12 research outputs found

    Uncertainty-aware camera pose estimation from points and lines

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Perspective-n-Point-and-Line (PnPL) algorithms aim at fast, accurate, and robust camera localization with respect to a 3D model from 2D-3D feature correspondences, being a major part of modern robotic and AR/VR systems. Current point-based pose estimation methods use only 2D feature detection uncertainties, and the line-based methods do not take uncertainties into account. In our setup, both 3D coordinates and 2D projections of the features are considered uncertain. We propose PnP(L) solvers based on EPnP and DLS for the uncertainty-aware pose estimation. We also modify motion-only bundle adjustment to take 3D uncertainties into account. We perform exhaustive synthetic and real experiments on two different visual odometry datasets. The new PnP(L) methods outperform the state-of-the-art on real data in isolation, showing an increase in mean translation accuracy by 18% on a representative subset of KITTI, while the new uncertain refinement improves pose accuracy for most of the solvers, e.g. decreasing mean translation error for the EPnP by 16% compared to the standard refinement on the same dataset.This work has been partially funded by the Spanish government under projects HuMoUR TIN2017-90086-R, ERA-Net Chistera project IPALM PCI2019-103386 and María de Maeztu Seal of Excellence MDM-2016-0656Peer ReviewedPostprint (author's final draft

    Accurate and linear time pose estimation from points and lines

    Get PDF
    The final publication is available at link.springer.comThe Perspective-n-Point (PnP) problem seeks to estimate the pose of a calibrated camera from n 3Dto-2D point correspondences. There are situations, though, where PnP solutions are prone to fail because feature point correspondences cannot be reliably estimated (e.g. scenes with repetitive patterns or with low texture). In such scenarios, one can still exploit alternative geometric entities, such as lines, yielding the so-called Perspective-n-Line (PnL) algorithms. Unfortunately, existing PnL solutions are not as accurate and efficient as their point-based counterparts. In this paper we propose a novel approach to introduce 3D-to-2D line correspondences into a PnP formulation, allowing to simultaneously process points and lines. For this purpose we introduce an algebraic line error that can be formulated as linear constraints on the line endpoints, even when these are not directly observable. These constraints can then be naturally integrated within the linear formulations of two state-of-the-art point-based algorithms, the OPnP and the EPnP, allowing them to indistinctly handle points, lines, or a combination of them. Exhaustive experiments show that the proposed formulation brings remarkable boost in performance compared to only point or only line based solutions, with a negligible computational overhead compared to the original OPnP and EPnP.Peer ReviewedPostprint (author's final draft

    Globally Optimal Relative Pose Estimation with Gravity Prior

    Get PDF
    Smartphones, tablets and camera systems used, e.g., in cars and UAVs, are typically equipped with IMUs (inertial measurement units) that can measure the gravity vector accurately. Using this additional information, the yy-axes of the cameras can be aligned, reducing their relative orientation to a single degree-of-freedom. With this assumption, we propose a novel globally optimal solver, minimizing the algebraic error in the least-squares sense, to estimate the relative pose in the over-determined case. Based on the epipolar constraint, we convert the optimization problem into solving two polynomials with only two unknowns. Also, a fast solver is proposed using the first-order approximation of the rotation. The proposed solvers are compared with the state-of-the-art ones on four real-world datasets with approx. 50000 image pairs in total. Moreover, we collected a dataset, by a smartphone, consisting of 10933 image pairs, gravity directions, and ground truth 3D reconstructions

    Very fast solution to the PnP problem with algebraic outlier rejection

    Get PDF
    Presentado al CVPR 2014 celebrado en Columbus, Ohio (US) del 23 al 28 de junio.We propose a real-time, robust to outliers and accurate solution to the Perspective-n-Point (PnP) problem. The main advantages of our solution are twofold: first, it integrates the outlier rejection within the pose estimation pipeline with a negligible computational overhead; and second, its scalability to arbitrarily large number of correspondences. Given a set of 3D-to-2D matches, we formulate pose estimation problem as a low-rank homogeneous system where the solution lies on its 1D null space. Outlier correspondences are those rows of the linear system which perturb the null space and are progressively detected by projecting them on an iteratively estimated solution of the null space. Since our outlier removal process is based on an algebraic criterion which does not require computing the full-pose and reprojecting back all 3D points on the image plane at each step, we achieve speed gains of more than 100Ă— compared to RANSAC strategies. An extensive experimental evaluation will show that our solution yields accurate results in situations with up to 50% of outliers, and can process more than 1000 correspondences in less than 5ms.This work has been partially funded by Spanish government under projects DPI2011-27510, IPT-2012-0630-020000, IPT-2011-1015-430000 and CICYT grant TIN2012-39203; by the EU project ARCAS FP7-ICT-2011-28761; and by the ERA-Net Chistera project ViSen PCIN-2013-047Peer Reviewe

