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Abstract. In this paper, we study the existence and uniqueness of weak solution for the system
of finite difference schemes for coupled sine-Gordon equations. A novel first order of accuracy
unconditionally stable difference scheme is considered. The variational method also known as the
energy method is applied to prove unique weak solvability. We also present a new unified numerical
method for the approximate solution of this problem by combining the difference scheme and
the fixed point iteration. A test problem is considered, and results of numerical experiments are
presented with error analysis to verify the accuracy of the proposed numerical method.
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1 Introduction

Wave propagation problems are studied in several areas of engineering, physics, and
applied mathematics including relativistic quantum mechanics, acoustics, biomedical en-
gineering, and field theory problems (see, [1–4,6,9,11,14,22,25,27,31] and the references
given therein). There have been extensive theoretical and numerical studies on nonlinear
wave systems such as sine-Gordon, Klein–Gordon, and coupled sine-Gordon equations
in the literature (see, [7, 10, 21, 24, 30] and the references given therein). Such type of
problems attracted much attention in the last decades due to the presence of soliton solu-
tions. Solitons are nonlinear waves, which occur in proteins, signal conduction between
neurons, and deoxyribonucleic acid (DNA) [18, 34].

Due to low regularity of coefficients and source functions, unique solvability in the
weak sense have drawn remarkable interest for many problems occurring in real world
phenomena, including coupled sine-Gordon equations. In the weak solvability, solutions
of complicated nonlinear systems and also linear or semilinear problems, which do not
have a corresponding mild formulation, can be obtained even under less regularities of
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data. Solutions of these problems are obtained in the space of distributions by the energy
method, also known as the variational method, which is a versatile tool in the theory of
partial differential equations.

In this article, for the first time, the unique solvability of first order of accuracy
unconditionally stable difference scheme for coupled sine-Gordon system, in the weak
sense, is proved. Compared with other existing studies in the literature, the novelty of
the present work is two fold: one is the generality of nonlinearity and damping effects
in weak solvability via finite difference method, and the other is the unified numerical
approach based on first order of accuracy unconditionally stable finite difference scheme
and fixed point iteration.

The early investigations about the convergence of difference schemes for hyperbolic
partial differential equations (PDEs) are contributed by Courant, Friedrichs, Lewy, von
Neumann, Lax, and Richtmeyer et al. In studying these problems, a necessary condition
for convergence of a finite difference scheme is Courant–Friedrichs–Lewy (CFL) condi-
tion. In the present study, the employed difference scheme provides good convergence
and stability results without the need of a CFL condition. In numerical analysis, a uni-
fied numerical method, which combines the difference scheme and fixed point iteration
with some error tolerances, is used. Combining with fixed point iteration, the numerical
experiments for the solution of the difference scheme gives accurate results.

In this study, the nonlinear system of coupled sine-Gordon equations

∂2u

∂t2
+ α11

∂u

∂t
+ α12

∂v

∂t
− β1∆u+ γ1 sin(δ11u+ δ12v)

+ ρ11u+ ρ12v = f in R,

∂2v

∂t2
+ α21

∂u

∂t
+ α22

∂v

∂t
− β2∆v + γ2 sin(δ21u+ δ22v)

+ ρ21u+ ρ22v = g in R

(1)

with boundary conditions
u = 0 and v = 0 on S (2)

and initial conditions

u(0, x) = ϕ1(x) in Ω and
∂u

∂t
(0, x) = ψ1(x) in Ω, (3)

v(0, x) = ϕ2(x) in Ω and
∂v

∂t
(0, x) = ψ2(x) in Ω (4)

is considered. Here, Ω ⊂ Rn is a bounded open set with piecewise smooth boundary
Γ = ∂Ω, and ∆ is Laplacian. The spaces R and S are defined as R = (0, 1) × Ω and
S = (0, 1)× Γ , respectively. The constants are given as

αij , βi, γi, δij , ρij – bounded nonzero real numbers for i, j = 1, 2. (5)

Let us denote

f̃(t, x, u, v) = f(t, x)− γ1 sin(δ11u+ δ12v),

g̃(t, x, u, v) = g(t, x)− γ2 sin(δ21u+ δ22v).
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Weak solvability of the unconditionally stable difference scheme 999

Source functions f̃ and g̃ satisfy the Lipschitz conditions of the form∣∣f̃(t, x, u1, v)− f̃(t, x, u2, v)
∣∣ 6M1|u1 − u2|, (6)∣∣g̃(t, x, u1, v)− g̃(t, x, u2, v)
∣∣ 6M2|u1 − u2|, (7)∣∣f̃(t, x, u, v1)− f̃(t, x, u, v2)
∣∣ 6M3|v1 − v2|, (8)∣∣g̃(t, x, u, v1)− g̃(t, x, u, v2)
∣∣ 6M4|v1 − v2| (9)

on R, where Mi, i = 1, 2, 3, 4, are positive constants.
Let A = −∆ be an unbounded self-adjoint positive definite operator in a Hilbert

space H . Then problem (1)–(4) can be written as

∂2u

∂t2
+ α11

∂u

∂t
+ α12

∂v

∂t
+ β1Au+ γ1 sin(δ11u+ δ12v)

+ ρ11u+ ρ12v = f, 0 < t < 1,

∂2v

∂t2
+ α21

∂u

∂t
+ α22

∂v

∂t
+ β2Av + γ2 sin(δ21u+ δ22v)

+ ρ21u+ ρ22v = g, 0 < t < 1,

u(0) = u0 ∈ V,
du

dt
(0) = u′0 ∈ H,

v(0) = v0 ∈ V,
dv

dt
(0) = v′0 ∈ H.

