded into commands or messages Some 

manners of BCI activation are evoked potentials, brain rhythms, and motor imagery, 

among others [19], [21]. Initially developed for electroencephalography (EEG) [63], 

[124], it was driven quickly to electrocorticography (ECoG) [64], [125] because of the 

advantages provided by the latter signals. 

For classification, different methods have been proposed: Linear Discriminant 

Analysis (LDA) [153]–[155], Support Vector Machines (SVM) with different kernels 

[64]–[66], Hidden Markov Models (HMM) [65], [156], Template Matching [154], 

Logistic Regression (LR), Simultaneous Sparse Approximation and Conditional Random 

Fields (CRF) with long-range dependencies [157]. Only SVM, LR and CRF are 

discriminative classifiers, where the classifier maps data directly to classes [39]. The 

remaining classifiers are generative, where they learn the probabilistic models of data 

given the classes [158]. 

We present two based-CRF discriminative classifiers as methods to develop the task: 

a CRF classifier and a Latent Dynamic CRF (LDCRF) model. The proposed classifiers 

have the advantage of taking into account temporal dependencies without using generative 

models [69]. In both cases, the study employs down-sampled data to 20 Hz while other 

studies employed higher down-sampling rates [157]. Also, we use an additional measure 

of precision named Cohen’s kappa index to discard any bias in the classifiers. We used 

three classifiers to compare the performance of the approach: Linear Discriminant 

Analysis (LDA), Quadratic Discriminant Analysis (QDA), and a Support Vector Machine 
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with the linear kernel (LSVM). Results show that the performance of CRF-based models 

surpasses the other classifiers significantly. 

3.2 Materials and methods 

3.2.1 Experiment and dataset description 

Dataset was recorded from nine patients. They underwent surgery for temporary 

placement of subdural electrodes due to intractable epilepsy. These data appeared initially in 

[159], has been collected by Dr. K. J. Miller et al. and are available online at 

https://exhibits.stanford.edu/data/catalog/zk881ps0522 [160]. All of the patients participated 

in a purely voluntary manner, after providing informed written consent, under experimental 

protocols approved by the Institutional Review Board of the University of Washington 

(#12193). All patient data were anonymized according to the IRB protocol, under the HIPAA 

mandate. 

The experiment task consisted in flexing a finger that a bedside monitor displays: thumb, 

index, middle, ring, or pinkie. Each subject moved the indicated finger for 2 seconds. The 

subject performed self-paced finger movements as a response, moving 2 – 5 times typically 

by trial. A 2 second rest period, indicated by a blank screen, pursued each trial. It makes the 

rest period an additional class. Each finger had 30 finger movement trials, given randomly. 

A Neuroscan Synamps2 device performed ECoG recordings with a 1000 Hz sampling 

rate. ECoG 8x8 array electrodes were surgically placed on the sub-dural brain surface during 

the therapy for epilepsy. In addition to ECoG, a 5-degree-of-freedom data-glove sensor 

recorded the finger positions. Data-glove signals were initially sampled at 25 Hz and up-

sampled at 1000 Hz to match the sampling rate of ECoG signals. We included only electrodes 

placed in the sensory and motor areas, where Figure 3-1 shows [161]. 

3.2.2 Data pre-processing 

We previously detrended data and used a common average reference to reduce the effect 

of the reference electrode in all the recording electrodes. We standardized data with a mean 

of 0 and variance one before additional pre-processing. Two types of features are used in the 

study: High gamma (HG) band and low-frequency components (LFC) [161].  

https://exhibits.stanford.edu/data/catalog/zk881ps0522


Materials and methods  34 

 

 

Figure 3-1. Location of primary sensorimotor cortex, indicated in red and green. 

Source: https://commons.wikimedia.org/wiki/File:Human_motor_cortex.jpg  

We filtered data between 70 and 170 Hz and passed them by a Hilbert Transform to 

generate HG features. The envelope is then low-pass filtered to 8 Hz using an 8th order 

Butterworth filter.  

For LFC features, data were filtered between 0.5 and 8Hz using a 4th order Butterworth 

filter. The chosen bandwidth eliminates the trends of each channel and selects the 

frequencies of interest. Afterward, finger movements and ECoG data were down-sampled 

from 1 kHz to 20 Hz. 

Both types of data will be used in the PGM models to analyze their performance, either 

HG, LFC, or both. We will use the features with the best performance to compare PGM 

models with other classifiers. 

3.2.3 Classifiers to be compared 

CRF and LDCRF are going to be compared with three classifiers: Linear Discriminant 

Analysis (LDA), Quadratic Discriminant Analysis (QDA), and Linear-Support Vector 

Machine (LSVM). Briefly, a discriminant classifier is a function that allocates an input 

https://commons.wikimedia.org/wiki/File:Human_motor_cortex.jpg
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vector x to one of 𝐾 classes 𝒞𝑘 [39]. If each class has its covariance matrix Σ𝑘, the 

discriminant function is quadratic. However, if we suppose a shared covariance matrix Σ for 

for all classes, the discriminant function becomes linear. On the other hand, the support vector 

vector machine (SVM) classifier builds its decision boundary by maximizing the 

perpendicular distance between the nearest training point and the boundary decision [39]. In 

the current study, we only take linear SVM into account. 

3.2.4 Performance metrics 

All performance measures described below are used rather than precision, recall, or area 

under the curve. It is due to the multiclass nature and the predominance of rest class in the 

data, making this an unbalanced and multiclass data problem. All measures were obtained by 

five rounds of three-fold cross-validation, being training data used to tune LSVM, CRF, and 

LDCRF model parameters by an intern four-fold cross-validation. 

Briefly, accuracy is the rate between the number of correct predictions over the total 

number of predictions [68], [135], [93]. Cohen's kappa index relates the accuracy with the 

classification by chance probability as a rate between their subtraction by its maximum value 

[87], [135], [152]. Balanced accuracy is the average of the accuracy obtained by each class 

[93]. 

3.2.5 Statistical analysis 

A one-way randomized blocks ANOVA tested the statistical significance of differences 

between HG and LFC data. Only CRF and LDCRF were used as classifiers because the goal 

is to choose the adequate type of data to compare the proposed models against other 

classifiers. If the ANOVA test rejected the null hypothesis of statistical equality of averages, 

a post hoc comparison was performed by a Tukey-Kramer test. The average value of each 

classifier and data type was compared with the overall average metric, rejecting the null 

hypothesis if the average by class is greater than the overall average. 

Also, one-way randomized blocks ANOVA tested the statistical significance of 

differences between the metrics obtained by comparing CRF and LDCRF against LDA and 

LSVM. If the ANOVA test rejected the null hypothesis of statistical equality of averages, a 

post hoc comparison was performed by a Tukey-Kramer test.  
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3.3 Results and Discussion 

Results showed here refer to the average performance obtained by each classifier, 

measured with the accuracy metric. All metrics were obtained from the testing data of 

each subject. 

3.3.1 Type of Data: High Gamma Band vs. Low-Frequency Component 

Table 3-1 displays the accuracies acquired by each subject. ANOVA test (F: 204.193; 

2 degrees of freedom –d. f.-; p < 0.001) rejected the null hypothesis of average equality, 

so we performed the post hoc test. Their p-values are depicted in Table 3-1, showing that 

only data with the correlation between channels significantly outperforms the average 

accuracy.  

To verify if the performance of classifiers with given data is adequate for unbalanced 

data, we also evaluated Cohen’s kappa index of data, written in Table 3-2, as done with 

accuracy. Results of the ANOVA test (F: 263.240; 2 d. f.; p < 0.001) show again that the 

null hypothesis of average equality must be rejected. P-values from the post-hoc test 

confirm that solely HG data has the most significant performance values. 

