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MODELING DISEASE TRANSMISSION DYNAMICS WITH RANDOM

DATA AND HEAVY TAILED RANDOM EFFECTS: THE ZIKA CASE

Z. BEKIRYAZICI1,∗, T. KESEMEN2, M. MERDAN3, T. KHANIYEV4, §

Abstract. In this study, we investigate a compartmental model of Zika Virus trans-
mission under random effects. Random effects enable the analysis of random numerical
characteristics of transmission, which cannot be modeled through deterministic equa-
tions. Data obtained from Zika studies in the literature are used along with heavy tailed
random effects to obtain new random variables for the parameters of the deterministic
model. Finally, simulations of the model are carried out to analyze the random dynam-
ics of Zika Virus transmission. Deterministic results are compared with results from the
simulations of the random system to underline the advantages of a random modeling
approach. It is shown that the random model provides additional results for disease
transmission dynamics such as results for standard deviation and coefficients of varia-
tion, making it a valuable alternative to deterministic modeling. Random results suggest
around 90% - 120% coefficient of variation for the random model underlining the fact
that the randomness should not be ignored for the transmission of this disease.

Keywords: Zika Virus, Pareto Distribution, Random Differential Equation, Random Ef-
fect, Simulation.
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1. Introduction

Mathematical modeling of disease transmission has been a popular research area for
a couple decades. The developments in epidemiology have let scientists understand the
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spread of infectious diseases which has enabled the mathematical modeling of transmission.
An important tool in epidemiological modeling is the classical SIR model of Kermack and
McKendrick. This model and its versions containing additional parameters/compartments
are extensively used in studies within a broad range from medicine to engineering (Kibona
and Yang, 2017; Merdan et al., 2017, Cruz-Pacheco et al., 2019). Recent applications of
compartmental models include the use of fractional order derivatives for the transmission
of various diseases (Naik et al., 2020; Yavuz and Yokus, 2020; Naik et al., 2020b; Naik et
al., 2020c; Owolabi and Atangana, 2019). A certain application of compartmental models
has been given for the modeling of Zika virus transmission. Zika virus has been named after
the Zika Forest in Uganda where it was first discovered in 1947 and is similar to West Nile
and Dengue viruses (WHO, 2018). The virus causes abnormal brain development and
birth defects if it is transmitted to the fetus during pregnancy and miscarriages, brain
malformations in newborns and various other dangerous results of the disease have led
World Health Organization and other health organizations to issue worldwide warnings in
the last couple of years (WHO, 2018). This is one of the reasons for the increase in the
number of modeling studies on Zika virus transmission (Hasan et al., 2019; González-Parra
et al., 2019; Yogurtcu et al., 2019). However, it is seen that most of these modeling studies
are carried out deterministically (Cai et al., 2019; Tang et al., 2019).

