
A Message Passing Algorithm for the Minimum Cost Multicut Problem

Paul Swoboda

IST Austria

pswoboda@ist.ac.at

Bjoern Andres

MPI for Informatics

andres@mpi-inf.mpg.de

Abstract

We propose a dual decomposition and linear program

relaxation of the NP-hard minimum cost multicut problem.

Unlike other polyhedral relaxations of the multicut polytope,

it is amenable to efficient optimization by message pass-

ing. Like other polyhedral relaxations, it can be tightened

efficiently by cutting planes. We define an algorithm that

alternates between message passing and efficient separation

of cycle- and odd-wheel inequalities. This algorithm is more

efficient than state-of-the-art algorithms based on linear pro-

gramming, including algorithms written in the framework

of leading commercial software, as we show in experiments

with large instances of the problem from applications in com-

puter vision, biomedical image analysis and data mining.

1. Introduction

Decomposing a graph into meaningful clusters is a fun-

damental primitive in computer vision, biomedical image

analysis and data mining. In settings where no information is

given about the number or size of clusters, and information

is given only about the pairwise similarity or dissimilarity of

nodes, a canonical mathematical abstraction is the minimum

cost multicut (or correlation clustering) problem [17]. The

feasible solutions of this problem, multicuts, relate one-to-

one to the decompositions of the graph. A multicut is the set

of edges that straddle distinct clusters. The cost of a multicut

is the sum of costs attributed to its edges.

In the field of computer vision, the minimum cost multi-

cut problem has been applied in [5, 6, 47, 8] to the task of

unsupervised image segmentation defined by the BSDS data

sets and benchmarks [36] . In the field of biomedical image

analysis, the minimum cost multicut problem has been ap-

plied to an image segmentation task for connectomics [7]. In

the field of data mining, applications include [9, 40, 15, 16].

Also, recently many computer vision problems that use

the multicut problem as a building block have been proposed:

image and mesh segmentation [31], instance-separating se-

mantic segmentation[33], multiple object tracking [44], cell

tracking[26] and articulated human body pose estimation [3].

Moreover, one of the tightest relaxations for the multi-label

Potts model is based on multicuts [30].

As the minimum cost multicut problem is NP-hard [12,

19], even for planar graphs [10] large and complex instances

with millions of edges, especially those for connectomics,

pose a challenge for existing algorithms.

Related Work. Due to the importance of multicuts for

applications, many algorithms for the minimum cost multicut

problem have been proposed. They are grouped below into

three categories: primal feasible local search algorithms,

linear programming algorithms and fusion algorithms.

Primal feasible local search algorithms [42, 38, 23, 21,

22] attempt to improve an initial feasible solution by means

of local transformations from a set that can be indexed or

searched efficiently. Local search algorithms are practical

for large instances, as the cost of all operations is small

compared to the cost of solving the entire problem at once.

On the downside, the feasible solution that is output typically

depends on the initialization. And even if a solution is found,

optimality is not certified, as no lower bound is computed.

Also, the multicut problem can be transformed into a

Markov random field and solved with primal heuristics there,

as done for the “scribbles” dataset in [37, 11].

Linear programming algorithms [28, 29, 32, 39, 46] op-

erate on an outer polyhedral relaxation of the feasible set.

Their output is independent of their initialization and pro-

vides a lower bound. This lower bound can be used directly

inside a branch-and-bound search for certified optimal so-

lutions. Alternatively, the LP relaxation can be tightened

by cutting planes. Several classes of planes are known that

define a facet of the multicut polytope and can be separated

efficiently [17]. On the downside, algorithms for general

LPs that are agnostic to the structure of the multicut problem

scale super-linearly with the size of the instance.

Fusion algorithms attempt to combine feasible solutions

of subproblems obtained by combinatorial or random proce-

dures into successively better multicuts. The fusion process

can either rely on column generation [47], binary quadratic

programming [14] or any algorithm for solving integer

LPs [13]. In particular, [47] provides dual lower bounds

11617

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268224971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1. Decomposition of a

graph into three components

(green). The corresponding

multicut consists of the edges

straddling distinct components

(red).

but is restricted to planar graphs. [14, 13] explore the pri-

mal solution space in a clever way, but do not output dual

information.

Outline. Below, a discussion of preliminaries (Sec. 2) is

followed by the definition of our proposed decomposition

(Sec. 3) and algorithm (Sec. 4) for the minimum cost multi-

cut problem. Our approach combines the efficiency of local

search with the lower bounds of LPs and the subproblems of

fusion, as we show in experiments with large and diverse in-

stances of the problem (Sec. 5). All code and data is available

at http://github.com/pawelswoboda/LP_MP.

2. Preliminaries

2.1. Minimum Cost Multicut Problem

A decomposition (or clustering) of a graph G = (V,E)
is a partition V1 ∪ . . . ∪ Vk of the node set V such that

Vi ∩ Vj = ∅ ∀i 6= j and every cluster Vi, i = 1, . . . , k
is connected. The multicut induced by a decomposition

is the subset of those edges that straddle distinct clusters

(cf. Fig. 1). Such edges are said to be cut. Every multicut

induced by any decomposition of G is called a multicut of

G. We denote by MG the set of all multicuts of G.

Given, for every edge e ∈ E, a cost ce ∈ R of this

edge being cut, the instance of the minimum cost multicut

problem w.r.t. these costs is the optimization problem (1)

whose feasible solutions are all multicuts of G. For any edge

{v, w} = e ∈ E, negative costs θe < 0 favour the nodes v

and w to be in distinct components. Positive costs θe > 0
favour these nodes to lie in the same component.

min
M∈MG

∑

e∈M

θe (1)

This problem is NP-hard [12, 19], even for planar

graphs [10]. Below, we recapitulate its formulation as a bi-

nary LP and then turn to LP relaxations: For any 01-labeling

x ∈ {0, 1}E of the edges of G, the subset x−1(1) of those

edges labeled 1 is a multicut of G if and only if x satisfies

the system (3) of cycle inequalities [17]. Hence, (1) can be

stated equivalently in the form of the binary LP (2)–(4).

min
x∈RE

∑

e∈E

θexe (2)

subject to ∀C ∈ cycles(G) : xe ≤
∑

e′∈C\{e}

xe′ (3)

x ∈ {0, 1}E (4)

u

v1

v2

v3 v4

v5

Figure 2. Odd Wheel

u1

u2

v1

v2

v3 v4

v5

Figure 3. Odd Bicycle Wheel

An LP relaxation is obtained by replacing the integrality

constraints (4) by x ∈ P with P ⊆ [0, 1]E . This results in

an outer relaxation of the multicut polytope, which is the

convex hull of the characteristic functions of all multicuts of

G. The LP relaxation obtained for P := [0, 1]E , i.e., with

only the cycle inequalities, will not in general be tight.

