25 research outputs found

    A First Derivative Potts Model for Segmentation and Denoising Using ILP

    Full text link
    Unsupervised image segmentation and denoising are two fundamental tasks in image processing. Usually, graph based models such as multicut are used for segmentation and variational models are employed for denoising. Our approach addresses both problems at the same time. We propose a novel ILP formulation of the first derivative Potts model with the â„“1\ell_1 data term, where binary variables are introduced to deal with the â„“0\ell_0 norm of the regularization term. The ILP is then solved by a standard off-the-shelf MIP solver. Numerical experiments are compared with the multicut problem.Comment: 6 pages, 2 figures. To appear at Proceedings of International Conference on Operations Research 2017, Berli

    Efficient Decomposition of Image and Mesh Graphs by Lifted Multicuts

    Full text link
    Formulations of the Image Decomposition Problem as a Multicut Problem (MP) w.r.t. a superpixel graph have received considerable attention. In contrast, instances of the MP w.r.t. a pixel grid graph have received little attention, firstly, because the MP is NP-hard and instances w.r.t. a pixel grid graph are hard to solve in practice, and, secondly, due to the lack of long-range terms in the objective function of the MP. We propose a generalization of the MP with long-range terms (LMP). We design and implement two efficient algorithms (primal feasible heuristics) for the MP and LMP which allow us to study instances of both problems w.r.t. the pixel grid graphs of the images in the BSDS-500 benchmark. The decompositions we obtain do not differ significantly from the state of the art, suggesting that the LMP is a competitive formulation of the Image Decomposition Problem. To demonstrate the generality of the LMP, we apply it also to the Mesh Decomposition Problem posed by the Princeton benchmark, obtaining state-of-the-art decompositions

    A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects

    Full text link
    Recently, Minimum Cost Multicut Formulations have been proposed and proven to be successful in both motion trajectory segmentation and multi-target tracking scenarios. Both tasks benefit from decomposing a graphical model into an optimal number of connected components based on attractive and repulsive pairwise terms. The two tasks are formulated on different levels of granularity and, accordingly, leverage mostly local information for motion segmentation and mostly high-level information for multi-target tracking. In this paper we argue that point trajectories and their local relationships can contribute to the high-level task of multi-target tracking and also argue that high-level cues from object detection and tracking are helpful to solve motion segmentation. We propose a joint graphical model for point trajectories and object detections whose Multicuts are solutions to motion segmentation {\it and} multi-target tracking problems at once. Results on the FBMS59 motion segmentation benchmark as well as on pedestrian tracking sequences from the 2D MOT 2015 benchmark demonstrate the promise of this joint approach

    A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects

    No full text
    Recently, Minimum Cost Multicut Formulations have been proposed and proven to be successful in both motion trajectory segmentation and multi-target tracking scenarios. Both tasks benefit from decomposing a graphical model into an optimal number of connected components based on attractive and repulsive pairwise terms. The two tasks are formulated on different levels of granularity and, accordingly, leverage mostly local information for motion segmentation and mostly high-level information for multi-target tracking. In this paper we argue that point trajectories and their local relationships can contribute to the high-level task of multi-target tracking and also argue that high-level cues from object detection and tracking are helpful to solve motion segmentation. We propose a joint graphical model for point trajectories and object detections whose Multicuts are solutions to motion segmentation {\it and} multi-target tracking problems at once. Results on the FBMS59 motion segmentation benchmark as well as on pedestrian tracking sequences from the 2D MOT 2015 benchmark demonstrate the promise of this joint approach

    A Message Passing Algorithm for the Minimum Cost Multicut Problem

    Get PDF
    We propose a dual decomposition and linear program relaxation of the NP -hard minimum cost multicut problem. Unlike other polyhedral relaxations of the multicut polytope, it is amenable to efficient optimization by message passing. Like other polyhedral elaxations, it can be tightened efficiently by cutting planes. We define an algorithm that alternates between message passing and efficient separation of cycle- and odd-wheel inequalities. This algorithm is more efficient than state-of-the-art algorithms based on linear programming, including algorithms written in the framework of leading commercial software, as we show in experiments with large instances of the problem from applications in computer vision, biomedical image analysis and data mining.Comment: Added acknowledgment

    End-to-end Learning for Graph Decomposition

    Full text link
    We propose a novel end-to-end trainable framework for the graph decomposition problem. The minimum cost multicut problem is first converted to an unconstrained binary cubic formulation where cycle consistency constraints are incorporated into the objective function. The new optimization problem can be viewed as a Conditional Random Field (CRF) in which the random variables are associated with the binary edge labels of the initial graph and the hard constraints are introduced in the CRF as high-order potentials. The parameters of a standard Neural Network and the fully differentiable CRF are optimized in an end-to-end manner. Furthermore, our method utilizes the cycle constraints as meta-supervisory signals during the learning of the deep feature representations by taking the dependencies between the output random variables into account. We present analyses of the end-to-end learned representations, showing the impact of the joint training, on the task of clustering images of MNIST. We also validate the effectiveness of our approach both for the feature learning and the final clustering on the challenging task of real-world multi-person pose estimation
    corecore