In this study, a recent mathematical model given by Cruz-Pacheco et al. will be analyzed
for the spread of Zika virus with heavy-tailed random effects (Cruz-Pacheco et al., 2019).
It is known that varying environmental conditions such as temperature have important
effects on mosquito populations and hence disease transmission. Changes in temperature
have non-negligible effects on rates of mosquito mortality, incubation rates and etc. (Pinho
et al. 2010). Deterministic models neglect the possible variations of disease transmission
parameters and accept these as constant values for the numerical analyses. Thus, a ran-
dom modeling approach, which considers the deviations of these parameters, may be more
suitable for modeling Zika virus transmission. In this regard, the parameters of the model
given by Cruz-Pacheco et al. will be transformed into random variables. This approach
is an alternative for the analysis of numerical characteristics for the random transmission
of Zika virus such as the expected disease transmission rate and the standard deviation of
disease spread. Another powerful approach for the random analysis of disease transmission
would be to use stochastic differential equations instead of deterministic ones. Stochastic
modeling is frequently used for various infectious diseases such as AIDS (Ding et al., 2008)
and the novel coronavirus (Dordevic et al., 2021). However, in this study we make use of
random differential equations which are more easily obtained from deterministic models
using random effects on the parameters. Pareto distribution, which is a heavy tailed prob-
ability distribution, will be used to model the distribution of random effects. Heavy tailed
distributions have tails that are not exponentially bounded, meaning their tails are heavier
than exponential distribution. While a deterministic study neglects the possibility that a
parameter will assume values that are different from its average value, we want to model
the case where there is a considerable probability for the parameters to assume quantities
that are farther than their mean values. Hence, we use Pareto distributed random variables
as the parameters of the model. Pareto distribution follows the 80-20 rule which is used to
describe many natural phenomena and is a suitable distribution to model the case where
the values distributed in the range of parameters have considerable probabilities. Using
a heavy-tailed probability distribution, namely Pareto distribution, allows us to model
disease transmission scenarios where disease components have a considerable probability
of deviating from their values used for deterministic studies. Studies suggest that heavy-
tailed distributions may better for reflecting real data in some cases (Nair et al., 2013).
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For instance, the original deterministic study given by Cruz-Pacheco et al. uses 0.5 for
the value of the parameter b which denotes the biting rates of mosquitoes (Cruz-Pacheco
et al., 2019). The use of a light-tailed distribution such as Normal distribution would also
provide means for a random analysis, but the probability of the rate of mosquito bites
being considerably different from 0.5 is very low in a light-tailed distribution. The use
of Pareto distribution allows a non-negligible probability for mosquito biting rate to be
distant from its deterministic value 0.5.

The outline of the study can be given as follows. In section 2, the deterministic model
and the parameters are described. In section 3, Pareto distribution and the random model
are presented. Section 4 contains the numerical characteristics and the random analysis
of Zika transmission. Finally, comparison of the random and deterministic results and the
concluding remarks are given.

2. Data and the Deterministic Model

In this study, a SIR-type based model of Zika given by Cruz-Pacheco et al. is (Cruz-
Pacheco et al., 2019) used to model Zika transmission using real data and heavy-tailed
random effects. The equation system is a SIR-based model for the populations of men,
women and the vector and is given as follows:

dSM
dt

= qµ− bmβV SMIV − βMSMIW − µSM , (1)

dIM
dt

= bmβV SMIV + βMSMIW − (γ + µ)IM ,

dSW
dt

= (1− q)µ− bmβV SW IV − βWSW IM − µSW ,

dIW
dt

= bmβV SW IV + βWSW IM − (γ + µ)IW ,

dIV
dt

= bα(1− IV )IM + bα(1− IV )IW − νIV .

where the variables SM (t), IM (t), SW (t), IW (t), and IV (t) denote the ratio of susceptible
and infected men (M), women (W) and vector (V) at any time t. This model is based
on the SIR model where the compartments S and I have been used twice for men and
women with an additional compartment for the infected vector. The model suggests that
the disease spread is a result of the interaction between the susceptibles (SM and SW )
and the infecteds (IM , IW and IV ). The variables SM , SW and IM , IW have been defined
in a way to reflect the population structure (ratio of men to women) and the difference
between these two groups. The descriptions of the parameters are given in Table 2.

The referred study uses deterministic values for the parameters of model (1) for ana-
lyzing Zika Virus transmission in men, women and the vector. The following initial values
are also given in the referred study: SM (0) = 0.5, IM (0) = 0, SW (0) = 0.46, IW (0) = 0.04
and IV (0) = 0.06 (Cruz-Pacheco et al., 2019). The inital values model a case where only a
small fraction of the vector is infected and almost all of the human population is suscepti-
ble to the disease. In the next section we will introduce heavy-tailed random variables for
some of the parameters to model the random transmission of Zika virus and microcephaly
cases according to data obtained from the literature. Additionally, data for the ratio of
men in the total population and rate of human mortality have been obtained from 2018
data of Turkish Statistical Institute for Turkey (TUIK, 2019). Since it has been reported
that there is no Zika virus in Turkey, the use of Turkish household data can only serve as
an indicator of a possible Zika scenario for Turkey (Ministry of Health, Turkey, 2018).
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Table 1. 2018 data for Turkey’s population