A tighter LP relaxation is obtained by enforing also the

odd wheel inequalities [17]. A k-wheel is a cycle in G with

k nodes all of which are connected to an additional node

u ∈ V that is not in the cycle and is called the center of

the k-wheel (cf. Fig. 2). For any odd number k ∈ N, any k-

wheel of G, the cycle C = (v1v2, . . . , vkv1) and the center

u of the k-wheel, every characteristic function x ∈ {0, 1}E

of a multicut x−1(1) of G satisfies the odd wheel inequality

k
∑

i=1

xvivi+1
−

k
∑

i=1

xuvi
≤

⌊

k
2

⌋

with vk+1 := v1 . (5)

For completeness, we note that other inqualities known

to further tighten the LP relaxation can be included in our

algorithm, e.g., the bicycle inequalities [17] defind on graphs

as in Fig. 3. We, however, do not consider inequalities other

than cycles and odd wheels in the algorithm we propose.

2.2. Integer relaxed pairwise separable LPs

LP relaxations of the multicut problem can in principle be

solved with algorithms for general LPs which are available

in excellent software such as CPlex [2] and Gurobi [25].

However, these algorithms scale super-linearly with the size

of the problem and are hence impractical for large instances.

We define in Sec. 3 an LP relaxation of the multicut

problem in form of an IRPS-LP (Def. 1). IRPS-LPs are a

special case of dual decomposition [24]. In Def. 1, every

i ∈ V defines a subproblem, and every edge ij ∈ E defines

a dependency of subproblems. Def. 1 is more specific in that,

firstly, the subproblems are binary and, secondly, the linear

constraints (9) that describe the dependence of subproblems

are defined by 01-matrices that map 01-vectors to 01-vectors.

IRPS-LPs are amenable to efficient optimization by message

passing in the framework of [43].

Definition 1 (IRPS-LP [43]). Let N ∈ N and let G = (V,E)
be a graph with V = {1, . . . , N}. For every j ∈ V, let

dj ∈ N, let Xj ⊆ {0, 1}dj , and let θj ∈ R
dj . Let Λ :=

conv(X1)×· · ·×conv(XN). For every {j, k} = e ∈ E, let

1618

http://github.com/pawelswoboda/LP_MP

v1

v2

v3 v4

v5

Figure 4. A triangulated

cycle (black) covered

by three triangles (red,

green and blue)

me ∈ N, A(j,k) ∈ {0, 1}me×dj and A(k,j) ∈ {0, 1}me×dk

such that

∀x ∈ Xj : A(j,k)x ∈ {0, 1}me (6)

∀x ∈ Xk : A(k,j)x ∈ {0, 1}me (7)

Then, the LP written below is called integer relaxed pairwise

separable w.r.t. the graph G.

min
µ∈Λ

∑

j∈V

dj
∑

k=1

θjkµjk (8)

subject to ∀{j, k} ∈ E : A(j,k)µj = A(k,j)µk (9)

3. Dual Decomposition

A straight-forward decomposition of the minimum cost

multicut problem (2)–(4) in the form of an IRPS-LP (Def. 1)

consists of one subproblem for every edge, one subproblem

for every cycle inequality and one subproblem for every odd-

wheel inequality. From a computational perspective, it is

however advantageous to triangulate cycles and odd wheels,

and to consider the resulting smaller subproblems. Below,

three classes of subproblems are defined rigorously.

Edge Subproblems. For every edge e ∈ E, we consider

a subproblem e ∈ V with the feasible set Xe := {0, 1},

encoding whether edge e is cut (1) or uncut (0).

Triangle Subproblems For every cycle C =
{v1v2, v2v3, . . . vkv1} ⊆ E, we consider the trian-

gles v1v2v3 to vk−1vkv1, as depicted in Fig. 4. If some edge

uv of a triangle Ci is not in E, we add it to E with cost

zero, i.e., we triangulate the cycle in G. For each triangle

uvw, we introduce a subproblem uvw ∈ V whose feasible

set consists of the five feasible multicuts of the triangle, i.e.,

Xuvw := {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

Lollipop Subproblems For every odd number k ∈ N and

every k-wheel of G consisting of a center node u and cycle

nodes v1, . . . , vk, we introduce two classes of subproblems.

For the 5-wheel depicted in Fig. 2, these subproblems are

depicted in Fig. 5.

For every j ∈ {2, . . . , k}, we add the triangle subproblem

uv1vj ∈ V, as described in the previous section.

For every j ∈ {2, . . . , k − 1}, we add the subproblem

uvjvj+1, v1 ∈ V for the lollipop graph that consists of the

triangle uvjvj+1 and the additional edge uv1. The feasible

set Xuvw,s of a lollipop graph uvw, s has ten elements, five

feasible multicuts of the triangle times two for accounting

for the additional edge.

3.1. Dependencies

The dependency between triangle subproblems and edge

subproblems are expressed below in the form of a linear

system. It fits into the form (9) of an IRPS-LP.