 

Table 3-1. Results of Accuracy, by subject and type of data. Overall performance: 0,526 

Subject 
CRF LDCRF 

High Gamma LFC HG+LFC High Gamma LFC HG+LFC 

bp 0,785 0,625 0,491 0,789 0,622 0,492 

cc 0,746 0,474 0,325 0,749 0,469 0,316 

ht 0,650 0,461 0,354 0,644 0,454 0,368 

jc 0,761 0,625 0,466 0,768 0,619 0,451 

jp 0,791 0,253 0,399 0,786 0,259 0,413 

wc 0,747 0,226 0,372 0,693 0,125 0,438 

wm 0,737 0,376 0,379 0,723 0,389 0,349 

zt 0,715 0,489 0,523 0,712 0,486 0,510 

mv 0,743 0,372 0,339 0,767 0,446 0,367 

Average 0,742 0,433 0,405 0,737 0,430 0,411 

Standard Deviation 0,041 0,142 0,071 0,048 0,159 0,067 

P-value < 0,001 0,980 0,994 < 0,001 0,983 0,992 
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Table 3-2. Results of Cohen’s kappa index, by subject and type of data. Average performance: 0,394 

Subject 
CRF LDCRF 

High Gamma LFC HG+LFC High Gamma LFC HG+LFC 

bp 0,711 0,483 0,294 0,714 0,474 0,285 

cc 0,693 0,365 0,183 0,697 0,359 0,173 

ht 0,568 0,326 0,190 0,560 0,317 0,206 

jc 0,689 0,511 0,290 0,699 0,504 0,269 

jp 0,744 0,079 0,260 0,739 0,090 0,273 

wc 0,700 0,096 0,243 0,637 -0,022 0,320 

wm 0,682 0,239 0,247 0,665 0,258 0,212 

zt 0,590 0,120 0,208 0,585 0,110 0,192 

mv 0,691 0,244 0,205 0,719 0,333 0,238 

Average 0,682 0,322 0,260 0,681 0,329 0,262 

Standard Deviation 0,004 0,003 0,002 0,004 0,003 0,002 

P-value < 0,001 0,943 0,995 < 0,001 0,925 0,994 

 

3.3.2 CRF and LDCRF against other classifiers 

As before, one-way randomized blocks ANOVA tested the statistical significance of 

differences between the accuracies. If the ANOVA test rejects the null hypothesis of 

statistical equality of averages, a post hoc comparison is performed by a Tukey-Kramer test. 

The average value of each classifier is compared with the overall average accuracy, rejecting 

the null hypothesis if the average performance of a classifier is greater than the overall 

average. 

Table 3-3 displays the accuracies obtained by each subject and their corresponding 

standard deviations. ANOVA test (F: 608.121; 4 d. f.; p < 0.001) rejected the null hypothesis, 

so we performed the post hoc test. Their p-values are presented in Table 3-3, showing that 

based-PGM classifiers significantly surpass the average accuracy. However, Table 3-3 

indicates that average values for CRF and LDCRF based classifiers have a difference of 

around 0,001 and standard deviations only have a difference of 0,002, so there is no statistical 

difference between both classifiers. 

To prove if the performance of given classifiers is fair for unbalanced data, we also 

evaluated Cohen’s kappa index data, reported in Table 3-4, as done with accuracy. Results 
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of the ANOVA test (F: 1337.703; 4 d. f.-; p < 0.001) reject the null hypothesis. P-values 

from the post-hoc test and written in Table 3-4 indicate that CRF and LDCRF classifiers 

have the most significant kappa values. 

3.3.3 Discussion 

Results from Table 3-1 and Table 3-2 show that HG features exceed the performance 

obtained by LFC or even their combination. It could seem to refuse other works where the 

performance of LFC features, either alone or combined with HG, is the same or higher 

than HG data, even with the same dataset [125], [161]. However, these investigations refer 

to a different duty that is decoding. It tries to predict the actual trajectory of a finger 

movement rather than what finger is moving. 

When we selected HG features for evaluating the classifiers, CRF and LDCRF 

surpassed the performance of the other classifiers by evaluating the given metrics. 

Moreover, kappa values indicate that LDA, QDA, and LSVM have accuracy values near 

to the probability to classify correctly by chance. It is because they tend to assign the most 

probable class. 

Table 3-3. Results of Accuracy, by subject and classifier. Overall performance: 0,433 

Subject 
Model 

CRF LDCRF LDA QDA LSVM 

bp 0,746 0,749 0,224 0,217 0,224 

cc 0,785 0,789 0,226 0,254 0,433 

ht 0,743 0,767 0,202 0,205 0,200 

jc 0,791 0,786 0,169 0,164 0,189 

jp 0,650 0,644 0,214 0,210 0,291 

mv 0,747 0,693 0,136 0,160 0,119 

wc 0,737 0,723 0,187 0,181 0,185 

wm 0,715 0,712 0,237 0,226 0,497 

zt 0,761 0,768 0,236 0,215 0,382 

Average 0,742 0,737 0,204 0,204 0,280 

Standard Deviation 0,041 0,048 0,034 0,031 0,129 

P-value < 0,001 < 0,001 1,000 1,000 0,998 
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 Table 3-4. Results of Cohen’s kappa index, by subject and classifier. Overall performance: 0,278. 

Subject 
Model 

CRF LDCRF LDA QDA LSVM 

bp 0,711 0,714 0,011 0,024 -0,002 

cc 0,693 0,697 0,056 0,049 0,041 

ht 0,568 0,560 0,020 0,015 -0,003 

jc 0,689 0,699 0,047 0,037 -0,004 

jp 0,744 0,739 0,015 0,023 -0,029 

mv 0,700 0,637 -0,016 0,015 -0,031 

wc 0,682 0,665 0,018 0,007 -0,026 

wm 0,590 0,585 0,030 0,023 0,000 

zt 0,691 0,719 0,039 0,040 0,030 

Average 0,674 0,669 0,024 0,026 -0,003 

Standard Deviation 0,057 0,062 0,022 0,014 0,025 

P-value < 0,001 < 0,001 1,000 1,000 1,000 

 

To illustrate this issue, Table 3-5 displays the confusion matrices for CRF, LDA, and 

LSVM classifiers. The first row of each matrix refers to the assigned label by each classifier 

as Rest, which could be an indicator of the accuracy paradox because label Rest has more 

trials than the other ones. While CRF appoints most of the labels consistently, LDA and 

LSVM tend to assign the Rest class to most of the data, being more notorious in LSVM. It is 

a substantial indication of classification biasing due to the amount of data with the Rest label 

shown during the training stage. 

When comparing our results with a previous study that employed a CRF model with long 

time dependencies [157], we noticed that the performance of our proposal is higher than 

reported by the earlier study. While it apprised accuracy values between 0.62 and 0.69, we 

got values between 0.65 and 0.79 for the CRF and LDCRF classifiers. Concerning Cohen’s 

kappa index, values in the interval of 0.49 and 0.54 were reported in the previous study, while 

we reported values between 0.56 and 0.74 for CRF-based models. It exhibits a significant 

improvement, even with a higher number of subjects (3 subjects in the previous study and 9 

in the current study) and a lower sampling rate (200 Hz and 20 Hz, respectively). 
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A significant improvement is observed when evaluating our results with other previous 

studies. For example, one of the most recent studies reports that its performance is up to 

0.55 with features extracted from a continuous wavelets transform [154]. Another recent 

study that uses a HMM model with Gaussian mixtures and a bi-gram model [156] reports 

values up to 0.78, using additional movement insertions. However, this study only uses 

four classes (discarding ring finger movements) with three subjects and a generative 

classifier to classify the finger movement. In addition, the metric employed does not allow 

to perform further comparisons. Another previous study shows performances between 

0.59 and 0.69 [66] with non-linear kernel SVM but classifiers employed only were 

evaluated by pairs of classes. 

