3 research outputs found

    Modeling disease transmission dynamics with random data and heavy tailed random effects: the Zika case

    Get PDF
    This work was supported by Research Fund of the Recep Tayyip Erdogan University.In this study, we investigate a compartmental model of Zika Virus transmission under random effects. Random effects enable the analysis of random numerical characteristics of transmission, which cannot be modeled through deterministic equations. Data obtained from Zika studies in the literature are used along with heavy tailed random effects to obtain new random variables for the parameters of the deterministic model. Finally, simulations of the model are carried out to analyze the random dynamics of Zika Virus transmission. Deterministic results are compared with results from the simulations of the random system to underline the advantages of a random modeling approach. It is shown that the random model provides additional results for disease transmission dynamics such as results for standard deviation and coefficients of variation, making it a valuable alternative to deterministic modeling. Random results suggest around 90% - 120% coefficient of variation for the random model underlining the fact that the randomness should not be ignored for the transmission of this disease.Publisher's Versio

    Weak solvability of the unconditionally stable difference scheme for the coupled sine-Gordon system

    Get PDF
    In this paper, we study the existence and uniqueness of weak solution for the system of finite difference schemes for coupled sine-Gordon equations. A novel first order of accuracy unconditionally stable difference scheme is considered. The variational method also known as the energy method is applied to prove unique weak solvability.We also present a new unified numerical method for the approximate solution of this problem by combining the difference scheme and the fixed point iteration. A test problem is considered, and results of numerical experiments are presented with error analysis to verify the accuracy of the proposed numerical method

    Dynamical analysis of a heterogeneous spatial diffusion Zika model with vector-bias and environmental transmission

    Get PDF
    In this study, we formulate a reaction-diffusion Zika model which incorporates vector-bias, environmental transmission and spatial heterogeneity. The main question of this paper is the analysis of the threshold dynamics. For this purpose, we establish the mosquito reproduction number R1 R_{1} and basic reproduction number R0 R_{0} . Then, we analyze the dynamical behaviors in terms of R1 R_{1} and R0 R_{0} . Numerically, we find that the ignorance of the vector-bias effect will underestimate the infection risk of the Zika disease, ignorance of the spatial heterogeneity effect will overestimate the infection risk, and the environmental transmission is indispensable
    corecore