µuv = µuvw(1, 1, 0) + µuvw(1, 0, 1) + µuvw(1, 1, 1)

µuw = µuvw(1, 1, 0) + µuvw(0, 1, 1) + µuvw(1, 1, 1)

µvw = µuvw(1, 0, 1) + µuvw(0, 1, 1) + µuvw(1, 1, 1)

The dependency between a lollipop subproblem with edge

set L = {e1, e2, e3, e4} and a triangle subproblem with edge

set T = {e′1, e
′
2, e

′
3} is stated below as a linear system with

sums over edges not shared between L and T . This linear

system has the form (9) of an IRPS-LP.

∀xL∩T :
∑

xL\T

µL(xL∩T , xL\T) =
∑

xT\L

µT (xT∩L, xT\C)

3.2. Remarks

Remark 1. The triangulation of cycles can be understood

as the constructing of a junction tree [45] in such a way that

the minimum cost multicut problem over the cycle can be

solved by dynamic programming. The triangulation of cycles

can also be understood as a tightening of an outer polyhedral

relaxation of the multicut polytope: A cycle inequality (3)

defines a facet of the multicut polytope if and only if the

cycle is chordless [17]. By triangulating a cycle, we obtain

a set of minimal chordless cycles (triangles) whose cycle

inequalities together imply that of the entire cycle.

Remark 2. Technically, we would not have needed to

include triangle subproblems for odd wheels. Instead, we

could have introduced dependencies between lollipops di-

rectly in the form of an IRPS-LP. However, by introducing

triangle factors in addition and by expressing dependencies

between lollipops and triangles, we couple lollipop factors

from different odd wheels more tightly whenever they share

the same triangles.

4. Algorithm

We now define an algorithm for the minimum cost mul-

ticut problem (2)–(4). This algorithm takes an instance of

the problem as input and alternates for a fixed number of

iterations between two main procedures.

The first procedure, defined in Sec. 4.1, solves an in-

stance of a dual of the IRPS-LP relaxation defined in the

1619

v1

v2

u

v1

v2

v3

u

v1

v3

u

v1

v3 v4

u

v1

v4

u

v1

v4

v5

u

v1

v5

u

Figure 5. Triangulation of the odd wheel from Figure 2. It con-

sists of the triangles uv1v2, uv1v3, uv1v4, uv1v5 and the lollipop

graphs (uv2v3, v1), (uv3v4, v1), (uv4v5, v1).

previous section. The output consists in a lower bound and

a re-parameterization of the instance of the minimum cost

multicut problem given as input. The second procedure tight-

ens the IRPS-LP relaxation by adding subproblems for cycle

inequalities (3) and odd wheel inequalities (5) violated by

the current solution. Separation procedures for finding such

violated inequalities, more efficiently than in cutting plane

algorithms for the primal [28, 29, 32], are defined in Sec. 4.2.

To find feasible solutions of the instance of the min-

imum cost multicut problem given as input, we apply a

state-of-the-art local search algorithm on the computed re-

parameterizations, a procedure commonly referred to as

rounding (Sec. 4.3).

4.1. Message Passing

Like other algorithms based on dual decomposition, the

algorithm we propose does not solve the IRPS-LP directly,

in the primal domain, but optimizes a dual of (8)–(9). Specif-

ically, it operates on a space of re-parametrizations of the

problem defined below: For any two dependent subproblems

jk ∈ E, we can change the costs θj and θk by an arbitrary

vector ∆ according to the update rules

θ′j := θj +A⊤
(j,k)∆ (10)

θ′k := θk −A⊤
(k,j)∆ . (11)

We refer to any update of θ according to the rules (10)–(11)

as message passing. Message passing does not change the

cost of any primal feasible solution, as

〈θ′j , µj〉+ 〈θ′k, µk〉

= 〈θj +A⊤
(j,k)∆,µj〉+ 〈θk −A⊤

(k,j)∆,µk〉 (12)

= 〈θj , µj〉+ 〈θk, µk〉+ 〈∆,A(j,k)µj −A(k,j)µk〉 (13)

(9)
= 〈θj , µj〉+ 〈θk, µk〉 . (14)

Message passing does, however, change the dual lower

bound L(θ) to (8) given by

L(θ) :=
∑

j∈V

min
x∈Xi

〈θj , xj〉 . (15)

Algorithm 1: Message passing for the multicut problem

Data: {i1, . . . , ik} = V, (θi)i∈V, (A(j,i), A(i,j))ij∈E

for i = i1, . . . , ik do

if i is an edge subproblem uv: then
Receive messages:

for w ∈ V : uvw ∈ T do
δ := minxuw,xvw

θuvw(1, xuw, xvw)
−minxuw,xvw

θuvw(0, xuw, xvw)
θuv += δ

∀xuw, xvw : θuvw(1, xuw, xvw) -= δ

end

Send messages:

δ := |{w ∈ V : uvw ∈ T}|−1θuv
θuv := 0
for w ∈ V : uvw ∈ T do

∀xuw, xvw : θuvw(1, xuw, xvw)+= δ

end

end

if i is a triangle subproblem uvw with edges C:

then
Receive messages:

for lollipops L with L ∩ C 6= ∅ do
δ(xL∩C) := minxL\C

θL(xL∩C , xL\C)
θC(xL∩C , xC\L)+= δ(xL∩C)
θL(xL∩C , xL\C)+= δ(xL∩C

end

Send messages:

α := |{L a lollipop : L ∩ C 6= ∅}|
for lollipops L with L ∩ C 6= ∅ do

δL(xL∩C) :=
minxC\L

θuvw(xL∩C , xC\L)

θL(xL∩C , xL\C)+= 1
1+α

δL(xL∩C)

end

for lollipops L with L ∩ C 6= ∅ do

θC(xL∩C , xC\L)+= 1
1+α

δL(xL∩C)

end

end

end

The maximum of L(θ) over all costs obtainable by mes-

sage passing is equal to the minimum of (8), by linear pro-

gramming duality. We seek to alter the costs θ by means

of message passing so as to maximize the lower bound

L(θ). For the general IRPS-LP, a framework of algorithms

to achieve this goal is defined in [43]. For the minimum cost

multicut problem, we define and implement Alg. 1 within

this framework. The specifics of this algorithm for the min-

imum cost multicut problem are discussed below. General

properties of message passing for IRPS-LP s are discussed

in [43].