Data Value

Total Population (2018) 82003882

Men 40863902

Women 41139980

Total Deaths in 2018 426106

This data corresponds to µ = 1.42 × 10−5, q = 0.5016, 1 − q = 0.4984 which are also
given in Table 2. The original parameter values are given as follows: q is the ratio of
men and has a value of 0.5, b is the biting rate of mosquitoes with a value of 0.5, m
is the ratio of mosquitoes to people with a value of 1.4, βV is the probability of disease
transmission from vector to human and has a value of 0.5, ν is the rate of mosquito
mortality and has a value of 0.25 and µ is the rate of human mortality with a value of
3.7× 10−5. The parameters have been defined to reflect the approach of distributing the
human population into two groups: men and women. Different parameters have been
assigned for the transmission probabilities and rates for these two groups. Note that some
of the values for the parameters have been used as they were given in the original study
(Cruz-Pacheco et al., 2019). The parameters associated with the population structure
(men/women ratio and human mortality rate) and the mosquito population have been
assigned new values as an alternative approach.

3. Pareto Distribution and Random Effects

Pareto distribution is one of the most popular Heavy-tailed distributions, named after
the Italian economist Vilfredo Pareto. Its famous 80-20 distribution rule is known to fit a
variety of natural phenomena, which makes it a suitable choice for modeling heavy-tailed
random effects. A Pareto distributed random variable X is known to have the distribution
function

F (x) = 1−
(
b

x

)α
, x ∈ [b,∞) (2)

with the scale parameter b ∈ (0,∞) and the tail index α ∈ (0,∞). Note that this version
is also known as the General Pareto distribution or Pareto Type I distribution since there
are other versions in the literature. The mean and variance of Pareto distribution are
given as

E(X) =
α

α− 1
b (α > 1), (3)

V ar(X) =
α

(α− 1)2(α− 2)
b2 (α > 2).

Another useful property of the Pareto distribution is that if the random variable U has
the standard uniform distribution then the random variable X = b/(1 − U)1/α is known
to have the Pareto distribution. This property makes Pareto distribution easily applicable
for modeling heavy-tailed events. Hence, we describe the new parameters under Pareto
distributed random effects. The parameters b,m, ν and βV denote the mosquito biting
rates, ratio to humans, mortality rates and transmission rates to humans respectively.
The deterministic model accepts these as constant quantities for the numerical analysis.
However, it is known that changing climatic and environmental factors have effects on
mosquito populations that cannot be ignored. Hence, we transform these parameters to
Pareto distributed random variables to model the random effects of external factors on
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disease transmission. The new random parameters are denoted as b∗,β∗V ,ν∗ and m∗. We
denote the general Pareto distributed random parameters as b∗ ∼ Pareto(α1, β1), β

∗
V ∼

Pareto(α2, β2), ν
∗ ∼ Pareto(α3, β3) and m∗ ∼ Pareto(α4, β4), where αi, βi, i = (1, 4) are

the tail indexes and the scale parameters of the corresponding general Pareto distributions.

Table 2. Descriptions and values of the parameters of the deterministic model

Parameters Descriptions Value

q Ratio of men in total population 0.5016

b Rate of mosquito bites Pareto(3,13)

m Ratio of vector to human Pareto(3,2830)

βV Vector to human transmission probability Pareto(3,13)

α Human to vector transmission probability 0.7

βW Man to woman transmission rate 0.55

βM Woman to man transmission rate 0.55

ν Rate of mosquito mortality Pareto(3,16)

γ Human infectious period (γ−1) 1/6

µ Rate of human mortality 1.42× 10−5

These independently defined random parameters will be assigned tail indexes and scale
parameters such that their expected values match their deterministic values. For instance,
since b = 0.5 is the deterministic baseline value, we assign E(b∗) = 0.5. Moreover, the
values are assigned identical tail indexes to model similarly distributed random effects for
the equation system. Thus, αi, βi, i = (1, 4) given as:

α1, β1 = 3, 1/3⇒ E(b∗) =
α1

α1 − 1
b1 = 0.5,

α2, β2 = 3, 1/3⇒ E(β∗V ) =
α2

α2 − 1
b2 = 0.5,

α3, β3 = 3, 1/6⇒ E(ν∗) =
α3

α3 − 1
b3 = 0.25,

α4, β4 = 3, 28/30⇒ E(m∗) =
α4

α4 − 1
b4 = 1.4.