Moreover, a study from 2016 reported balanced accuracy values up to 0.77 [155] by 

employing four classes and 0.64 with five classes.  The study used a two-stage classifier: 

a binary LDA for movement and no movement and a multiclass LDA for classifying the 

finger moved. Balanced accuracy values come from the multiclass LDA, and after 

excluding trials labeled as rest class. When we converted our metrics to balanced 

accuracies, as Table 3-6 exhibits, the average performance raised to 0.71 for both CRF-

based classifiers. With the same data, LDA, QDA, and LSVM go down to 0.16 or less, 

depending on the subject. 

The performance accomplished by CRF and LDCRF is due to the connectivity of data, 

as described in Equations ( 1-9 ) and ( 1-10 ). More specifically, the connectivity across 

time is taken into account by based-CRF classifiers while is ignored by the remaining 

classifiers used in our study. It compels that these classifiers tend to assign most of the 

labels whose number of samples is the highest or data have more co-occurrences in their 

statistical modeling, as LDA and QDA do [39]. However, when we contrasted the 

performance of CRF and LDCRF classifiers, there was no statistical difference between 

them when a paired t-Student post hoc test was performed (MSE: 0.013, T: 0.130, p: 0.899, 

d. f.: 8). It could indicate that there is no statistical difference among all hidden states 

assigned by the LDCRF classifier -or the classes themselves- or there are other relations 

in ECoG data further time. Finally, notice that most of the approaches proposed for finger 

classification from ECoG data are generative. It means that these classifiers use multiple 
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models for training and evaluation, while the proposed method employs only a CRF-based 

model directly for classification, even with a sampling rate as low as 20 Hz. 

3.4 Conclusions 

The proposed based linear-CRF classifiers have performances significantly higher than 

LDA, QDA, and LSVM classifiers in the HG band, from ECoG data. It is due that the latter 

classifiers try to fit their models to the class with the highest quantity of samples. In contrast, 

linear-CRF classifiers take into account temporal dynamics to detect attributes from other 

classes. 
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Table 3-5. Confusion Matrix across all subjects for CRF, LDA and LSVM classifiers. Grayscale indicates the degree of distribution of assigned labels. 

  Confusion Matrix across all subjects - CRF  Confusion Matrix across all subjects - LDA  Confusion Matrix across all subjects – LSVM 

A
ssig

n
ed

 L
ab

el 

Rest 0,838 0,081 0,044 0,109 0,072 0,060  0,353 0,258 0,253 0,277 0,274 0,268  0,814 0,598 0,589 0,651 0,598 0,619 

Thumb 0,034 0,853 0,024 0,017 0,021 0,007  0,158 0,228 0,196 0,167 0,170 0,186  0,055 0,114 0,122 0,098 0,099 0,097 

Index 0,018 0,025 0,772 0,092 0,015 0,033  0,117 0,152 0,140 0,142 0,152 0,156  0,049 0,148 0,112 0,110 0,131 0,117 

Middle 0,038 0,007 0,091 0,683 0,087 0,036  0,102 0,110 0,118 0,115 0,116 0,117  0,012 0,022 0,021 0,010 0,020 0,018 

Ring 0,029 0,019 0,027 0,059 0,537 0,221  0,140 0,122 0,150 0,151 0,141 0,140  0,038 0,070 0,095 0,074 0,088 0,094 

Pinky 0,030 0,015 0,041 0,040 0,261 0,642  0,116 0,121 0,131 0,133 0,141 0,127  0,027 0,038 0,048 0,045 0,057 0,048 

Not Found 0,013 0,000 0,001 0,000 0,007 0,000  0,014 0,008 0,011 0,015 0,006 0,007  0,005 0,009 0,013 0,013 0,008 0,006 

  Rest Thumb Index Middle Ring Pinky  Rest Thumb Index Middle Ring Pinky  Rest Thumb Index Middle Ring Pinky 

  Actual Label  Actual  Label  Actual  Label 

Table 3-6. Results of balanced accuracy, by subject and classifier. 

Subject 
Model 

CRF LDCRF LDA QDA LSMV 

bp 0,737 0,734 0,166 0,172 0,166 

cc 0,735 0,738 0,203 0,200 0,189 

ht 0,602 0,593 0,180 0,175 0,165 

jc 0,708 0,721 0,191 0,186 0,164 

jp 0,769 0,772 0,178 0,185 0,150 

mv 0,766 0,706 0,137 0,158 0,106 

wc 0,731 0,716 0,182 0,173 0,150 

wm 0,648 0,645 0,189 0,187 0,167 

zt 0,732 0,757 0,197 0,198 0,190 

Average 0,714 0,709 0,180 0,182 0,161 
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4 ANALYSIS OF INSTANTANEOUS BRAIN 

INTERACTIONS CONTRIBUTION TO A MOTOR 

IMAGERY CLASSIFICATION TASK 

Using spatial interactions to enhance a two-class classification task 

4.1 Preliminaries 

A Brain-Computer Interface (BCI) is a communication and control scheme that sends 

messages and commands to the external world without using nerves and muscles in the usual 

way [123]. A regular BCI system has a brain monitoring system, a signal pre-processing 

stage, a stage for extracting features of the pre-processed signal, and a classification stage 

where features are decoded into commands or messages Some manners of BCI activation are 

evoked potentials, brain rhythms, and motor imagery, among others [19], [21]. Initially 

developed for electroencephalography (EEG) [63], [124], it was driven quickly to 

electrocorticography (ECoG) [64], [125] because of the advantages provided by the latter 

signals. 

Different studies have suggested that combining frequency-temporal features with 

blinding source separation techniques improves the performance of classifiers in motor 

imagery paradigms significantly. One of the most common of these techniques is the 

Common Spatial Patterns (CSP), that extracts mutual features from a mixture of two 

populations but maximizing the different proportion of the variances in each population 

[162]. In this way, a linear transformation (or spatial filtering) is performed, preserving the 

number of sources but missing any temporal or brain interactions between electrodes. To 

compensate the lack of information, a series of improvements have been introduced to CSP. 

One of them is Filter bank CSP (FBCSP). Here, the collected brain signal is passed by a set 

of filters with different frequency bands, and each filtered signal is processed by CSP [163]. 

Therefore, the contribution of a series of frequency bands is preserved while CSP extracts 

mutual features for each band. CSP and FBCSP can be applied over raw or pre-processed 

data, as filtered data extracted from wavelet packet decomposition [60], [61], recombined 

data from CSP [164], or frequency data extracted from CSP [165]. Also, some methods have 
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been developed to select the most discriminative features from CSP or FBCSP [60], [61], 

[165]–[167]. 

However, since CSP and FBCSP come from a linear transformation, the resultant 

operation only shows the projection of each electrode to the new space, i. e. its 

contribution to the total variance of the chosen population respect to the joint population 

[168]. Hence, the contribution of brain interactions between electrodes to the classification 

is, at best, implicit. The purpose of the present study is to analyze statistically the 

contribution of the interactions between electrodes, measured here as correlation or 

Jaccard distance, to the classification of two actions in a motor imagery paradigm: left 

hand or right hand movement. The analysis is performed in two classifier models: a static 

model, consisting in a linear discriminant analysis classifier (LDA), and a dynamic model, 

consisting in a linear conditional random fields (CRF) model where features only interact 

with hidden variables, rather than interacting with labels, named latent dynamic CRF 

(LDCRF). Also, the impact of using the sliding window technique (SWT) in the static and 

dynamic models is analyzed here. 