    A sparse resultant based method for efficient minimal solvers

    Full text link
    Many computer vision applications require robust and efficient estimation of camera geometry. The robust estimation is usually based on solving camera geometry problems from a minimal number of input data measurements, i.e. solving minimal problems in a RANSAC framework. Minimal problems often result in complex systems of polynomial equations. Many state-of-the-art efficient polynomial solvers to these problems are based on Gr\"obner bases and the action-matrix method that has been automatized and highly optimized in recent years. In this paper we study an alternative algebraic method for solving systems of polynomial equations, i.e., the sparse resultant-based method and propose a novel approach to convert the resultant constraint to an eigenvalue problem. This technique can significantly improve the efficiency and stability of existing resultant-based solvers. We applied our new resultant-based method to a large variety of computer vision problems and show that for most of the considered problems, the new method leads to solvers that are the same size as the the best available Gr\"obner basis solvers and of similar accuracy. For some problems the new sparse-resultant based method leads to even smaller and more stable solvers than the state-of-the-art Gr\"obner basis solvers. Our new method can be fully automatized and incorporated into existing tools for automatic generation of efficient polynomial solvers and as such it represents a competitive alternative to popular Gr\"obner basis methods for minimal problems in computer vision

    A Linear Approach to Absolute Pose Estimation for Light Fields

    Get PDF
    This paper presents the first absolute pose estimation approach tailored to Light Field cameras. It builds on the observation that the ratio between the disparity arising in different sub-aperture images and their corresponding baseline is constant. Hence, we augment the 2D pixel coordinates with the corresponding normalised disparity to obtain the Light Field feature. This new representation reduces the effect of noise by aggregating multiple projections and allows for linear estimation of the absolute pose of a Light Field camera using the well-known Direct Linear Transformation algorithm. We evaluate the resulting absolute pose estimates with extensive simulations and experiments involving real Light Field datasets, demonstrating the competitive performance of our linear approach. Furthermore, we integrate our approach in a state-of-the-art Light Field Structure from Motion pipeline and demonstrate accurate multi-view 3D reconstruction

    Modeling and Calibrating the Distributed Camera

    Get PDF
    Structure-from-Motion (SfM) is a powerful tool for computing 3D reconstructions from images of a scene and has wide applications in computer vision, scene recognition, and augmented and virtual reality. Standard SfM pipelines make strict assumptions about the capturing devices in order to simplify the process for estimating camera geometry and 3D structure. Specifically, most methods require monocular cameras with known focal length calibration. When considering large-scale SfM from internet photo collections, EXIF calibrations cannot be used reliably. Further, the requirement of single camera systems limits the scalability of SfM. This thesis proposes to remove these constraints by instead considering the collection of cameras as a distributed camera that encapsulates the image and geometric information of all cameras simultaneously. First, I provide full generalizations to the relative camera pose and absolute camera pose problems. These generalizations are more expressive and extend the traditional single-camera problems to distributed cameras, forming the basis for a novel hierarchical SfM pipeline that exhibits state-of-the-art performance on large-scale datasets. Second, I describe two efficient methods for estimating camera focal lengths for the distributed camera when calibration is not available. Finally, I show how removing these constraints enables a simpler, more scalable SfM pipeline that is capable of handling uncalibrated cameras at scale

    Computational Methods for Computer Vision : Minimal Solvers and Convex Relaxations

    Get PDF
    Robust fitting of geometric models is a core problem in computer vision. The most common approach is to use a hypothesize-and-test framework, such as RANSAC. In these frameworks the model is estimated from as few measurements as possible, which minimizes the risk of selecting corrupted measurements. These estimation problems are called minimal problems, and they can often be formulated as systems of polynomial equations. In this thesis we present new methods for building so-called minimal solvers or polynomial solvers, which are specialized code for solving such systems. On several minimal problems we improve on the state-of-the-art both with respect to numerical stability and execution time.In many computer vision problems low rank matrices naturally occur. The rank can serve as a measure of model complexity and typically a low rank is desired. Optimization problems containing rank penalties or constraints are in general difficult. Recently convex relaxations, such as the nuclear norm, have been used to make these problems tractable. In this thesis we present new convex relaxations for rank-based optimization which avoid drawbacks of previous approaches and provide tighter relaxations. We evaluate our methods on a number of real and synthetic datasets and show state-of-the-art results
    corecore