These general Pareto distributed random parameters have the following probability
distribution functions (Figure 1).

The above-mentioned scaling parameters and tail indexes result in the following vari-
ances for the new random parameters:

α1, β1 = 3, 1/3⇒ V ar(b∗) =
α1

(α1 − 1)2(α1 − 2)
b21 = 1/6,

α2, β2 = 3, 1/3⇒ V ar(β∗V ) =
α2

(α2 − 1)2(α2 − 2)
b22 = 1/6,

α3, β3 = 3, 1/6⇒ V ar(ν∗) =
α3

(α3 − 1)2(α3 − 2)
b23 = 1/24,

α4, β4 = 3, 28/30⇒ V ar(m∗) =
α4

(α4 − 1)2(α4 − 2)
b24 = 98/25.

Using these newly defined random variables in (1), we obtain the random model:
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Figure 1. PDF for Pareto random variables with expected values equal
to 0.25, 0.5 ve 1.4, respectively.

dSM
dt

= qµ− b∗m∗β∗V SMIV − βMSMIW − µSM , (4)

dIM
dt

= b∗m∗β∗V SMIV + βMSMIW − (γ + µ)IM ,

dSW
dt

= (1− q)µ− b∗m∗β∗V SW IV − βWSW IM − µSW ,

dIW
dt

= b∗m∗β∗V SW IV + βWSW IM − (γ + µ)IW ,

dIV
dt

= b∗α(1− IV )IM + b∗α(1− IV )IW − ν∗IV .

This equation system models the transmission dynamics of Zika virus under random
effects. It is stated that changes in daily temperature, rainfall and several other environ-
mental conditions affect the value of parameters, especially for the mosquito population
(Pinho et al., 2010). For instance, Pinho et al. states that average mosquito mortality rate
has a range of 0.02− 0.09 per day for temperatures in the interval of T ∈ [10.54, 33.41]◦C
(Pinho et al., 2010) whereas this range is considered as 0.028− 0.25 by Tang et al. (Tang
et al., 2019). Both studies neglect the variability of this parameter and use its mean value
for numerical investigations. Using the random parameters in (4) will enable the analysis
of the numerical characteristics of the random system, which cannot be done with the de-
terministic model. Note that the values of the parameters of the deterministic model (1)
containing information about the mosquito population have been transformed to random
variables, the values of the parameters containing information about the total population
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have been given values from Turkish household data and the other parameters have been
left the same.

4. Numerical Characteristics of the Random Model

Simulations of the random system (4) have been done in MATLAB using 105 simula-
tions. Results for the deterministic solutions of (1) and the expected values of the system
(4) have been given in the figures below, respectively (Figures 2,3).

Figure 2. Solution curves for the human-associated compartments of the
deterministic model

The maximum and minimum values for the deterministic solutions and expected values
can be seen in the tables below (Tables 3 and 4).

Table 3. Extremum values for the numerical solution of the deterministic model

SM (t) IM (t) SW (t) IW (t) IV (t)

Minimum 0.03783 0 0.01015 1.737× 10−6 1.165× 10−5

Time 62.5 0 63.9 100 100

Maximum 0.5 0.1503 0.46 0.1563 0.2821

Time 0 11.9 0 11.7 14.8

The correspondence between extremum results for the deterministic and random models
can be seen from the tables and figures (Tables 3-4 and Figures 2-4 and 7). This is a clear
indication of the meaningfulness of the random model. The random system (4) can model
the disease dynamics just as accurately as the deterministic system (1). However, unlike
the deterministic system, the random model can express the variations and deviations for
disease transmission as well. Examination of the standard deviations in the random results
is an important tool for analyzing the variability in the dynamics of disease transmission.
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Figure 3. Expected values for the human-associated compartments of the
random model

Table 4. Extremum values for the expectations of the random model

E(SM (t)) E(IM (t)) E(SW (t)) E(IW (t)) E(IV (t))