(10)

Here, V is the Hilbert space satisfying the relation V ⊂ H . In the literature, a special
case of the system in the form

utt − uxx = −δ2 sin(u− v), vtt − vxx = sin(u− v),

which describes the open states in DNA double helices, is studied by many researchers
(see, [18,34] and the references given therein). Note that some applications and numerical
results of the present study, without proof, are presented in [32, 33].

Unique solvability of problem (10) is presented as the limit of first order of accuracy
unconditionally stable difference scheme

τ−2(uk+1 − 2uk + uk−1) + α11(2τ)−1(uk+1 − uk−1)

+ α12(2τ)−1(vk+1 − vk−1) + β1Auk+1

+ γ1 sin(δ11uk + δ12vk) + ρ11uk + ρ12vk = fk,

fk = f(tk), tk = kτ, 1 6 k 6 N − 1, Nτ = 1,

τ−2(vk+1 − 2vk + vk−1) + α21(2τ)−1(uk+1 − uk−1)

+ α22(2τ)−1(vk+1 − vk−1) + β2Avk+1

+ γ2 sin(δ21uk + δ22vk) + ρ21uk + ρ22vk = gk,

gk = g(tk), tk = kτ, 1 6 k 6 N − 1, Nτ = 1,

(111)
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u0 = ϕ1, u′0 =
u1 − u0

τ
= ψ1,

v0 = ϕ2, v′0 =
v1 − v0
τ

= ψ2

(112)

with a modification for damped nonlinear system. The set of a family of grid points

Ωh = [0, 1]τ × [0, π]h =
{

(tk, xn): tk = kτ, 0 6 k 6 N, Nτ = 1,

xn = nh, 0 6 n 6M, Mh = π
}

(12)

with parameters τ and h is considered for the approximate solution of (10). Here, fk, gk,
ϕ1, ϕ2, ψ1, and ψ2 are given nonzero functions. Convergence and unconditional stability
of undamped linear form of difference scheme (11) is presented in [2, 4].

The weak solvability of nonlinear systems are widely investigated in the literature
(see [8,12,13,15–17,19,20,22,23,26–29,35,36] and the references given therein). In [8],
endemic equilibrium for the PDE model of Zika virus, which leads to a major global
public health emergency, is studied. In [15], approximate solution of coupled sine-Gordon
equations with periodic boundary conditions is investigated. Also, in [22], the global weak
solvability of coupled damped sine-Gordon equation in abstract form is proved, and the
finite element method is used. The weak solutions for nongradient coupled sine-Gordon
equations are studied in [27]. Regularity criteria of weak solutions for 3D incompressible
viscous magnetohydrodynamics (MHD) equations are discussed in [28]. Several types of
prey–predator models are investigated in [35].

2 Preliminaries

In this section, we present some preliminaries, which will be used in the theoretical
statements of this paper. Let us define the Hilbert spaces H and V as H = L2(Ω) and
V = H1

0 (Ω), respectively. These spaces are equipped with the inner products and norms

(ψ, φ) =

∫
Ω

ψ(x)φ(x) dx, |ψ| = (ψ,ψ)1/2, ∀φ, ψ ∈ L2(Ω),

((ψ, φ)) =

n∑
i=1

∫
Ω

∂

∂xi
ψ(x)

∂

∂xi
φ(x) dx, ‖ψ‖ = ((ψ,ψ))1/2, ∀φ, ψ ∈ H1

0 (Ω).

Let us define the dual spaces of V and H as V ′ and H ′, respectively. Here, the pair
(V,H) is a Gelfand triple space with notation, V ↪→ H ≡ H ′ ↪→ V ′, where V ′ =
H−1(Ω). The embeddings V ⊂ H and H ⊂ V ′ are continuous, dense, and compact.
The unique solvability results are presented in the setting of the triple space. The bilinear
form

a(φ, ϕ) =

∫
Ω

∇φ · ∇ϕdx = ((φ, ϕ)) ∀φ, ϕ ∈ V = H1
0 (Ω)
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will be used in variational formulation. This form is bounded, symmetric on V × V =
H1

0 (Ω)2, and coercive, that is,

a(φ, φ) > ‖φ‖2 ∀φ ∈ V.