1620

Factor Order. Alg. 1 iterates through all edge and triangle

subproblems. The order is specified as follows: We assume

that a node order is given. With respect to this node order,

edges uv ∈ E are ordered lexicographically. For every

triangle and its edge set C = {e1, e2, e3} ⊆ E with e1 <

e2 < e3, we define the ordering constraint e1 < C < e3.

For every lollipop graph and its edge set L = {e1, e2, e3, e4}
with e1 < e2 < e3 < e4, we define the ordering constraint

e1 < L < e4. The strict partial order defined by these

constraints is extended to a total order by topological sorting.

Message Passing Description. When an edge subprob-

lem uv ∈ E is visited, Alg. 1 receives messages from all

dependent triangle subproblems. Having received a message

from triangle uvw ∈ E, the costs θuvw satisfy the condition

min
xuw,xvw

θuvw(0, xuw, xvw) = min
xuw,xvw

θuvw(1, xuw, xvw) .

In other words, the cost of the triangle factor θuvw has no

preference for either xuv = 0 or xuv = 1. Sending messages

from θuv is analoguous: Having sent messages from uv, we

have θuv = 0, i.e., there is again no preference for either

xuv = 0 or xuv = 1.

When we visit a triangle subproblem uvw, we do the

analogous with all dependent lollipop subproblems: Once

messages have been received, lollipop subproblems have no

preference for incident edges. Once messages have been

sent, this holds true for the triangle subproblems.

Once Alg. 1 has visited all subproblems and terminates,

we reverse the order of subproblems and invoke Alg. 1 again.

This double call of Alg. 1 is repeated for a fixed number of

iterations that is a parameter of our algorithm.

4.2. Separation

Applying Alg. 1 with all cycles and all odd wheels of a

graph G is impractical, as the number of triangles for cycle

inequalities (3) is cubic, and the number of lollipop graphs

for odd wheels (5) is quartic in |E|. In order to arrive at

a practical algorithm, we take a cutting plane approach in

which we separate and add subproblems for violated cycle

and odd wheel inequalities periodically. Initially, V contains

only one element for every edge e ∈ E, and E is empty.

In the primal, given some fractional x ∈ [0, 1]E , it is com-

mon to look for maximally violated inequalities (3) and (5).

This is possible in polynomial time via shortest path compu-

tations [17, 20]. In our dual formulation, we have no primal

solution x to search for violated inequalities. Here, a suitable

criterion is to consider those additional triangle or lollipop

subproblems that necessarily increase the dual lower bound

L(θ) by some constant ǫ > 0. Among these subproblems,

we choose those for which the increase is maximal and add

them to the graph (V,E). A similar dual cutting plane ap-

proach has shown to be useful for graphical models in [41].

Algorithm 2: Separation of cycle inequalities (3)

Data: G = (V,E), ǫ ≥ 0, θe ∈ R

l := 1
for uv ∈ E do

if θuv ≥ ǫ then
union(u, v)

end

end

for uv ∈ E do

if θuv ≤ −ǫ and find(u) = find(v) then
Cl := shortest-path(u, v, ǫ)
l := l + 1

end

end

As we discuss below, separation is more efficient in the dual

than in the primal.

4.2.1 Cycle Inequalities

We characterize those cycles whose subproblem increases

the dual lower bound L(θ) by at least ǫ.

Proposition 1. Let C = {e1, . . . , ek} be a cycle with θe1 ≤
−ǫ and θel ≤ ǫ for l > 1. Then, the dual lower bound L(θ)
can be increased by ǫ by including a triangulation of C.

In order to find such cycles, we apply Alg. 2. This algo-

rithm first records in a disjoint set data structure 1 whether

distinct nodes u, v ∈ V are connected via edges with weight

≥ ǫ. Specifically, the disjoint-set operation union(u, v) in

Algorithm 2 joins the connected components of u and v.

Then, we visit all edges uv ∈ E with θuv ≤ −ǫ. Querying

the disjoint-set datastructure via find(u) = find(v) reveals

whether u and v are connected via a path with edges of

weight ≥ ǫ. If so we search for a shortest one with a breadth

first search.

In the primal, finding a maximally violated cycle inequal-

ity (3) is more expensive, requiring, for every edge uv ∈ E,

the search for a uv-path with minimum cost x [17] by, e.g.,

Dijkstra’s algorithm.

4.2.2 Odd Wheel Inequalities

We characterize those odd wheels whose lollipop subprob-

lem increases the lower bound L(θ) by at least ǫ.

Proposition 2. Let O an odd wheel with center node u and

cycle nodes v1, . . . , vk. Adding the lollipop subproblems for

O increases L(θ) by at least ǫ if the costs θuvivi+1
of each

triangle uvivi+1 are such that the minimal cost of any edge

1https://en.wikipedia.org/wiki/Disjoint-set_

data_structure

1621

https://en.wikipedia.org/wiki/Disjoint-set_data_structure
https://en.wikipedia.org/wiki/Disjoint-set_data_structure

Algorithm 3: Separation of odd wheel inequalities (5)

Data: Triangles uvw, costs θuvw, ǫ ≥ 0
l := 0
for u ∈ V do

G′ = (V ′, E′), V ′ = ∅, E′ = ∅, Connect = ∅

for triangles uvw do

if (16) holds true then
V ′ := V ′ ∪ {v, v′, w, w′}
E′ := E′ ∪ {vw′, v′w}
union(v, v′)
union(w,w′)

end

end

for v ∈ V ′ ∩ V do

if find(u) = find(v) then
P ′ := shortest-pathG′(u, v, ǫ)
C = {uv ∈ E |uv′ ∈ P ′ ∨ u′v ∈ P ′}
if C is a simple cycle in G then

Ol := {u, P}
l := l + 1

end

end

end

end

labeling of the triangle cutting precisely one edge incident to

u is smaller by ǫ than the minimal cost of any edge labeling

of the triangle cutting 0 or 2 edges incident to u. That is:

min
{x: xuvi

+xuvi+1
=1}

θuvivi+1
(x) + ǫ

≤ min
{x: xuvi

+xuvi+1
6=1}

θuvivi+1
(x) . (16)

In order to find such odd wheels, we apply Alg. 3. This

algorithm builds on our observation that we need to look

only at triangles whose subproblem has already been added.