4.2 Materials and methods 

4.2.1 Experiment and dataset description 

The analyzed dataset comes from the BCI Competition IV, dataset 2b [169]. It is 

available at https://www.bbci.de/competition/iv/ [170]. Dataset was recorded from nine 

volunteer subjects. Each one was right-handed and had normal or corrected-to-normal 

vision. All subjects sat in an armchair and were watching a flat screen placed 1 m away at 

level eye. Five sessions were performed for each subject: first two without feedback and 

last three with feedback. Each session consists of several runs, preceded by 5 minutes of 

electrooculography (EOG) estimation at the beginning of a session, as follows. 

Two first sessions used the following paradigm: a cue-based screening paradigm, 

consisting in two classes, namely left-hand and right-hand respectively. Each session 

consisted of six runs, and each run had ten randomized trials by class, for a total of 120 

repetitions per session. Each trial started with a fixation cross and a warning tone by a few 

of seconds, followed by an arrow indicating either left or right side for 1.25 s. 

https://www.bbci.de/competition/iv/
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Subsequently, the subject imagined the hand movement for 4 s. Next, there was a randomized 

pause for, at least, 1.5 s for avoiding adaptation. 

Three later sessions made use of a smiley face for feedback, with four runs and 20 

randomized trials by class and run, for a total of 160 repetitions per session. Each trial started 

with a gray smiley and a warning tone by a few of second, followed by a cue period of 3 s, 

where the smiley had to be displaced to the left or right. In this time interval, depending of 

the hand movement, the smiley became red when the subject was wrong and green when the 

movement was the correct. Moreover, the mouth of the smiley also changed to sad (corners 

of mouth downwards) or happy (corners of mouth upwards), with wrong or right movements, 

respectively. Next, there was a randomized pause between 1 and 2 seconds. We only 

employed data from feedback sessions. 

Data were recorded from three EEG bipolar electrodes: C3, Cz and C4, with a frequency 

sample of 250 Hz as Figure 4-1 shows. Fz channel was used as EEG ground. Later, data was 

bandpass-filtered between 0.5 and 100 Hz followed by a 50 Hz notch filter. In addition, the 

EOG is available from three monopolar electrodes and similar amplification configuration. 

Additional details of the experiment are available in [171]. 

 

Figure 4-1. Electrodes location in the dataset BCI Competition IV, dataset 2b, and their interactions. 

Source: adapted from [172]. 
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4.2.2 Data pre-processing 

We took each trial during the time interval that a subject was executing the imagery 

task, i. e. between 3 and 6 seconds after the beginning of the trial. Then, each trial was 

sub-segmented by sliding windows, varying the window size and the slide size along the 

experiments.  

A single sub-segment can provide up to three types of features: alpha/mu (8 – 12 Hz) 

and beta (15 – 25 Hz) power band [173] by electrode, and a similarity (or distance) 

measure of interactions between a pair of electrodes signals (C3 – Cz, C4 – Cz, or C3 – 

C4, shown in Figure 4-1). Then, power band data was scaled such that the order of 

magnitude is 10^1. Experiments used alpha and beta power band as main features and 

similarity (or distance) measures as additional features. All features were obtained using 

the sliding window technique. 

4.2.3 Sliding window technique 

Given a discrete time series arrangement X = {x1, x2, …, xN-1, xN} for N equally spaced 

time samples, an sliding window technique (SWT) is a set of instructions that is executed 

over a subset of k consecutive values of X, whose initial point is given by xi: Xi,k = {xi, 

xi+1, …, xi+k-1, xi+k}. Once the set of instructions is executed, the position of the initial point 

is displaced by a distance Δi and the algorithm takes another k points to set the new subset 

Xi+ Δi,k. Instructions are executed in the given subset. The routine continues repeatedly 

until the value of X corresponding to the final point xN is reached. Size of the subset k and 

the displacement of initial point Δi could be fixed [174] or dynamically adaptive [175]. 

SWT is useful to get a simpler representation [175], [176] or finding dynamic patterns 

[177], [178] in a time series set. In this way, we propose to apply the SWT to find the 

alpha and beta power values and the similarity (or distance) measures, in order to reduce 

the memory consumption and time of execution [179]. 

4.2.4 Pearson correlation 

Pearson correlation, defined for two zero-mean and real-valued random variables 𝑥, 𝑦, 

is the coefficient between the cross-correlation of the random variables 𝐸[𝑥𝑦] and the 

product of the square root of their variances 𝜎𝑥𝜎𝑦 [95], [96]. 
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4.2.5 Jaccard distance 

On the other hand, the Jaccard distance comes from its counterpart, the Jaccard index J. 

The latter is a similarity measure for two finite discrete sets 𝐴, 𝐵, defined as the coefficient 

between the size of the intersection |𝐴 ∩ 𝐵| and the size of its union |𝐴 ∪ 𝐵| [97]. It can be 

extended as the ratio between the measure of the intersection 𝜇(𝐴 ∩ 𝐵) and its union 

𝜇(𝐴 ∪ 𝐵), with an arbitrary measure μ. Details about Jaccard distance are found in the section 

1.5.2. 

4.2.6 Performance metrics 

A common measure of performance used for classification is the accuracy. Accuracy is 

defined as a metric of the closeness between measured or predicted values and their 

corresponding true values [68]. Accuracy varies from 0 to 1, where 1 gives a perfect 

classification. The study used five rounds of three-fold cross-validation, being training data 

used to tune LDA and LDCRF model parameters by an intern four-fold cross-validation. 

4.2.7 Statistical analysis 

A one-way randomized blocks ANOVA tested the statistical significance of differences 

between data with additional features or not. In the case that ANOVA test rejects the null 

hypothesis of statistical equality of averages, a post hoc comparison is performed using a 

Tukey-Kramer test. The average value of each classifier and type of data is compared against 

the overall average accuracy, rejecting the null hypothesis if the average by class is greater 

than the overall average. 

Also, a linear multiple way randomized blocks ANOVA tested the statistical significance 

of differences of the data. Window size and slide size were the tested parameters, and subjects 

were implemented as randomized blocks in the model. In the case that ANOVA test rejects 

the null hypothesis of statistical equality of averages, a post hoc comparison is performed 

using a Tukey-Kramer test. 
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4.3 Results and Discussion 

Results showed here refer to the average performance obtained by each classifier, 

measured with the accuracy metric. All metrics were obtained from the testing dataset of 

each subject. 

4.3.1 Results with LDA model 

Table 4-1 shows the accuracies obtained by subject, by comparing data with and 

without correlation features with the LDA classifier model. The whole window of 3s was 

used here, without modifying other parameters. According to the ANOVA test (F: 34.922; 

1 degree of freedom –d. f.-; p < 0.001), the null hypothesis of averages equality must be 

rejected, so we performed the post hoc test. Their p-values are illustrated in Table 4-1, 

showing that only data with additional features surpasses significantly the average 

accuracy.  

On the other hand, Table 4-2 shows the accuracies obtained by subject, by comparing 

data with and without Jaccard Distance features with the LDA classifier model. As before, 

a one-way randomized blocks ANOVA tested the statistical significance of differences 

between data with additional features or without. According to the ANOVA test (F: 

26.613; 1 d. f.; p < 0.001), the null hypothesis of averages equality must be rejected, so 

we performed the post hoc test. It indicates again that only data with additional features 

surpasses significantly the average accuracy. 

The following step is to implement the sliding window algorithm in the data with power 

alpha and beta band, and additional features, in order to get more features. Hence, we used 

three sizes of sliding window (0.5, 1 and 2 s) against the whole 3 s window, and three 

slide sizes (0.125, 0.25 and 0.5 s) to compare the performance of the LDA classifier. Table 

4-3 and Table 4-4 show the performance of LDA model by window size and slide size, by 

implementing the sliding window algorithm with correlation as additional features. 