The form is associated with the operator A = −∆ defined by

A(φ, ϕ) = a(φ, ϕ),

whereA is an isomorphism from V onto V ′. It is an unbounded self-adjoint operator inH
with dense domain D(A) = {φ ∈ V | Aφ ∈ H} in V and in H . We consider system (10)
in the following vector form:

w′′ +αw′ + βAw + γ sin δw + ρw = f , 0 < t < T,

w(0) = w0, w′(0) = w′0
(13)

with

w =

[
u
v

]
, w′ =

[
du
dt
dv
dt

]
, w′′ =

[
d2u
dt2

d2v
dt2

]
,

f =

[
f
g

]
, sinw =

[
sinu
sin v

]
, A =

[
A 0
0 A

]
,

α =

[
α11 α12

α21 α22

]
, β =

[
β11 β12
β21 β22

]
, δ =

[
δ11 δ12
δ21 δ22

]
,

γ =

[
γ1 0
0 γ2

]
, ρ =

[
ρ11 ρ12
ρ21 ρ22

]
, w0 =

[
u0
v0

]
, w′0 =

[
u′0
v′0

]
.

The norm |δ| of the 2× 2 matrix is defined by∑
i,j=1,2

|δij |. (14)

Let us introduce the product spaces V = V ×V andH = H×H equipped with the inner
products

((φ,ψ)) = ((φ1, ψ1)) + ((φ2, ψ2)), φ = [φ1, φ2]T, ψ = [ψ1, ψ2]T ∈ V,

(φ,ψ) = (φ1, ψ1) + (φ2, ψ2), φ = [φ1, φ2]T, ψ = [ψ1, ψ2]T ∈ H, (15)

respectively. Here, [·, ·]T is the transpose of [·, ·]. Then the dual space V ′ = V ′ × V ′ and
the dual pairing between V ′ and V are

〈φ,ψ〉 = 〈φ1, ψ1〉+ 〈φ2, ψ2〉, φ = [φ1, φ2]T ∈ V ′, ψ = [ψ1, ψ2]T ∈ V.

Let the operatorA has a square rootB such thatB =
√
−∆. The self-adjoint positive def-

inite operator B generates a C0 semigroup in problem (13). Thus, the operator matrix A

Nonlinear Anal. Model. Control, 25(6):997–1014
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with operator entries A in (13) is a self-adjoint positive definite operator with a dense
domain D(A) = D(A)×D(A) in V and in H. It can be easily verified that A generates
a C0 semigroup [1, 3, 27].

By the embeddings V ↪→ H ↪→ V ′, the pair (V,H) is a Gelfand triple space with
notation V ↪→ H ↪→ V ′. The norms of V andH are denoted by ‖ψ‖ and |ψ|, respectively.
The weak solvability of (13) is stated in the following form.

Definition 1. (See [22].) A function w is said to be a weak solution of (13) if

w ∈W(0, T ) = W (0, T )×W (0, T )

and w satisfies the variational (weak) formulation〈
w′′(·),φ

〉
+
(
αw′(·),φ

)
+
((
βw(·),φ

))
+
(
γ sin δw(·),φ

)
+
(
ρw(·),φ

)
=
(
f(·),φ

)
,

w(0) = w0, w′(0) = w′0

for all φ ∈ V . Here, the solution space is

W (0, T ) =
{
ϕ
∣∣ ϕ ∈ L2(0, T ;V ), ϕ′ ∈ L2(0, T ;H), ϕ′′ ∈ L2(0, T ;V ′)

}
.

The following theorem states the continuous dependence of weak solutions for (10),
and this theorem will be used in the proof of uniqueness.

Theorem 1. (See [22].) Suppose that assumptions (5)–(9) hold. Let wA = [uA, vA]T

(resp., wB = [uB , vB ]T) be a weak solution of (13) with initial values (wA0,wA1) ∈
V ×H (resp., (wB0,wB1) ∈ V ×H) and fA ∈ L2(0, T ;H) (resp., fB ∈ L2(0, T ;H)).
Then there exists a constant C > 0 depending only on α,β,γ, δ and T such that, for
each t ∈ [0, T ],∥∥wA(t)−wB(t)

∥∥2 +
∣∣w′A(t)−w′B(t)

∣∣2
6 C

(
‖wA0 −wB0‖2 + |wA1 −wB1|2 +

t∫
0

∣∣fA(σ)− fB(σ)
∣∣2 dσ

)
.

By the properties of the operator matrix A considered in problem (13), and using
the family of grid points Ωh defined in (12), we can consider system (13) in difference
form as

τ−2(wk+1 − 2wk + wk−1) + α(2τ)−1(wk+1 −wk−1)

+ βAwk + γ sin δwk + ρwk = fk, 0 < t < T,

w0 = ϕ, τ−1(w1 −w0) = ψ,

(16)

http://www.journals.vu.lt/nonlinear-analysis
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where

wk =

[
uk
vk

]
, sinwk =

[
sinuk
sin vk

]
, fk =

[
fk
gk

]
, A =

[
A 0
0 A

]
,

α =

[
α11 α12

α21 α22

]
, β =

[
β11 β12
β21 β22

]
, γ =

[
γ1 0
0 γ2

]
,

δ =

[
δ11 δ12
δ21 δ22

]
, ρ =

[
ρ11 ρ12
ρ21 ρ22

]
, ϕ =

[
ϕ1

ϕ2

]
, ψ =

[
ψ1

ψ2

]
,

and
fk → f and gk → g weakly in L2(0, T ;V). (17)

We will obtain unique solvability results in the weak sense by constructing variational
formulation for system of difference equation (16). We use some strong convergence
properties of the sequences, which are obtained by compactness theorems. The existence
and uniqueness of weak solutions are presented in the next section.