Hence, Alg. 3 visits each node u ∈ V and builds a bipartite

graph G′ = (V ′, E′) as follows. (An example is depicted in

Fig. 6 for a 5-wheel and (16) holding true for all triangles of

the wheel.) For each triangle uvk such that (16) holds true,

four nodes v, v′, k, k′ ∈ V ′ are added to V ′, two copies of

each original node. These are joined by edges uv′, u′v ∈ E′.

If a path from u to u′ exists in G′, we have found a violated

odd wheel inequality (5). As G′ is bipartite, a uu′-path in

G′ corresponds to an odd cycle in G. As before, the search

for paths is accelerated by connectivity tests via a disjoint

set data structure and is carried out by breadth first search.

In the primal, finding a maximally violated odd wheel

inequality (5) entails the same construction of the bipartite

graph G′ for each node u ∈ V [20]. However, a shortest

path search w.r.t. edge costs 1
2 −xvw + 1

2 (xuv +xuw) needs

to be carried out by Dijkstra’s algorithm instead of breadth

v1

v′1

v2

v′2

v3

v′3

v4

v′4

v5

v′5

Figure 6. The bipartite graph G′ constructed by Alg. 3 for separat-

ing the 5-wheel depicted in Fig. 2.

first search. Further complication in the primal comes from

the fact that a separation algorithm needs to visit all v ∈ V ′

in order to compute the shortest vv′-path in G′.

4.3. Rounding

Our message passing Alg. 1 improves a dual lower bound

on (2), but does not provide a feasible solution of (2)–(4). In

order to obtain a feasible multicut, we apply a local search

algorithm defined in [31], namely greedy additive edge con-

traction (GAEC), followed by Kernighan-Lin with joins

(KLj). GAEC computes a multicut by greedily contracting

those edges for which the join decreases the cost maximally.

It stops as soon as no contraction of any edge strictly de-

creases the cost. KLj attempts to improve a given multicut

recursively by applying transformations from three classes:

(1) moving nodes between two components, (2) moving

nodes from a given component to a newly forming one or

(3) joining two components. GAEC and KLj are local search

algorithms that output a feasible multicut that need not be

optimal.

We apply GAEC and KLj not only to the instance of the

minimum cost multicut problem given as input but also to

the re-parameterization of this instance output by Alg. 1.

The rationale for doing so comes from LP duality:

Proposition 3. Assume θ maximizes the dual lower bound

L(θ) and the relaxation is tight, i.e.

L(θ) = min
{x∈{0,1}E | x−1(1)∈MG}

〈θ, x〉 . (17)

Moreover, let x̂ ∈ {0, 1}E such that x̂−1(1) is an optimal

multicut of G. Then,

θe

{

≤ 0 if x̂e = 1

≥ 0, if x̂e = 0
(18)

Having run Alg. 1 for a while, we expect θ to fulfill the

sign condition of Prop. 3 approximately. Therefore, the sign

of θe will be a good hint of the edge e being cut. Thus,

informally, we expect local search algorithms operating on

the re-parameterized instance of the problem to yield better

feasible multicuts than local search algorithms operating on

the given instance.

For MAP-inference in Markov random fields it is

known [34, 35] that primal rounding can be improved greatly

when applied on costs re-parameterized by message passing.

1622

5. Experiments

Solvers We compare against several state of the art algo-

rithms.

• The algorithm MC-ILP [29] is an efficient implementa-

tion of a cutting plane algorithm solving (2) using cycle

inequalities (3) in a cutting plane fashion. CPlex [2] is

used to solve the underlying ILP problems. The inte-

grality conditions in (4) are directly given to the solver.

According to [29] this is beneficial due to the excellent

branch and cut capabilities of CPlex [2].

• Cut, Glue & Cut [14], abbreviated as CGC, is a move

making algorithm using planar max-cut subproblems to

improve multicuts.

• Fusion moves for correlation clustering [13], abbrevi-

ated as CC-Fusion, fuses multicuts generated by various

proposal generator with the help of auxiliary multicut

problems, solved in turn by MC-ILP. We use random-

ized hierarchical clustering and randomized watersheds as

proposal generators, identified by the suffixes-RHC and

-RWS. We use parameters for the proposal generators as

recommended by the authors [13].

• MP-C denotes Algorithm 1 when we only separate for

cycle inequalities (3) by Algorithm 2, while MP-COW

denotes that we additionally separate for odd wheel in-

equalities (5) by Algorithm 3. We search for triangles and

lollipops to add every 10th iteration.

• KL is the GAEC and KLj implementation [31] described

in Section 4.3 for computing multicuts. We let KL run

every 100th iteration of MP-C and MP-COW on the

current reparametrized edge costs.

MC-ILP, CGC and CC-Fusion are implemented as part

of the OpenGM suite [27]. Only MC-ILP and our solvers

MP-C and MP-COW generate dual lower bounds. CGC

outputs the trivial dual lower bound
∑

e∈E
min(0, θe), with

edge weights θe as given by the problem. It has been shown

that CGC, CC-Fusion and KL outperform other primal

heuristics [13], hence we do not compare to any other heuris-

tic algorithm. Also MC-ILP outperforms the LP-based

solver [39], due to the latter using the slower COIN-OR

CLP [18] solver internally, hence we exclude it from the

comparison as well.

All solvers were run on a laptop computer with a i5-5200

CPU with 2.2 GHz and 8GB RAM.

Datasets We compare on 8 datasets of diverse origin.

• image-seg consists of images of the Berkeley segmen-

tation dataset [36], presegmented with superpixels, for

which pairwise affinity values have been computed as

in [6].