According to the ANOVA test (Fwindow_size: 46.61; 3 d. f.; pwindow_size < 0.001; Fslide_size: 

144.60; 2 d. f.; pslide_size < 0.001), the null hypothesis of averages equality must be rejected, 

so we performed the post hoc test. Results of Table 4-3 show that window sizes of 2 and 

3 s have the most significant performance. Meanwhile, Table 4-4 show that slides of 0.25 

and 0.5 have the greatest and most significant performances.  
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Table 4-1. Results of Accuracy in LDA model, with and without correlation. Overall performance: 0,74. 

Subject 
Presence of Correlation 

YES NO 

1 0,7569 0,7144 

2 0,5692 0,5267 

3 0,6227 0,5802 

4 0,9750 0,9325 

5 0,7981 0,7556 

6 0,7577 0,7152 

7 0,7119 0,6694 

8 0,9015 0,8590 

9 0,7623 0,7198 

Average 0,7617 0,7192 

Standard Deviation 0,125 0,125 

P-value < 0,001 1,000 

 

Table 4-2. Results of Accuracy in LDA, with and without Jaccard Distance Overall performance: 0,741. 

Subject 
Presence of Jaccard Distance 

YES NO 

1 0,7432 0,7043 

2 0,5645 0,5255 

3 0,6041 0,5651 

4 0,9763 0,9374 

5 0,8209 0,7820 

6 0,7638 0,7249 

7 0,7072 0,6682 

8 0,8978 0,8589 

9 0,7674 0,7284 

Average 0,7606 0,7216 

Standard Deviation 0,13 0,13 

P-value < 0,001 1,000 
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Table 4-3. Results of Accuracy in LDA model with correlation as additional feature, by varying the window 

size in the sliding window algorithm. Overall performance: 0,751. 

Subject 
Sliding Window Size (s) 

0.5 1 2 3 

1 0,667 0,685 0,698 0,699 

2 0,534 0,553 0,566 0,567 

3 0,620 0,638 0,651 0,653 

4 0,906 0,925 0,938 0,939 

5 0,792 0,810 0,823 0,824 

6 0,713 0,731 0,744 0,745 

7 0,772 0,790 0,803 0,805 

8 0,848 0,866 0,879 0,880 

9 0,721 0,739 0,752 0,753 

Average 0,731 0,749 0,762 0,763 

Standard Deviation 0,115 0,115 0,115 0,115 

P-value 1,000 1,000 < 0,001 < 0,001 

 

Table 4-4. Results of Accuracy in LDA model with correlation as additional feature, by varying the slide size 

in the sliding window algorithm. Overall performance: 0,751. 

Subject 
Slide Size (s) 

0.125 0.25 0.5 

1 0,661 0,694 0,705 

2 0,529 0,562 0,573 

3 0,615 0,648 0,659 

4 0,901 0,934 0,945 

5 0,787 0,819 0,831 

6 0,708 0,741 0,752 

7 0,767 0,800 0,811 

8 0,843 0,876 0,887 

9 0,716 0,749 0,760 

Average 0,725 0,758 0,769 

Standard Deviation 0,115 0,115 0,115 

P-value 1,000 < 0,001 < 0,001 
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Respect to the Jaccard Distance as additional parameter, a similar procedure to the 

implemented for correlation was performed. According to the ANOVA test (Fwindow_size: 

30.28; 3 d. f.; pwindow_size < 0.001; Fslide_size: 137.73; 2 d. f.; pslide_size < 0.001), the null 

hypothesis of averages equality must be rejected, so we performed the post hoc test. Results 

of Table 4-5 show that window sizes of 2 and 3 s have the most significant performance. 

Meanwhile, Table 4-6 show that slides of 0.25 and 0.5 have the greatest and most significant 

performances. 

4.3.2 Results with HCRF model 

Since HCRF is a dynamic model, opposite to LDA model, implementation of sliding 

window algorithm is necessary to establish the corresponding timestamps of HCRF. To 

compare data with and without additional correlation features, we tested the model with two 

window sizes (0.5 and 2 s) and two slide sizes (0.125 and 0.5 s). Table 4-7 shows the 

accuracies obtained by subject, by comparing data with and without correlation features with 

the HCRF classifier model. According to the ANOVA test (F: 117.232; 1 degree of freedom 

–d. f.-; p < 0.001), the null hypothesis of averages equality must be rejected, so we performed 

the post hoc test. Their p-values are illustrated in Table 4-7, showing that only data with 

additional features surpasses significantly the average accuracy.  

On the other hand, Table 4-8 shows the accuracies obtained by subject, by comparing data 

with and without Jaccard Distance features with the HCRF classifier. As before, a one-way 

randomized blocks ANOVA tested the statistical significance of differences between data 

with additional features or without. According to the ANOVA test (F: 148.475; 1 d. f.; p < 

0.001), the null hypothesis of averages equality must be rejected, so we performed the post 

hoc test. It indicates again that only data with additional features surpasses significantly the 

average accuracy. 

The following step is to implement the sliding window algorithm in the data with power 

alpha and beta band, and additional features, in order to get more features. Hence, we used 

three sizes of sliding window (0.5, 1 and 2 s), and three slide sizes (0.125, 0.25 and 0.5 s) to 

compare the performance of the HCRF classifier. Table 4-9 and Table 4-10 show the 

performance of HCRF model by window size and slide size, by implementing the sliding 

window algorithm with correlation as additional features.  
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Table 4-5. Results of Accuracy in LDA model with Jaccard Distance as additional feature, by varying the 

window size in the sliding window algorithm. Overall performance: 0,752. 

Subject 
Sliding Window Size (s) 

0.5 1 2 3 

1 0,681 0,691 0,705 0,703 

2 0,539 0,549 0,563 0,561 

3 0,613 0,622 0,637 0,634 

4 0,911 0,920 0,934 0,932 

5 0,835 0,844 0,859 0,856 

6 0,728 0,737 0,751 0,749 

7 0,752 0,762 0,776 0,774 

8 0,860 0,870 0,884 0,882 

9 0,725 0,734 0,748 0,746 

Average 0,738 0,748 0,762 0,760 

Standard Deviation 0,119 0,119 0,119 0,119 

P-value 1,000 1,000 < 0,001 < 0,001 

 

Table 4-6. Results of Accuracy in LDA model with Jaccard Distance as additional feature, by varying the 

slide size in the sliding window algorithm. Overall performance: 0,752. 

Subject 
Slide Size (s) 

0.125 0.25 0.5 

1 0,672 0,701 0,712 

2 0,530 0,559 0,570 

3 0,604 0,633 0,643 

4 0,901 0,931 0,941 

5 0,826 0,855 0,865 

6 0,718 0,748 0,758 

7 0,743 0,772 0,783 

8 0,851 0,880 0,891 

9 0,715 0,745 0,755 

Average 0,729 0,758 0,769 

Standard Deviation 0,119 0,119 0,119 

P-value 1,000 < 0,001 < 0,001 
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Table 4-7. Results of Accuracy in HCRF model, with and without correlation. Overall performance: 0,757. 

Subject 
Presence of Correlation 

YES NO 

1 0,7515 0,7121 

2 0,5961 0,5567 

3 0,5683 0,5288 

4 0,9905 0,9511 

5 0,7903 0,7509 

6 0,7777 0,7383 

7 0,7634 0,7239 

8 0,9190 0,8796 

9 0,8310 0,7916 

Average 0,7764 0,7370 

Standard Deviation 0,135 0,135 

P-value < 0,001 1,000 

 

Table 4-8. Results of Accuracy in HCRF, with and without Jaccard Distance. Overall performance: 0,758. 