3 Unique solvability of the difference scheme

In the present section, theoretical statements on weak approximate solution to (16) is
established by the unconditionally stable difference scheme (11). Applying variational
formulation, it will be shown that difference problem (16) converges to a unique weak
solution.

Let us consider the variational formulation of (11)

(uk+1, ū) + (uk−1, ū) + (α11τuk+1, ū) + (α12τvk+1, ū) +
(
τ2ρ11uk, ū

)
+
(
τ2β1∇uk+1,∇ū

)
+
(
τ2γ1 sin(δ11uk + δ12vk), ū

)
+
(
τ2ρ12vk, ū

)
= (2uk, ū) + (α11τuk−1, ū) +

(
α12τvk−1, ū

)
+
(
τ2fk, ū

)
,

(vk+1, v̄) + (vk−1, v̄) + (α21τuk+1, v̄) + (α22τvk+1, v̄) +
(
τ2ρ21uk, v̄

)
+
(
β2τ

2∇vk+1,∇v̄
)

+
(
γ2τ

2 sin(δ21uk + δ22vk), v̄
)

+
(
τ2ρ22vk, v̄

)
= (2vk, v̄) + (α21τuk−1, v̄) + (α22τvk−1, v̄) +

(
τ2gk, v̄

)
,

fk = f(tk), gk = g(tk), tk = kτ, 1 6 k 6 N − 1, Nτ = T,

(u0, ū) = (ϕ1, ū), (v0, v̄) = (ϕ2, v̄),

(u1, ū) = (ψ1τ, ū) + (u0, ū), (v1, v̄) = (ψ2τ, v̄) + (v0, v̄),

(18)

where ū and v̄ are test functions in V . Throughout this paper, K represents a generic
constant having possibly different values at different places.

Definition 2. The mesh functions {uk} and {vk} are said to be the approximate weak
solutions of (11) if uk, vk ∈ V satisfies (18).

Nonlinear Anal. Model. Control, 25(6):997–1014
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Using the family of grid points (12), we introduce the Hilbert space

L2h(Ω) = L2(Ωh)

equipped with the norms of grid functions

‖uk‖L2h(Ω) =

(
N∑
j=1

∣∣ujk∣∣2h
)1/2

, ‖vk‖L2h(Ω) =

(
N∑
j=1

|vjk|
2h

)1/2

.

Theorem 2. Suppose that assumptions (5)–(9), (17) are satisfied. Then there exists a pos-
itive constant K such that

‖wk−1‖2L2h(Ω) + ‖wk‖2L2h(Ω) + ‖wk+1‖2L2h(Ω) 6 K, (19)

where K is independent of the grid parameters τ and h for all k ∈ N.

Proof. Setting ū = uk+1, v̄ = vk+1 in (18), system

(uk+1, uk+1) + (uk−1, uk+1) + α11τ(uk, uk+1) + α12τ(vk, uk+1)

+ τ2β1(Auk+1, uk+1) + τ2γ1
(
sin(δ11uk + δ12vk), uk+1

)
+ τ2ρ11(uk, uk+1) + τ2ρ12(vk, uk+1)− 2(uk, uk+1)

− α11τ(uk−1, uk+1)− α12τ(vk−1, uk+1)

= τ2(fk, uk+1),

(vk+1, vk+1) + (vk−1, vk+1) + α21τ(uk, vk+1) + α22τ(vk, vk+1)

+ β2τ
2(Avk+1, vk+1) + γ2τ

2
(
sin(δ21uk + δ22vk), vk+1

)
+ ρ21τ

2(uk, vk+1) + ρ22τ
2(vk, vk+1)− 2(vk, vk+1)

− α21τ(uk−1, vk+1)− α22τ(vk−1, vk+1)

= τ2(gk, vk+1)

(20)

is obtained. A priori estimate will be presented by showing nonnegativity and bounded-
ness for the components of system (20). By coercivity, the system can be written as

c1(uk+1, uk+1)− 2τ(uk, uk+1) + c2(uk−1, uk+1)

+ c3(vk+1, uk+1) + c4(vk−1, uk+1)

6 τ2(fk, uk+1)− τ2γ1
(
sin(δ11uk + δ12vk), uk+1

)
, (21)

d1(vk+1, vk+1)− 2τ(vk, vk+1) + d2(vk−1, vk+1)

+ d3(uk+1, vk+1) + d4(uk−1, vk+1)

6 τ2(gk, vk+1)− τ2γ2
(
sin(δ21uk + δ22vk), vk+1

)
(22)

with

c1 = 1 +
τ

2
α11 + τ2ρ11 + τ2β1, c2 = 1− τ

2
α11,

c3 =
τ

2
α12 + τ2ρ12, c4 = −τ

2
α12,

http://www.journals.vu.lt/nonlinear-analysis
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d1 = 1 +
τ

2
α22 + τ2ρ22 + τ2β2, d2 = 1− τ

2
α22,

d3 =
τ

2
α21 + τ2ρ21, d4 = −τ

2
α21.