• The knott-3d-{150|300|450|550} datasets

come from a neural circuit reconstruction problem of

tissue [7] with [150]3, [300]3, [450]3 and [900]3 voxels.

The data is presegmented into supervoxels.

• modularity clustering aims to cluster a social

network into subgroups based on affinity between indi-

vidual persons.

• CREMI-{small|large} datasets [4] were con-

structed as part of the CREMI [1] challenge, which aims

to reconstruct neural circuits of the adult fly brain. The

images are taken by electron microscopy. The -small

instances are cropped versions of the -large ones. To

our knowledge, the CREMI-large dataset contain the

largest multicut problems approached with LP-based

methods.

The image-seg, knott-3d and modularity

clustering datasets were taken from the OpenGM

benchmark [27], while the CREMI datasets were kindly

provided by their authors and are not yet published.

The dataset consists of 100, 8, 8, 8, 8, 6, 3 and 3 instances,

in total 144. Dataset details can be found in Table 1.

Evaluation We have set a timelimit of one hour for all

algorithms, but exit early when the primal/dual gap vanishes

or no progress can be observed anymore. In Table 1 results

averaged over all instances in specific datasets are reported.

In Figure 7 primal solution energy and dual lower bound

(where applicable) averaged over all instances in specific

datasets are drawn against runtime.

As can be seen from Table 1, the primal rounding heuris-

tics, while faster, never give better primal energies than

the LP-based approaches MC-ILP, MP-C and MP-COW.

The branch-and-cut solver MC-ILP outperforms our algo-

rithms MP-C and MP-COW on the small image-seg,

knott-3d-150 and knott-3d-300 instances and has

higher lower bounds for the CREMI-small problems.

Whenever MC-ILP beats our algorithms, it is by a very

small margin though. On the other hand, MC-ILP is

significantly slower on all problems and does not even

finish a single iteration on the large CREMI-large in-

stances. On the larger knott-3d-450, knott-3d-550

and CREMI-large datasets, our algorithms outperform

MC-ILP markedly. As can be seen from Fig. 7 our dual

lower and upper primal bounds usually converge faster than

MC-ILP’s.

We conjecture that MP-C and MP-COW inside a branch-

and-bound solver can significantly extend the reach of exact

methods for the multicut problem and close the gap to MC-

ILP on the smaller datasets. Also, unlike MC-ILP, our

reparametrized costs can be used to improve heuristic primal

algorithms. An example of this can be seen in Fig. 8, where

reparametrized costs improve KL’s solutions.

1623

Dataset / Algorithm MP-C MP-COW CGC MC-ILP CC-Fusion-RWS CC-Fusion-RHC

image-seg

#I 100 UB 4436.25 4435.94 4600.81 4434.91 4447.06 4436.33

#V ≤ 3764 LB 4434.17 4434.44 4129.70 4434.91 ‡ ‡
#E ≤ 10970 time(s) 9.05 21.85 0.14 11.89 1.19 1.30

modularity

clustering

#I 6 UB -0.49 -0.49 -0.30 -0.44 0.00 -0.44

#V ≤ 115 LB -0.54 -0.52 -0.79 -0.52 ‡ ‡
#E ≤ 6555 time(s) 87.02 1071.17 0.15 2911.10 0.00 17.78

knott-3d-150

#I 8 UB -4571.21 -4571.65 -4220.66 -4571.69 -4534.76 -4552.51

#V ≤ 972 LB -4572.21 -4571.72 -4855.18 -4571.69 ‡ ‡
#E ≤ 5656 time(s) 0.75 0.81 0.04 2.37 0.26 0.53

knott-3d-300

#I 8 UB -27299.78 -27301.97 -24864.59 -27302.78 -27242.03 -27247.29

#V ≤ 5896 LB -27304.96 -27303.16 -28901.58 -27302.78 ‡ ‡
#E ≤ 36221 time(s) 19.33 34.27 2.73 227.33 2.96 8.15

knott-3d-450

#I 8 UB -78466.04 -78472.24 -70865.27 -78391.32 -78386.14 -78381.06

#V ≤ 17074 LB -78485.04 -78481.01 -83272.85 -78522.51 ‡ ‡
#E ≤ 107060 time(s) 385.14 598.60 31.56 1840.47 16.52 119.23

knott-3d-550

#I 8 UB -136517.72 -136523.39 -123841.47 -135766.90 -136464.05 -136395.89

#V ≤ 31249 LB -136570.96 -136564.10 -144703.64 -136755.36 ‡ ‡
#E ≤ 195271 time(s) 1804.28 2218.64 102.42 3683.22 72.94 594.60

CREMI-small

#I 3 UB -213189.20 -213193.09 -194616.60 -209594.49 -168905.17 -213117.84

#V ≤ 35523 LB -213212.43 -213209.67 -215473.98 -213208.94 ‡ ‡
#E ≤ 235966 time(s) 915.70 1238.59 319.01 2775.81 3543.61 2555.48

CREMI-large

#I 3 UB -3887113.00 -3887078.88 † † -3772597.37 -3619190.20

#V ≤ 623435 LB -3888461.86 -3888482.06 † † ‡ ‡
#E ≤ 4172314 time(s) 4088.51 4093.91 † † 5978.08 23139.40

Table 1. Primal solution energy (UB)/dual lower bound (LB)/runtime in seconds averaged over all instances of datasets. #I is number of

instances in dataset, #V and #E are number of vertices and edges in multicut instances. † means method did not finish after one hour. ‡

means method does not output dual lower bound. Bold numbers denote lowest primal solution energy, highest lower bound, fastest runtime.