Subject 
Presence of Jaccard Distance 

YES NO 

1 0,7528 0,7112 

2 0,6000 0,5584 

3 0,5707 0,5291 

4 0,9919 0,9503 

5 0,8086 0,7670 

6 0,7883 0,7468 

7 0,7498 0,7082 

8 0,9192 0,8776 

9 0,8319 0,7904 

Average 0,7793 0,7377 

Standard Deviation 0,135 0,135 

P-value < 0,001 1,000 
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Table 4-9. Results of Accuracy in HCRF model with correlation as additional feature, by varying the window 

size in the sliding window algorithm. Overall performance: 0,777. 

Subject 
Sliding Window Size (s) 

0.5 1 2 

1 0,729 0,734 0,728 

2 0,568 0,573 0,567 

3 0,597 0,601 0,596 

4 0,971 0,975 0,970 

5 0,820 0,825 0,820 

6 0,768 0,773 0,767 

7 0,830 0,834 0,829 

8 0,897 0,902 0,896 

9 0,805 0,810 0,804 

Average 0,776 0,781 0,775 

Standard Deviation 0,130 0,130 0,130 

P-value 1,000 < 0,001 1,000 

 

Table 4-10. Results of Accuracy in HCRF model with correlation as additional feature, by varying the slide 

size in the sliding window algorithm. Overall performance: 0,777. 

Subject 
Slide Size (s) 

0.125 0.25 0.5 

1 0,732 0,730 0,728 

2 0,572 0,569 0,568 

3 0,600 0,598 0,596 

4 0,974 0,972 0,970 

5 0,824 0,822 0,820 

6 0,771 0,769 0,767 

7 0,833 0,831 0,829 

8 0,900 0,898 0,896 

9 0,808 0,806 0,804 

Average 0,780 0,777 0,776 

Standard Deviation 0,130 0,130 0,130 
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According to the ANOVA test (Fwindow_size: 4.20; 2 d. f.; pwindow_size = 0.016; Fslide_size: 1.95; 

2 d. f.; pslide_size = 0.143), the null hypothesis of averages equality must be rejected only for 

the window size, so we performed the post hoc test. Results of Table 4-9 show that window 

size of 1 s has the most significant performance. Meanwhile, Table 4-10 shows that although 

the performance of the classifier is the highest when the size of slides is 0.125 s, the average 

result is slightly better than the average performance with whole data. 

Respect to the Jaccard Distance as additional parameter, a similar procedure to the 

implemented for correlation was performed. According to the ANOVA test (Fwindow_size: 

12.35; 3 d. f.; pwindow_size < 0.001; Fslide_size: 0.15; 2 d. f.; pslide_size = 0.86), the null hypothesis 

of averages equality must be rejected only for window size, so we performed the 

corresponding post hoc test. Results of Table 4-11 show that window sizes of 0.5 s has the 

most significant performance. Meanwhile, Table 4-12 shows that slides of 0.125 s have the 

greatest average performance, although it is not significant compared with the other slide 

sizes. 

4.3.3 Discussion 

Results from Table 4-1, Table 4-2, Table 4-7 and Table 4-8 suggest that adding either 

correlation or Jaccard distance to temporal features improves the performance of tested 

classifiers significantly, i. e. LDA and HCRF. It indicates that having available information 

of similarity or distance relations between channels gives additional knowledge about the 

classes that carry to a more accurate classification. However, it is the only common behavior 

of the models when brain interactions are added to the features. Also, it is important to remark 

that, although correlation and Jaccard distance are measures of interactions with distinct 

nature, we get an improvement of performance. It means that adding interactions between 

electrodes improves significantly the performance of each classifiers, regarding the nature of 

the interaction measure.  
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Table 4-11. Results of Accuracy in HCRF model with Jaccard Distance as additional feature, by varying the 

window size in the sliding window algorithm. Overall performance: 0,778. 

Subject 
Sliding Window Size (s) 

0.5 1 2 

1 0,733 0,731 0,723 

2 0,576 0,573 0,565 

3 0,606 0,603 0,595 

4 0,975 0,972 0,964 

5 0,853 0,850 0,842 

6 0,780 0,778 0,770 

7 0,803 0,801 0,793 

8 0,902 0,900 0,892 

9 0,809 0,806 0,798 

Average 0,782 0,779 0,771 

Standard Deviation 0,129 0,129 0,129 

P-value < 0,001 < 0,001 1,000 

 

Table 4-12. Results of Accuracy in HCRF model with Jaccard Distance as additional feature, by varying the 

slide size in the sliding window algorithm. Overall performance: 0,778. 

Subject 
Slide Size (s) 

0.125 0.25 0.5 

1 0,730 0,729 0,728 

2 0,572 0,571 0,571 

3 0,602 0,601 0,601 

4 0,971 0,970 0,970 

5 0,849 0,848 0,848 

6 0,777 0,776 0,776 

7 0,800 0,799 0,798 

8 0,899 0,898 0,898 

9 0,805 0,804 0,804 

Average 0,778 0,777 0,777 

Standard Deviation 0,129 0,129 0,129 
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In the LDA model, results from Table 4-3 to Table 4-6 show that only a few additional 

information provided by the sliding window technique is enough to improve the 

classification. It is performed by adding brain interactions from 2 s sized windows and 

displacements of 0.5 s, or even with the whole trial with no shifts. It is due to the nature of 

the LDA model, where a dimensionality reduction of data to 1 dimension is necessary to 

perform the discrimination analysis [180]. When more dimensions is added to the features –

by using smaller sizes of the displacement of the sliding window- the complexity of data is 

enhanced because of their dimensionality. Dimensionality reduction always implies loss and 

distortion of information, so preserving most of them in a tractable processing core is 

mandatory [181], [182]. One way is managing data with reduced dimensions before 

dimensionality reduction, which preserves information with less distortion and loss. It occurs 

when using brain interactions from 2 s or higher sized windows and displacements of 0.5 s. 

On the other hand, HCRF model has a different behavior. Results from Table 4-9 to Table 

4-12 show that the window size is the most relevant parameter to take into account to 

implement the SWT. Simultaneously, the change in the slide size had no or little effect in the 

classifying performance. This indicates that information from window size smaller than or 

equal to 1/3 trial size is more relevant than that from larger windows. It also leads to use the 

longest available window displacements without losing relevant information, reducing the 

features dimensionality and, hence, the computational load of the model. 

4.4 Conclusions 

Although it is proved that brain interactions do not contribute significantly to classification 

in a multiclass task by themselves [153], this study proved that their combination with 

temporal features provide significant information to improve the classification in a two class 

task, as motor imagery. Also, we showed that adding interactions between electrodes 

improves significantly the performance of each classifiers, regarding the nature of the 

interaction measure. 
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APPENDIX 1. ADDITIONAL MODELS AND 

MULTIVARIATE BCI DATASETS TESTED 

We also tested some additional models and features, with and without interactions 

between electrodes (correlation). However, their results did not have any significant 

differences. In this way, we present these results to show the behavior of some classifiers 

when we present a multiclass problem applied to BCIs. 

Unless otherwise stated, we used the dataset 2a from BCI competition IV [183]. Here, 

dataset was recorded from nine volunteer subjects. Each one was right-handed and had 

normal or corrected-to-normal vision. All subjects sat in an armchair and were watching a 

flat screen placed 1 m away at level eye. Two sessions were performed for each subject. Each 

session consists of several runs, preceded by 5 minutes of electrooculography (EOG) 

estimation at the beginning of a session, as follows. 