Taking the sum of (21) and (22), we get

c1(uk+1, uk+1) + d1(vk+1, vk+1)− 2τ(uk, uk+1)− 2τ(vk, vk+1)

+ c2(uk−1, uk+1) + d2(vk−1, vk+1) + c3(vk+1, uk+1) + d3(uk+1, vk+1)

+ c4(vk−1, uk+1) + d4(uk−1, vk+1)

6 τ2(fk, uk+1)− τ2γ1
(
sin(δ11uk + δ12vk), uk+1

)
+ τ2(gk, vk+1)− τ2γ2

(
sin(δ21uk + δ22vk), vk+1

)
. (23)

With the help of inner product defined in (15), conditions (6)–(9), (17), and the matrix
norm in (14), system (23) can be written in the vector form

(A1wk+1,wk+1)− 2τ(wk,wk+1) + (A2wk−1,wk+1)

+ (A3wk+1,wk+1) + (A4wk−1,wk+1)

6 τ2(Fk − γ sin δwk, wk+1), (24)

where

wk =

[
uk
vk

]
, A1 =

[
c1 0
0 d1

]
, A2 =

[
c2 0
0 d2

]
,

A3 =

[
0 c3
d3 0

]
, A4 =

[
0 c4
d4 0

]
, Fk =

[
fk 0
0 gk

]
.

Let us denote

∆ = τ2(Fk − γ sin δwk,wk+1)− (A1wk+1,wk+1) + 2τ(wk,wk+1)

−(A2wk−1,wk+1)− (A3wk+1,wk+1)− (A4wk−1,wk+1).

From (24), ∆ > 0. An upper bound should be constructed for ∆. Using triangle and
Cauchy–Schwarz inequalities yields

∆ 6
(
‖A1‖L2h(Ω) + ‖A3‖L2h(Ω) + τ

)
‖wk+1‖2L2h(Ω) + τ‖wk‖2L2h(Ω)

+
τ2

2
|γ||δ|

(
‖wk‖2L2h(Ω) + ‖wk+1‖2L2h(Ω)

)
+
τ2

2

(
‖Fk‖2L2h(Ω) + ‖wk+1‖2L2h(Ω)

)
+

1

2

(
‖A2‖L2h(Ω) + ‖A4‖L2h(Ω)

)(
‖wk−1‖2L2h(Ω) + ‖wk+1‖2L2h(Ω)

)
.

Thus,

∆ 6 C1‖wk+1‖2L2h(Ω) + C2‖wk‖2L2h(Ω) + C3‖wk−1‖2L2h(Ω) + C4‖Fk‖2L2h(Ω), (25)
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where

C1 = ‖A1‖L2h(Ω) + ‖A3‖L2h(Ω) + τ

+
τ2

2

(
1 + |γ||δ|

)
+

1

2

(
‖A2‖L2h(Ω) + ‖A4‖L2h(Ω)

)
,

C2 = τ +
τ2

2
|γ||δ|, C3 =

1

2

(
‖A2‖L2h(Ω) + ‖A4‖L2h(Ω)

)
, C4 =

τ2

2
.

Using assumptions (5)–(9) and (17), we conclude that Ai, i = 1, 2, 3, 4, are invertible
positive definite matrices and the function Fk is Lipschitz in Ωh. Let us denote

M = max{C1, C2, C3, C4}.

Then (25) can be written as

∆ 6M
(
‖wk+1‖2L2h(Ω) + ‖wk‖2L2h(Ω) + ‖wk−1‖2L2h(Ω) + ‖Fk‖2L2h(Ω)

)
.

Components of this system are nonnegative and bounded above. Thus, the following
energy inequality holds:

0 6 ∆ 6 ‖wk+1‖2L2h(Ω) + ‖wk‖2L2h(Ω) + ‖wk−1‖2L2h(Ω) 6 K.

Hence, Theorem 2 is proved.