10−2 10−1 100 101

4,420

4,440

4,460

4,480

4,500

runtime(s)
image-seg

en
er
gy

MP-C
MP-COW

CGC
MC-ILP

CC-Fusion-RWS
CC-Fusion-RHC

10−2 10−1 100 101 102 103

−0.5

−0.4

−0.3

runtime(s)
modularity clustering

en
er
gy

10−2 10−1 100
−5,000

−4,800

−4,600

−4,400

−4,200

−4,000

runtime(s)
knott-3d-150

en
er
gy

10−1 100 101 102
−2.75

−2.74

−2.73

−2.72

−2.71

−2.7
·104

runtime(s)
knott-3d-300

en
er
gy

10−1 100 101 102

−8

−7.8

−7.6

·104

runtime(s)
knott-3d-450

en
er
gy

100 101 102
−1.45

−1.4

−1.35

−1.3
·105

runtime(s)
knott-3d-550

en
er
gy

101 102

−2.14

−2.12

−2.1

−2.08

−2.06

·105

runtime(s)
CREMI-small

en
er
gy

101 102 103

−4

−3.8

−3.6

−3.4

−3.2

−3
·106

runtime(s)
CREMI-large

en
er
gy

Figure 7. Averaged runtime plots for image-seg, modularity clustering, knott-3d-150, knott-3d-300,

knott-3d-450, knott-3d-550, CREMI-small and CREMI-large datasets. Continuous lines denote dual lower bounds and

dashed ones primal energies. Values are averaged over all instances of the dataset. The x-axis is logarithmic.

10−2 10−1 100 101
−3.45

−3.4

−3.35

−3.3

−3.25
·104

runtime (s)

en
er
gy

MP-C
MP-COW

CGC
MC-ILP

CC-Fusion-RWS
CC-Fusion-RHC

Figure 8. Instance

gm_knott_3d_072

from dataset

knott-3d-300 where

reparametrized costs

improve KL’s solutions.

6. Acknowledgments

The authors would like to thank Vladimir Kolmogorov for

helpful discussions and gratefully acknowledge Fred Ham-

precht’s and Thorsten Beier’s help in comparing OpenGM’s

multicut solvers. This work is partially funded by the Eu-

ropean Research Council under the European Unions Sev-

enth Framework Programme (FP7/2007-2013)/ERC grant

agreement no 616160. We thank anonymous reviewers for

pointing out the references [37, 11].

1624

References

[1] CREMI MICCAI Challenge on circuit reconstruction from

Electron Microscopy Images. https://cremi.org.

[2] IBM ILOG CPLEX Optimizer. http://www-01.ibm.

com/software/integration/optimization/

cplex-optimizer/.

[3] DeepCut: Joint Subset Partition and Labeling for Multi Per-

son Pose Estimation., June 2016.

[4] Multicut brings automated neurite segmentation closer to

human performance. Nature Methods, 14:101–102, 2017.

[5] A. Alush and J. Goldberger. Break and conquer: Efficient cor-

relation clustering for image segmentation. In E. R. Hancock

and M. Pelillo, editors, SIMBAD, volume 7953 of Lecture

Notes in Computer Science, pages 134–147. Springer, 2013.

[6] B. Andres, J. H. Kappes, T. Beier, U. Köthe, and F. A. Ham-

precht. Probabilistic image segmentation with closedness

constraints. In D. N. Metaxas, L. Quan, A. Sanfeliu, and

L. J. V. Gool, editors, ICCV, pages 2611–2618. IEEE Com-

puter Society, 2011.

[7] B. Andres, T. Kröger, K. L. Briggman, W. Denk, N. Korogod,

G. Knott, U. Köthe, and F. A. Hamprecht. Globally opti-

mal closed-surface segmentation for connectomics. In A. W.

Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid,

editors, ECCV (3), volume 7574 of Lecture Notes in Com-

puter Science, pages 778–791. Springer, 2012.

[8] B. Andres, J. Yarkony, B. S. Manjunath, S. Kirchhoff,

E. Turetken, C. C. Fowlkes, and H. Pfister. Segmenting pla-

nar superpixel adjacency graphs w.r.t. non-planar superpixel

affinity graphs. Energy Minimization Methods in Computer

Vision and Pattern Recognition (EMMCVPR), 2013.

[9] A. Arasu, C. Ré, and D. Suciu. Large-scale deduplication with

constraints using dedupalog. In Y. E. Ioannidis, D. L. Lee,

and R. T. Ng, editors, ICDE, pages 952–963. IEEE Computer

Society, 2009.

[10] Y. Bachrach, P. Kohli, V. Kolmogorov, and M. Zadimoghad-

dam. Optimal coalition structure generation in cooperative

graph games. In Proceedings of the Twenty-Seventh AAAI

Conference on Artificial Intelligence, July 14-18, 2013, Belle-

vue, Washington, USA., 2013.

[11] S. Bagon and M. Galun. A multiscale framework for chal-

lenging discrete optimization. In NIPS, 2012.

[12] N. Bansal, A. Blum, and S. Chawla. Correlation clustering.

Machine Learning, 56(1):89–113, 2004.

[13] T. Beier, F. A. Hamprecht, and J. H. Kappes. Fusion moves

for correlation clustering. In CVPR, pages 3507–3516. IEEE

Computer Society, 2015.

[14] T. Beier, T. Kröger, J. H. Kappes, U. Köthe, and F. A. Ham-

precht. Cut, glue & cut: A fast, approximate solver for

multicut partitioning. In CVPR. Proceedings, 2014.

[15] Y. Chen, S. Sanghavi, and H. Xu. Clustering sparse graphs.

In P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou,

and K. Q. Weinberger, editors, NIPS, pages 2213–2221, 2012.

[16] F. Chierichetti, N. Dalvi, and R. Kumar. Correlation clustering

in mapreduce. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, KDD ’14, pages 641–650, New York, NY, USA,

2014. ACM.

[17] S. Chopra and M. R. Rao. The partition problem. Mathemati-

cal Programming, 59(1):87–115, 1993.

[18] COIN-OR CLP, 2016. http://www.coin-or.org/

projects/Clp.xml.

[19] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Cor-

relation clustering in general weighted graphs. Theor. Comput.

Sci., 361(2):172–187, Sept. 2006.

[20] M. M. Deza and M. Laurent. Geometry of Cuts and Met-

rics. Springer Publishing Company, Incorporated, 1st edition,

2009.