Both sessions used the following paradigm: a cue-based screening paradigm, consisting 

in four classes, namely left-hand, right-hand, foot or tongue respectively. Each session 

consisted of six runs, and each run had ten randomized trials by class, for a total of 288 

repetitions per session. Each trial started with a fixation cross and a warning tone by a few 

of seconds, followed by an arrow indicating either left or right side for 1.25 s. Subsequently, 

the subject imagined the hand movement for 4 s. Next, there was a randomized pause for, at 

least, 1.5 s for avoiding adaptation [183]. 

Data were recorded from twenty-two EEG monopolar electrodes, with the left mastoid 

serving as reference and the right mastoid as ground, and a frequency sample of 250 Hz. 

Later, data was band-pass-filtered between 0.5 and 100 Hz followed by a 50 Hz notch filter. 

In addition, the EOG is available from three monopolar electrodes and similar amplification 

configuration. Additional details of the experiment are available in [183]. 
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A-1 1. ADDITIONAL MODELS TESTED 

A-1.1.1. Multi-view hidden conditional random fields (MVHCRF) 

To expand the HCRF model, we could include a set of two or more attached linear 

hidden CRF models. This HCRF model is known as Multi-view hidden conditional 

random fields (MVHCRF) [184]. The main idea is to attach these models by their hidden 

states, either by linking those hidden states located in the same timestamp (linked 

MVHCRF) or coupling a hidden state in a specific timestamp and HCRF with the next 

timestamp in another HCRF (coupled MVHCRF), as Figure A-1-1 shows [184]. It implies 

that, unlike other CRF models, the MVHCRF model has other dependencies between 

hidden states, in addition to those established by the existing Markov chain in other linear 

CRF models. Note that both kind of MVHCRF models can be combined as a single linked-

coupled MVHCRF model. 

 

  

Linked MVHCRF Coupled MVHCRF 

Figure A-1-1. A linked MVHCRF graphical model (left) and a coupled MVHCRF graphical model (right) 

with three timestamps and two HCRF models.  

Source: [184]. 
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A-1.1.2. Hidden-Unit CRF (HUCRF) 

The Hidden-Unit CRF [86] could look similar to the LDCRF model, as Figure A-1-2 

shows. However, HUCRF establishes the timestamps connection between outputs, as the 

linear CRF model does, rather than hidden states, as LDCRF does. In addition, its hidden 

states are conditionally independent given the features and labels [86] rather than establishing 

a set of hidden variables for each label, as LDCRF does [84]. 

 

 

Figure A-1-2. A graphical model of HUCRF  

Source: adapted from [86]. 

 

A-1 2. ADDITIONAL RESULTS 

As mentioned before, we tested some additional models and features, with and without 

interactions between electrodes (correlation). However, their results did not have any 

significant differences. These results are presented below, indicating: 

 Model (or models) used. 

 Database and chapter whit their description (if applies). 

 Methodology (including type of features and chapter whit their description). 

 Accuracy values. 
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A-1.2.1. MVHCRF 

 Model: Multi-view hidden conditional random fields 

 Database: BCI competition IV 2B (chapter 4) 

 Methodology 

o Detrending and Common Average Reference (CAR). 

o Trial interval used: 3 s (3rd to 6th second). 

o Types of features:  

 Alpha/mu (8 – 12 Hz) power band 

 Beta (15 – 25 Hz) power band  

 Alpha and beta power bands combined. 

o Sliding window technique (chapter 4):  

 Window size 2s 

 Delay size 500 ms. 

o 5 repetitions of 5-folds cross-validation. 

o Classifiers to be compared: LDA, HCRF, MVHCRF 

 Results: in all of cases, MVHCRF gives the lower accuracy values, compared to LDA 

and HCRF (Table A-1-1). 

Table A-1-1. Results of LDA, HCRF and MVHCRF implementation, by patient. 

 Alpha Beta Alpha and Beta 

Patient LDA HCRF MVHCRF LDA HCRF MVHCRF LDA HCRF MVHCRF 

B01 0,677 0,670 0,598 0,664 0,670 0,645 0,705 0,670 0,520 

B02 0,595 0,586 0,511 0,561 0,543 0,489 0,598 0,586 0,514 

B03 0,550 0,468 0,498 0,518 0,475 0,495 0,557 0,468 0,489 

B04 0,943 0,943 0,935 0,820 0,843 0,752 0,939 0,943 0,935 

B05 0,622 0,567 0,511 0,772 0,796 0,726 0,674 0,567 0,565 

B06 0,770 0,773 0,666 0,666 0,634 0,580 0,766 0,773 0,664 

B07 0,730 0,723 0,730 0,632 0,627 0,595 0,727 0,723 0,709 

B08 0,820 0,827 0,768 0,752 0,741 0,743 0,818 0,827 0,705 

B09 0,745 0,734 0,650 0,773 0,789 0,668 0,770 0,734 0,673 

Average 0,717 0,699 0,652 0,684 0,680 0,633 0,728 0,699 0,641 
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A-1.2.2. CRF 

 Model: Conditional random fields 

 Database: Finger flexion (Chapter 3)  

 Methodology 

o Detrending and Common Average Reference (CAR). 

o Trial interval used: 3 s (3rd to 6th second). 

o Types of features:  

 High-gamma band (70 – 170 Hz) envelope. 

 Instantaneous interactions: correlation. 

o Down-sampling to 20 Hz. 

o Sliding window technique (chapter 4):  

 Window size 500 ms or 2s 

 Delay size 500 ms. 

o 3 repetitions of 5-folds cross-validation. 

o Classifiers to be compared: CRF 

 Results: in all of cases, there are no significant differences by adding interactions 

between electrodes or not (Table A-1-2). 

Table A-1-2. Results of CRF implementation, by patient. 

 No Correlation Correlation 

Patient Window size 500 Window size 2000 Window size 500 Window size 2000 

1 0,713 0,711 0,696 0,694 

2 0,750 0,747 0,733 0,731 

3 0,731 0,729 0,715 0,712 

4 0,757 0,755 0,741 0,738 

5 0,609 0,607 0,593 0,590 

6 0,710 0,708 0,694 0,691 

7 0,721 0,718 0,704 0,702 

8 0,701 0,698 0,684 0,682 

9 0,748 0,746 0,732 0,729 

Average 0,715 0,713 0,699 0,697 

 



Appendices  64 

 

A-1.2.3. HUCRF 

 Model: Hidden-unit conditional random fields 

 Database: Finger flexion (Chapter 3)  

 Methodology 

o Detrending and Common Average Reference (CAR). 

o Trial interval used: 3 s (3rd to 6th second). 

o Types of features:  

 High-gamma band (70 – 170 Hz) envelope. 

 Instantaneous interactions: correlation. 

o Down-sampling to 20 Hz. 

o Sliding window technique (chapter 4):  

 Window size 500 ms or 2s 

 Delay size 500 ms. 

o 3 repetitions of 5-folds cross-validation. 

o Classifiers to be compared: HUCRF 

 Results: in all of cases, HUCRF gives accuracy values lower than 0.25, compared to 

LDA and HCRF (Table A-1-3). Also, there are no significant differences by adding 

interactions between electrodes or not. 

Table A-1-3. Results of HUCRF implementation, by patient. 