Theorem 3. Suppose that assumptions (5)–(9) and (17) hold. Then there exists a positive
constant K, independent of grid parameters τ and h, such that for all k ∈ N,(∥∥∥∥uk+1 − uk

τ

∥∥∥∥2
L2h(Ω)

+

∥∥∥∥uk − uk−1τ

∥∥∥∥2
L2h(Ω)

+

∥∥∥∥uk+1 − uk−1
2τ

∥∥∥∥2
L2h(Ω)

+

∥∥∥∥vk+1 − vk
τ

∥∥∥∥2
L2h(Ω)

+

∥∥∥∥vk − vk−1τ

∥∥∥∥2
L2h(Ω)

+

∥∥∥∥vk+1 − vk−1
2τ

∥∥∥∥2
L2h(Ω)

)
6 K. (26)

Proof. We construct the weak formulation for the derivative terms by modifying (11).
Multiplying by τ and taking the inner product for the first equation of (11) by (uk+1 −
uk)/τ and (uk − uk−1)/τ , we get(

uk+1 − uk
τ

− uk − uk−1
τ

,
uk+1 − uk

τ

)
+ τα11

(
uk+1 − uk−1

2τ
,
uk+1 − uk

τ

)
+ τα12

(
vk+1 − vk−1

2τ
,
uk+1 − uk

τ

)
+ τβ1

(
Auk+1,

uk+1 − uk
τ

)
+ τγ1

(
sin(δ11uk + δ12vk),

uk+1 − uk
τ

)
+ τρ11

(
uk+1,

uk+1 − uk
τ

)
+ τρ12

(
vk+1,

uk+1 − uk
τ

)
= τ

(
fk,

uk+1 − uk
τ

)
(27)
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and(
uk+1 − uk

τ
− uk − uk−1

τ
,
uk − uk−1

τ

)
+ τα11

(
uk+1 − uk−1

2τ
,
uk − uk−1

τ

)
+ τα12

(
vk+1 − vk−1

2τ
,
uk − uk−1

τ

)
+ τβ1

(
Auk+1,

uk − uk−1
τ

)
+ τγ1

(
sin(δ11uk + δ12vk),

uk − uk−1
τ

)
+ τρ11

(
uk+1,

uk − uk−1
τ

)
+ τρ12

(
vk+1,

uk − uk−1
τ

)
= τ

(
fk,

uk − uk−1
τ

)
, (28)

respectively. Taking the sum of (27) and (28),

{∥∥∥∥uk+1 − uk
τ

∥∥∥∥2
L2h(Ω)

−
∥∥∥∥uk − uk−1τ

∥∥∥∥2
L2h(Ω)

}
+ 2τα11

∥∥∥∥uk+1 − uk−1
2τ

∥∥∥∥2
L2h(Ω)

+ τα12

(
vk+1 − vk−1

2τ
,
uk+1 − uk−1

τ

)
+ τβ1

(
Auk+1,

uk+1 − uk−1
τ

)
+ τγ1

(
sin(δ11uk + δ12vk),

uk+1 − uk−1
τ

)
+ τρ11

(
uk+1,

uk+1 − uk−1
τ

)
+ τρ12

(
vk+1,

uk+1 − uk−1
τ

)
= τ

(
fk,

uk+1 − uk−1
τ

)
(29)

is obtained. Applying the same procedure for vk,

{∥∥∥∥vk+1 − vk
τ

‖2L2h(Ω) −
∥∥∥∥vk − vk−1τ

∥∥∥∥2
L2h(Ω)

}
+ 2τα22

∥∥∥∥vk+1 − vk−1
2τ

∥∥∥∥2
L2h(Ω)

+ τα21

(
uk+1 − uk−1

2τ
,
vk+1 − vk−1

τ

)
+ τβ2

(
Avk+1,

vk+1 − vk−1
τ

)
+ τγ2

(
sin(δ21uk + δ22vk),

vk+1 − vk−1
τ

)
+ τρ21

(
uk+1,

vk+1 − vk−1
τ

)
+ τρ22

(
vk+1,

vk+1 − vk−1
τ

)
= τ

(
gk,

vk+1 − vk−1
τ

)
(30)
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is obtained. Multiplying (29) by α21 and (30) by α12 and subtracting these terms, we get

∆1 = α21

{∥∥∥∥uk+1 − uk
τ

∥∥∥∥2
L2h(Ω)

−
∥∥∥∥uk − uk−1τ

∥∥∥∥2
L2h(Ω)

}
+ 2τα11α21

∥∥∥∥uk+1 − uk−1
2τ

∥∥∥∥2
L2h(Ω)

− α12

{∥∥∥∥vk+1 − vk
τ

∥∥∥∥2
L2h(Ω)

−
∥∥∥∥vk − vk−1τ

∥∥∥∥2
L2h(Ω)

}
+ 2τα12α22

∥∥∥∥vk+1 − vk−1
2τ

∥∥∥∥2
L2h(Ω)

+ s2(uk+1, vk−1)

+ 2τ
(
‖uk+1‖2L2h(Ω) + ‖vk+1‖2L2h(Ω)

)
+ s1(uk+1, vk+1)

+ s3(uk+1, uk−1) + s4(vk+1, vk−1) + s5(vk+1, uk−1), (31)

where
s1 = α21ρ12 − α12ρ21, s2 = α21β1 − α21ρ11,

s3 = α12β2 − α12ρ22, s4 = α12ρ21τ, s5 = −α21ρ12.