Minimum 0.02401 0 0.02232 8.535× 10−6 4.577× 10−5

Time 72.1 0 75.3 100 100

Maximum 0.5 0.1424 0.46 0.1393 0.272

Time 0 10.5 0 10.3 13.9

It is seen in these two figures (Figure 3 and Figure 4) that both in the deterministic and
the random cases, the ratio of susceptibles (men and women) decrease to almost zero
(varying between 0.01 to 0.04) in the first 30-40 days and remain at this level until the
end of the process. The infecteds (men, women and vector) increase initially until they
obtain their maximum value (about 0.14 for humans and 0.27 for vector) after which they
decrease to almost zero around day 50-60.

The coefficients of variation, obtained as a percentage of the ratio of the standard devi-
ation to the mean value, and the confidence interval for the expected values within three
standard deviations reveal important results for the variability in the disease dynamics.

Table 5. Maximum values of the coefficients of variation in the random model

CV (SM (t)) CV (IM (t)) CV (SW (t)) CV (IW (t)) CV (IV (t))

Maximum 89.79 121.7 90.3 122.6 108

Time 44.8 100 44.4 100 100

Table 5 and Figure 5 show the maximum values for the coefficients of variation and
the changes in the coefficients of variation, respectively. The main motivation of this
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Figure 4. Expected values of infected compartments in the random model

Figure 5. Coefficients of variation for the random model
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study is that the real life dynamics of disease transmission shows that the parameters
denoting certain aspects of the disease such as mosquito bite rate, vector to human ratio
and etc. are not constant for every case of the disease and vary according to environmental
conditions. This variation results in deviation of results from the deterministic outcomes of
the original model. The coefficient of variation is a useful tool for analyzing this variation.
The coefficient of variation for the Pareto distributed random parameters are about 81.65%
for b, βV and ν and 141.42% for m whereas the coefficient of variation for the compartments
go up to 122.6%. This can be interpreted as a similarity of the deviation in the parameters
and the deviation in the model results.

Figure 6. Confidence intervals for the expected values of the random model

Figure 6 shows the expected values of model compartments within three standard de-
viations of their mean value. The random results show that the ratio of susceptible men,
SM (t), is expected to be about 2.411%, whereas the confidence interval suggests that this
percentage could vary between 0% to 8.789% at t = 100 and the maximum ratio could go
up to 60.775%. The ratio of infected men, IM (t), is expected to be 12.32% at t = 7 but the
confidence interval suggests that the result could be anywhere between [0%, 28.57%]. The
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results for the ratio of susceptible women, SW (t), says that at t = 100, the expectation is
around 2.243% whereas the confidence interval for this expectation is [0%, 8.199%]. The
expected value for the ratio of infected women, IW (t) is 12.23% at t = 7, however, the
confidence interval suggests that this results could vary within [0%, 27.95%]. The expected
value for infected mosquito ratio is 24.87% at t = 10.2 but the confidence interval suggest
that this expectation could be anywhere within [0%, 64.83%].

Coupled with the results for the variation coefficients, the results for confidence intervals
denote that the deterministic results could provide some misleading information since the
randomness of disease transmission is ignored for the deterministic analysis. Figures 5 and
6, along with the results in Table 5, denote that the difference between the random and
deterministic results could go up to 122.6% at certain points of the interval. Hence, Figure
6 is a presentation of the possible deviation of real life results from the results suggested
in a deterministic study.

The results for the case with Pareto distributed random effects can also be compared
to the results of the simulations with exponentially distributed random effects. The ex-
tremum values for exponentially distributed random parameters are given below (Table
6).

Table 6. Extremum values for the random model with exponential ran-
dom effects

SM (t) IM (t) SW (t) IW (t) IV (t)

Minimum 0.0246 0 0.02291 8.852× 10−6 4.779× 10−5

Time 65.8 0 64.8 100 100

Maximum 0.5 0.1421 0.46 0.139 0.2703

Time 0 10.6 0 10.4 14

Considering the deterministic extremal data in Table 3, extremum values of the case
with Pareto distributed random effects in Table 4 and the results in Table 6, it can be said
that all of the models enable similar predictions for the behavior of disease transmission.
Note that the differences between the extremum values of the deterministic and random
cases are results of the Pareto and exponential random effects added to the original model.
An overall comparison of the deterministic results and the random expectations for Pareto
distributed random effects have been presented in the figure below (Figure 7).