Patient 
No Correlation Correlation 

Window size 500 ms Window size 2 s Window size 500 ms Window size 2 s 

1 0,183 0,188 0,177 0,182 

2 0,294 0,299 0,288 0,293 

3 0,156 0,161 0,150 0,155 

4 0,201 0,206 0,195 0,200 

5 0,169 0,174 0,163 0,168 

6 0,148 0,154 0,143 0,148 

7 0,153 0,158 0,147 0,152 

8 0,436 0,441 0,430 0,435 

9 0,205 0,210 0,199 0,205 

Average 0,216 0,221 0,210 0,215 
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A-1.2.4. CRF – Alpha and Beta power band 

 Model: Conditional random fields 

 Database: BCI competition IV 2A 

 Methodology 

o Detrending and Common Average Reference (CAR). 

o Trial interval used: 3 s (3rd to 6th second). 

o Types of features:  

 Alpha/mu (8 – 12 Hz) power band 

 Beta (15 – 25 Hz) power band  

 Instantaneous interactions: correlation. 

 Features selection: Mutual Information (MI). 

o Sliding window technique (chapter 4):  

 Window size 1s 

 Delay size 500 ms. 

o 3 repetitions of 5-folds cross-validation. 

 Results: in all of cases, CRF gives accuracy values lower than 0.3 (Table A-1-4). 

There are no significant differences by adding interactions between electrodes or not. 

Table A-1-4. Results of CRF implementation with Alpha and Beta power band features, by patient. 

 No Correlation Correlation 

 Number of components Number of components 

Patient 3 6 9 12 15 3 6 9 12 15 

1 0,327 0,342 0,337 0,330 0,322 0,333 0,347 0,342 0,335 0,328 

2 0,231 0,246 0,241 0,234 0,226 0,236 0,251 0,246 0,239 0,231 

3 0,291 0,305 0,300 0,293 0,285 0,296 0,310 0,306 0,299 0,291 

4 0,265 0,280 0,275 0,268 0,260 0,271 0,285 0,280 0,273 0,265 

5 0,234 0,249 0,244 0,237 0,229 0,240 0,254 0,249 0,242 0,234 

6 0,230 0,245 0,240 0,233 0,225 0,236 0,250 0,245 0,238 0,231 

7 0,282 0,297 0,292 0,285 0,277 0,287 0,302 0,297 0,290 0,282 

8 0,285 0,300 0,295 0,288 0,280 0,291 0,305 0,300 0,293 0,285 

9 0,280 0,295 0,290 0,283 0,275 0,286 0,300 0,295 0,288 0,281 

Average 0,270 0,284 0,279 0,272 0,264 0,275 0,289 0,284 0,278 0,270 
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A-1.2.5. CRF – Filter bank Common Spatial Patterns (FBCSP) 

 Model: Conditional random fields 

 Database: BCI competition IV 2A 

 Methodology 

o Detrending and Common Average Reference (CAR). 

o Trial interval used: 3 s (3rd to 6th second). 

o Types of features:  

 Filter bank CSP (chapter 4). 

 Instantaneous interactions: correlation. 

 Features selection: Mutual Information (MI). 

o Sliding window technique (chapter 4):  

 Window size 1s 

 Delay size 500 ms. 

o 3 repetitions of 5-folds cross-validation. 

o Classifiers to be compared: CRF 

Results: in all of cases, CRF gives accuracy values lower than 0.55 (Table A-1-5 and 

Figure A-1-3). Also, there are no significant differences by adding interactions between 

electrodes or not. However, the number of components influences significantly in the 

results (F: 11.44, 19 d.o.f., p-value < 0.001), being 4 the number of components whose 

accuracies give the most significant values. 
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Figure A-1-3. Summarization of results of CRF implementation with CSP features. 
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Table A-1-5. Results of CRF implementation with CSP features, by patient. 

Patient 

Features with No correlation 

Number of components 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0,565 0,581 0,583 0,595 0,579 0,575 0,559 0,567 0,547 0,546 0,538 0,519 0,514 0,523 0,531 0,510 0,520 0,497 0,505 0,516 

2 0,427 0,443 0,445 0,457 0,441 0,437 0,421 0,429 0,409 0,408 0,400 0,381 0,376 0,385 0,393 0,372 0,382 0,359 0,367 0,378 

3 0,644 0,660 0,662 0,674 0,659 0,655 0,638 0,647 0,627 0,625 0,617 0,598 0,593 0,603 0,610 0,589 0,599 0,576 0,584 0,596 

4 0,377 0,393 0,395 0,407 0,391 0,387 0,371 0,379 0,359 0,358 0,350 0,331 0,326 0,336 0,343 0,322 0,332 0,309 0,317 0,328 

5 0,428 0,444 0,446 0,457 0,442 0,438 0,422 0,430 0,410 0,409 0,401 0,381 0,377 0,386 0,393 0,373 0,382 0,360 0,367 0,379 

6 0,377 0,393 0,395 0,407 0,391 0,387 0,371 0,379 0,360 0,358 0,350 0,331 0,326 0,336 0,343 0,322 0,332 0,309 0,317 0,328 

7 0,534 0,550 0,552 0,563 0,548 0,544 0,528 0,536 0,516 0,515 0,507 0,487 0,483 0,492 0,499 0,479 0,488 0,466 0,473 0,485 

8 0,527 0,543 0,545 0,557 0,541 0,537 0,521 0,529 0,509 0,508 0,500 0,481 0,476 0,486 0,493 0,472 0,482 0,459 0,467 0,478 

9 0,523 0,539 0,541 0,553 0,537 0,533 0,517 0,525 0,505 0,504 0,496 0,477 0,472 0,482 0,489 0,468 0,478 0,455 0,463 0,474 

Average 0,489 0,505 0,507 0,519 0,503 0,499 0,483 0,491 0,471 0,470 0,462 0,443 0,438 0,448 0,455 0,434 0,444 0,421 0,429 0,440 
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Table A-1-5. (Cont.) Results of CRF implementation with CSP features, by patient. 

Patient 

Features with Correlation 

Number of components 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0,565 0,581 0,583 0,595 0,579 0,575 0,559 0,567 0,547 0,546 0,538 0,518 0,514 0,523 0,530 0,510 0,519 0,497 0,504 0,516 

2 0,427 0,443 0,445 0,456 0,441 0,437 0,421 0,429 0,409 0,408 0,400 0,380 0,376 0,385 0,392 0,372 0,381 0,358 0,366 0,378 

3 0,644 0,660 0,662 0,674 0,658 0,654 0,638 0,646 0,626 0,625 0,617 0,598 0,593 0,603 0,610 0,589 0,599 0,576 0,584 0,595 

4 0,377 0,393 0,395 0,407 0,391 0,387 0,371 0,379 0,359 0,358 0,350 0,330 0,326 0,335 0,342 0,322 0,331 0,309 0,316 0,328 

5 0,428 0,444 0,446 0,457 0,442 0,438 0,422 0,430 0,410 0,409 0,401 0,381 0,377 0,386 0,393 0,373 0,382 0,360 0,367 0,379 

6 0,377 0,393 0,395 0,407 0,391 0,387 0,371 0,379 0,359 0,358 0,350 0,331 0,326 0,336 0,343 0,322 0,332 0,309 0,317 0,328 

7 0,534 0,549 0,552 0,563 0,548 0,544 0,528 0,536 0,516 0,515 0,506 0,487 0,483 0,492 0,499 0,478 0,488 0,465 0,473 0,485 

8 0,527 0,543 0,545 0,557 0,541 0,537 0,521 0,529 0,509 0,508 0,500 0,481 0,476 0,485 0,493 0,472 0,482 0,459 0,467 0,478 

9 0,523 0,539 0,541 0,553 0,537 0,533 0,517 0,525 0,505 0,504 0,496 0,477 0,472 0,481 0,489 0,468 0,478 0,455 0,462 0,474 

Average 0,489 0,505 0,507 0,519 0,503 0,499 0,483 0,491 0,471 0,470 0,462 0,443 0,438 0,447 0,455 0,434 0,444 0,421 0,429 0,440 
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