Using coercivity, we obtain

∆1 6 α21(fk, uk+1)− α21(fk, uk−1)− α12(gk, vk+1) + α21(gk, vk−1)

+ s6
(
sin(δ11uk + δ12vk), uk+1

)
− s6

(
sin(δ11uk + δ12vk), uk−1

)
− s7

(
sin(δ21uk + δ22vk), vk+1

)
+ s7

(
sin(δ11uk + δ12vk), vk−1

)
, (32)

where s6 = α21γ1, s7 = α12γ2. Here, the coefficients si, i = 1, 2, . . . , 7, in (31) and
(32) are bounded constants by (5). Using the inequalities(

sin(δ11uk + δ12vk), uk+1

)
6 |δ11uk + δ12vk||uk+1|,

(uk+1, vk+1) 6
1

2

(
|uk+1|2 + |vk+1|2

)
,

(31) and (32) can be written as

α21

{∥∥∥∥uk+1 − uk
τ

∥∥∥∥2
L2h(Ω)

−
∥∥∥∥uk − uk−1τ

∥∥∥∥2
L2h(Ω)

}
+ 2τα11α21

∥∥∥∥uk+1 − uk−1
2τ

∥∥∥∥2
L2h(Ω)

+ α12

{∥∥∥∥vk+1 − vk
τ

∥∥∥∥2
L2h(Ω)

−
∥∥∥∥vk − vk−1τ

∥∥∥∥2
L2h(Ω)

}
+ 2τα12α22

∥∥∥∥vk+1 − vk−1
2τ

∥∥∥∥2
L2h(Ω)

+ a1‖uk+1‖2L2h(Ω) + a2‖uk‖2L2h(Ω)
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+ a3‖uk−1‖2L2h(Ω) + a4‖fk‖2L2h(Ω) + b1‖vk+1‖2L2h(Ω) + b2‖vk‖2L2h(Ω)

+ b3‖vk−1‖2L2h(Ω) + b4‖gk‖2L2h(Ω), (33)

where

a1 = a3 =
τs6
2

(
|δ11
∣∣+ |δ12|

)
, a2 = τ

(
s6
∣∣δ11∣∣+ s7|δ12|

)
, a4 = α21,

b1 = b3 =
τs7
2

(
|δ21
∣∣+ |δ22|

)
, b2 = τ

(
s6|δ12|+ s7|δ22|

)
, b4 = α12.

We denote
N = max{α21, 2τα11α21, 2τα12α22, α12},

Then using Theorem 2, assumptions (5)–(9), and (17), the estimation for (33) can be
written as

N

{∥∥∥∥uk+1 − uk
τ

∥∥∥∥2
L2h(Ω)

−
∥∥∥∥uk − uk−1τ

∥∥∥∥2
L2h(Ω)

+

∥∥∥∥uk+1 − uk−1
2τ

∥∥∥∥2
L2h(Ω)

+

∥∥∥∥vk+1 − vk−1
2τ

∥∥∥∥2
L2h(Ω)

+

∥∥∥∥vk+1 − vk
τ

∥∥∥∥2
L2h(Ω)

−
∥∥∥∥vk − vk−1τ

‖2L2h(Ω)

}
6 K.

Thus, Theorem 3 is proved.

Next theorem states that the mesh functions {uk} and {vk} are compact in L2h(Ω)
topology.

Theorem 4. Under the hypotheses of Theorems 2 and 3, there exist subsequences

{ukm} ⊂ {uk} and {vkm} ⊂ {vk},

which converge in V to bounded measurable functions u and v, respectively. Moreover,
the limit functions u and v are unique weak solutions satisfying (19) and (26).

Proof. Estimates (19), (26) and discrete Gronwall lemma [23] imply that

{uk} and {vk} are bounded in L∞(0, T ;V ).

Then by Rellich theorem [9] there exists a subsequence wkm = [ukm , vkm ]T of wk =
[uk, vk]T and w̃k ∈ L∞(0, T ;V) such that

w̃k ∈ L∞(0, T ;V) ⊂ L2(0, T ;V)

and
wkm → w̃k weak star in L∞(0, T ;V) and weakly in L2(0, T ;V).

By the Aubin compactness theorem [5], the above convergence results imply

wkm → w̃k strongly in L2(0, T ;H), (34)
and by (34),

sin δwkm → sin δw̃k strongly in L2(0, T ;H),

which shows the existence of w̃k a.e. inH and w̃0 = w0.
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Uniqueness follows from convergence of difference scheme (11) and by Theorem 1.
Hence, Theorem 4 is proved.

4 Numerical analysis

In the present section, we verify the theoretical results of our study by numerical experi-
ments. A composite numerical method based on finite difference method and fixed point
iteration is employed. The fixed point iteration is applied for nonlinear part of the problem.
We propose a unified numerical method to obtain more accurate results for the solution
of an initial boundary value problem (IBVP) for one dimensional coupled sine-Gordon
equations. We choose an exact solution

w(t, x) =
{
u(t, x), v(t, x)

}
with

u(t, x) = e−2t sinπx, v(t, x) = e−t sinπx,

and we formulate a boundary value problem that leads to this solution. Let us consider
the following IBVP:

utt − uxx + ut + u = − sin(u− v) +
(
π2 + 3

)
e−2t sinπx

+ sin(e−2t sinπx− e−t sinπx), 0 < t < 1, 0 < x < 1,

vtt − vxx + vt + v = sin(u− v) +
(
π2 + 1

)
e−t sinπx

− sin
(
e−2t sinπx− e−t sinπx

)
, 0 < t < 1, 0 < x < 1,

u(0, x) = sinπx, ut(0, x) = −2 sinπx, 0 6 x 6 1,

v(0, x) = sinπx, vt(0, x) = − sinπx, 0 6 x 6 1,

u(t, 0) = u(t, 1) = 0, v(t, 0) = v(t, 1) = 0, 0 6 t 6 1.