[21] M. Elsner and E. Charniak. You talking to me? a corpus and

algorithm for conversation disentanglement. In K. McKeown,

J. D. Moore, S. Teufel, J. Allan, and S. Furui, editors, ACL,

pages 834–842. The Association for Computer Linguistics,

2008.

[22] M. Elsner and W. Schudy. Bounding and comparing methods

for correlation clustering beyond ILP. In Proceedings of

the Workshop on Integer Linear Programming for Natural

Langauge Processing, ILP ’09, pages 19–27, Stroudsburg,

PA, USA, 2009. Association for Computational Linguistics.

[23] A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggrega-

tion. ACM Trans. Knowl. Discov. Data, 1(1):4, 2007.

[24] M. Guignard and S. Kim. Lagrangean decomposition for in-

teger programming: theory and applications. Revue française

d’automatique, d’informatique et de recherche opérationnelle.

Recherche opérationnelle, 21(4):307–323, 1987.

[25] Gurobi Optimization, Inc., 2015. http://www.gurobi.

com.

[26] F. Jug, E. Levinkov, C. Blasse, E. W. Myers, B. Andres, un-

defined, undefined, undefined, and undefined. Moral lineage

tracing. 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 00:5926–5935, 2016.

[27] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr,

S. Nowozin, D. Batra, S. Kim, B. X. Kausler, T. Kröger,

J. Lellmann, N. Komodakis, B. Savchynskyy, and C. Rother.

A comparative study of modern inference techniques for struc-

tured discrete energy minimization problems. International

Journal of Computer Vision, 115(2):155–184, 2015.

[28] J. H. Kappes, M. Speth, B. Andres, G. Reinelt, and C. Schnörr.

Globally optimal image partitioning by multicuts. In EMM-

CVPR. Springer, Springer, 2011.

[29] J. H. Kappes, M. Speth, G. Reinelt, and C. Schnörr. Higher-

order segmentation via multicuts. CoRR, abs/1305.6387,

2013.

[30] J. H. Kappes, M. Speth, G. Reinelt, and C. Schnörr. Higher-

order segmentation via multicuts. Computer Vision and Image

Understanding, 143:104–119, 2016.

[31] M. Keuper, E. Levinkov, N. Bonneel, G. Lavoué, T. Brox,

and B. Andres. Efficient decomposition of image and mesh

graphs by lifted multicuts. In ICCV, 2015.

[32] S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo. Higher-order

correlation clustering for image segmentation. In J. Shawe-

Taylor, R. S. Zemel, P. L. Bartlett, F. C. N. Pereira, and K. Q.

Weinberger, editors, NIPS, pages 1530–1538, 2011.

[33] A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and

C. Rother. InstanceCut: from edges to instances with Multi-

Cut, 2016.

1625

https://cremi.org
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.coin-or.org/projects/Clp.xml
http://www.coin-or.org/projects/Clp.xml
http://www.gurobi.com
http://www.gurobi.com

[34] V. Kolmogorov. Convergent tree-reweighted message passing

for energy minimization. IEEE Trans. Pattern Anal. Mach.

Intell., 28(10):1568–1583, 2006.

[35] V. Kolmogorov. A new look at reweighted message pass-

ing. IEEE Trans. Pattern Anal. Mach. Intell., 37(5):919–930,

2015.

[36] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecological

statistics. In Computer Vision, 2001. ICCV 2001. Proceedings.

Eighth IEEE International Conference on, volume 2, pages

416–423 vol.2, 2001.

[37] O. Meir, M. Galun, S. Yagev, R. Basri, I. Yavneh, undefined,

undefined, undefined, and undefined. A multiscale variable-

grouping framework for mrf energy minimization. volume 00,

pages 1805–1813, Los Alamitos, CA, USA, 2015. IEEE Com-

puter Society.

[38] V. Ng and C. Cardie. Improving machine learning approaches

to coreference resolution. Proceedings of the 40th Annual

Meeting on Association for Computational Linguistics - ACL

’02, (July):104, 2001.

[39] S. Nowozin and S. Jegelka. Solution stability in linear pro-

gramming relaxations: graph partitioning and unsupervised

learning. In A. P. Danyluk, L. Bottou, and M. L. Littman,

editors, ICML, volume 382 of ACM International Conference

Proceeding Series, pages 769–776. ACM, 2009.

[40] E. Sadikov, J. Madhavan, L. Wang, and A. Halevy. Cluster-

ing query refinements by user intent. In World Wide Web

Conference (WWW). ACM Press, April 2010.

[41] D. Sontag, D. K. Choe, and Y. Li. Efficiently searching for

frustrated cycles in MAP inference. In UAI, pages 795–804.

AUAI Press, 2012.

[42] W. M. Soon, H. T. Ng, and D. C. Y. Lim. A machine learning

approach to coreference resolution of noun phrases. Compu-

tational Linguistics, 27(4):521–544, 2001.

[43] P. Swoboda, J. Kuske, and B. Savchynskyy. A dual ascent

framework for Lagrangean decomposition of combinatorial

problems. In CVPR, 2017.

[44] S. Tang, B. Andres, M. Andriluka, and B. Schiele. Subgraph

decomposition for multi-object tracking. In Computer Vision

and Pattern Recognition (CVPR), June 2015.

[45] M. J. Wainwright and M. I. Jordan. Graphical models, expo-

nential families, and variational inference. Foundations and

Trends in Machine Learning, 1(1-2):1–305, 2008.

[46] J. Yarkony, T. Beier, P. Baldi, and F. A. Hamprecht. Paral-

lel multicut segmentation via dual decomposition. In New

Frontiers in Mining Complex Patterns - Third International

Workshop, NFMCP 2014, Held in Conjunction with ECML-

PKDD 2014, Nancy, France, September 19, 2014, Revised

Selected Papers, pages 56–68, 2014.

[47] J. Yarkony, A. Ihler, and C. C. Fowlkes. Fast Planar Cor-

relation Clustering for Image Segmentation, pages 568–581.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

1626

