1,610 research outputs found

    A global observer for attitude and gyro biases from vector measurements

    Full text link
    We consider the classical problem of estimating the attitude and gyro biases of a rigid body from vector measurements and a triaxial rate gyro. We propose a simple "geometry-free" nonlinear observer with guaranteed uniform global asymptotic convergence and local exponential convergence; the stability analysis, which relies on a strict Lyapunov function, is rather simple. The excellent behavior of the observer is illustrated through a detailed numerical simulation

    Attitude Estimation and Control Using Linear-Like Complementary Filters: Theory and Experiment

    Full text link
    This paper proposes new algorithms for attitude estimation and control based on fused inertial vector measurements using linear complementary filters principle. First, n-order direct and passive complementary filters combined with TRIAD algorithm are proposed to give attitude estimation solutions. These solutions which are efficient with respect to noise include the gyro bias estimation. Thereafter, the same principle of data fusion is used to address the problem of attitude tracking based on inertial vector measurements. Thus, instead of using noisy raw measurements in the control law a new solution of control that includes a linear-like complementary filter to deal with the noise is proposed. The stability analysis of the tracking error dynamics based on LaSalle's invariance theorem proved that almost all trajectories converge asymptotically to the desired equilibrium. Experimental results, obtained with DIY Quad equipped with the APM2.6 auto-pilot, show the effectiveness and the performance of the proposed solutions.Comment: Submitted for Journal publication on March 09, 2015. Partial results related to this work have been presented in IEEE-ROBIO-201

    An Equivariant Observer Design for Visual Localisation and Mapping

    Full text link
    This paper builds on recent work on Simultaneous Localisation and Mapping (SLAM) in the non-linear observer community, by framing the visual localisation and mapping problem as a continuous-time equivariant observer design problem on the symmetry group of a kinematic system. The state-space is a quotient of the robot pose expressed on SE(3) and multiple copies of real projective space, used to represent both points in space and bearings in a single unified framework. An observer with decoupled Riccati-gains for each landmark is derived and we show that its error system is almost globally asymptotically stable and exponentially stable in-the-large.Comment: 12 pages, 2 figures, published in 2019 IEEE CD
    corecore