(35)

System (35) is used for modelling the wave propagation on an infinite chain of elas-
tically bound atoms lying over a fixed lower chain of similar atoms. The second-order
derivative terms describe the elastic interaction energy between neighboring atoms and
their kinetic energy, respectively. The nonlinear terms containing sine stand for the po-
tential energy due to the fixed lower chain. The remaining terms are damping terms and
source functions.

For the approximate solution of problem (35), the corresponding difference scheme
(11) is considered. The modified Gauss elimination method is used for the solution of
system (11). The set of a family of grid points

Ωh = [0, 1]τ × [0, 1]h

=
{

(tk, xn): tk = kτ, 0 6 k 6 N, Nτ = 1, xn = nh, 0 6 n 6M, Mh = 1
}

is considered.
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Table 1. Errors for the approximate solution of problem (35).

ε N = M Error of w Rate of convergence m CPU times
10−15 20 0.1564 1.012329 9 2.8901

40 0.0785 1.003370 10 3.9512
80 0.0393 1.005520 11 5.5020

160 0.0114 0.996334 12 15.8911

10−20 20 0.1564 1.012329 10 3.1602
40 0.0785 1.003370 11 3.5925
80 0.0393 1.005520 12 5.8238

160 0.0114 0.996334 13 18.0502

Table 2. Errors for the approximate solution of problem (35).

ε N = M Error of w Rate of convergence m CPU times
10−20 20 0.1564 1.012329 10 3.7344

40 0.0785 1.003370 11 4.8879
80 0.0393 1.005520 11 8.8649

160 0.0114 0.996334 12 17.1365

Errors, rate of convergence, number of iterations, and related CPU times are presented
in tables for different values of N and M . The numerical implementations are carried out
by MATLAB R2018b software package, by a PC System of 64 bit, Core i5 CPU, 1.80
GHz, 8 GB of RAM. Errors are computed by the following formula:

max
16k6N−1
16n6M−1

∣∣w(tk, xn)− wkn
∣∣.

The numerical algorithm is performed for m = 1, 2, . . . , p, where p depends on a given
error tolerance ε such that

|pun −p−1 un| < ε and |pvn −p−1 vn| < ε.

Here,m is the index representing the number of fixed point iteration. The exact solution is
denoted by w(tk, xn) = [u(tk, xn), v(tk, xn)]T, and the numerical solution is denoted by
wkn = [ukn, v

k
n]T for the approximate solution of problem (35) at (tk, xn). The numerical

results are presented in the following tables.
Table 1 shows the errors for the approximate solution of (35) with a stopping criteria

ε = 10−15 and 10−20. In the iteration, the initials are taken as vectors of the form

0u
k
n = rand(N + 1, 1), (36)

0v
k
n = 0(N + 1, 1), (37)

where (36) is a random vector with dimension N + 1.
Table 2 shows the errors for the approximate solution of (35) with ε = 10−20. In the

iteration, the initials are taken as the identity matrices of the form

0u
k
n = I(N + 1, M + 1), (38)

0v
k
n = I(N + 1, M + 1). (39)
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The numerical solutions are obtained by using difference scheme (11) jointly with
fixed point iteration. The difference scheme converges for different iteration numbers m,
N = M values, initial vectors 0u

k
n, 0v

k
n, and termination criteria ε. When the maximum

difference at grid points of two successive results gets less than ε, the iterative process is
stopped. Note that if the initials 0u

k
n, 0v

k
n in (36)–(37), (38)–(39) and ε are changed,

the number of iterations and the CPU times increase when the error and the rate of
convergence become constant for a certain N = M value.

As it is obvious from the tables that, if N and M are doubled, the value of errors
decrease approximately by a factor of 1/2 for difference scheme (11). The errors and the
rate of convergence presented in tables indicate the convergence of the difference scheme
and the accuracy of the results. It is observed that the difference scheme has first order of
convergence as it is expected.

5 Conclusion

In this work, the unique solvability for the system of finite difference schemes for coupled
sine-Gordon equations is proved by using the variational formulation. A novel unified
numerical method, which combines the first order of accuracy unconditionally stable
difference scheme with the fixed point iteration, is constructed. Numerical experiments
are implemented to verify theoretical results and to show the efficiency of the unified
method.

Acknowledgment. The authors would like to thank Professor Allaberen Ashyralyev
and the reviewers for their helpful comments.
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