Although Turkish household data has been used for the study, it has been reported by
the Turkish Ministry of Health in 2018 that there are actually no verified Zika cases in
Turkey (Turkish Ministry of Health, 2018). In order to give reliability to the arguements
of this study the data from Brazil has been used for a final simulation since the most
recent major Zika virus outbreak began in Brazil in 2015 and spread to other countries in
the Americas. Real data of yearly total infections from Brazil between 2016 and 2020 have
been used to compare the simulation results of the model. The basic reproduction number
for the outbreak in Brazil is estimated to be within the 95% confidence interval (0.523, 6.3)
around (Gao et al., 2016). The following parameter values have been used in the model in
accordance with values from the literature (Wang et al., 2017). Additionally, demographic
data about the population of Brazil has been obtained and used for the simulations and the
calculations of the values of q and µ (World Bank, 2022): q = 0.49228, E(b) = 1, E(m) = 1,
E(βV ) = 0.3, α = 0.3, βW = 0.01, βM = 0.01, E(ν) = 0.3, γ = 13

49 , µ = 1.71112 × 10−5.
These values result in R0 = 1.1524 according to the original study, and this value is within
the confidence interval given in the literature (Wang et al., 2017). The initial values have
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Figure 7. Overall comparison of the deterministic results and the random
expectations for human population

been used as SM (0) = 0.49933, IM (0) = 0.00067, SW (0) = 0.49933, IW (0) = 0.00067 and
IV (0) = 0.0005 to simulate an initial infected population of 274700 people, approximately
matching the real data. The compared real data on infection numbers have been obtained
from Pan American Health Organization (PAHO) (PAHO, 2022) for Brazil between 2016
and 2020. The comparison can be seen in the figure below (Figure 8). In the figure, the
green diamond shows the initial number of simulated infections (274700) that are defined
through the initial values IM (0) and IW (0), whereas the others show the number of infected
individuals in Brazil between 2016 to 2020. The equation system of Cruz-Pacheco et al.
models a decrease in the number of total infections after the peak in 2016 until the end of
the epidemic in 2020, approximately mimicking the dynamics of the spread in real life.

Figure 8. Random Model simulation vs Real Data for Brazil 2015-2020

5. Conclusion

In this paper, the deterministic Zika virus transmission model of Cruz-Pacheco et al.
is used to analyze the random behavior of Zika transmission. Some of the deterministic
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parameters of the model have been transformed to random variables with Pareto distribu-
tion, whereas other parameters have been assigned values suitable to Turkish household
data. The random model, obtained by assigning random coefficients to the original or-
dinary differential equation system, was simulated with both Pareto and exponentially
distributed random effects. Figures 2 and 3 suggest that the deterministic and Pareto dis-
tributed cases are very similar in modeling the behavior of disease transmission, whereas
this similarity can also be seen in the extremum values of the three cases given in Tables 3,
4 and 6. In addition to modeling disease transmission, the random model also models the
variability in disease transmission as well. Study of the standard deviations, variations,
coefficients of variation and confidence intervals for expected values show how the disease
transmission dynamics vary throughout the process. These results, which can be impor-
tant for battling disease spread, cannot be achieved with the deterministic model. The
distribution of disease transmission parameters could be determined using real life field
data from Zika cases around the world which would lead to more precise results. These
results would be beneficial for planning Zika virus disease battling scenarios. This study
acts as a preliminary guide to overcoming the insufficiency of deterministic models for pre-
dicting the varying nature of real life disease transmission. Similar studies can be made for
other diseases by using systems of random differential equations to model disease dynam-
ics. Suitable probability distributions can be added for random effects and field data could
be used to predict the randomness of the parameters. We believe this study will be an
important component in the mathematical modeling studies for Zika virus transmission.
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