17 research outputs found

    Queue Dynamics With Window Flow Control

    Get PDF
    This paper develops a new model that describes the queueing process of a communication network when data sources use window flow control. The model takes into account the burstiness in sub-round-trip time (RTT) timescales and the instantaneous rate differences of a flow at different links. It is generic and independent of actual source flow control algorithms. Basic properties of the model and its relation to existing work are discussed. In particular, for a general network with multiple links, it is demonstrated that spatial interaction of oscillations allows queue instability to occur even when all flows have the same RTTs and maintain constant windows. The model is used to study the dynamics of delay-based congestion control algorithms. It is found that the ratios of RTTs are critical to the stability of such systems, and previously unknown modes of instability are identified. Packet-level simulations and testbed measurements are provided to verify the model and its predictions

    Enhancing AQM to combat wireless losses

    Get PDF
    In order to maintain a small, stable backlog at the router buffer, active queue management (AQM) algorithms drop packets probabilistically at the onset of congestion, leading to backoffs by Transmission Control Protocol (TCP) flows. However, wireless losses may be misinterpreted as congestive losses and induce spurious backoffs. In this paper, we raise the basic question: Can AQM maintain a stable, small backlog under wireless losses? We find that the representative AQM, random early detection (RED), fails to maintain a stable backlog under time-varying wireless losses. We find that the key to resolving the problem is to robustly track the backlog to a preset reference level, and apply the control-theoretic vehicle, internal model principle, to realize such tracking. We further devise the integral controller (IC) as an embodiment of the principle. Our simulation results show that IC is robust against time-varying wireless losses under various network scenarios. © 2012 IEEE.published_or_final_versio

    An Accurate Link Model and Its Application to Stability Analysis of FAST TCP

    Get PDF
    This paper presents a link model which captures the queue dynamics when congestion windows of TCP sources change. By considering both the self-clocking and the link integrator effects, the model is a generalization of existing models and is shown to be more accurate by both open loop and closed loop packet level simulations. It reduces to the known static link model when flows' round trip delays are similar, and approximates the standard integrator link model when the heterogeneity of round trip delays is significant. We then apply this model to the stability analysis of FAST TCP. It is shown that FAST TCP flows over a single link are always linearly stable regardless of delay distribution. This result resolves the notable discrepancy between empirical observations and previous theoretical predictions. The analysis highlights the critical role of self-clocking in TCP stability and the scalability of FAST TCP with respect to delay. The proof technique is new and less conservative than the existing ones

    Distributed control of electric vehicle charging

    Get PDF
    ABSTRACT Electric vehicles (EVs) are expected to soon become widespread in the distribution network. The large magnitude of EV charging load and unpredictable mobility of EVs make them a challenge for the distribution network. Leveraging fasttimescale measurements and low-latency broadband communications enabled by the smart grid, we propose a distributed control algorithm that adapts the charging rate of EVs to the available capacity of the network ensuring that network resources are used efficiently and each EV charger receives a fair share of these resources. We obtain sufficient conditions for stability of this control algorithm in a static network, and demonstrate through simulation in a test distribution network that our algorithm quickly converges to the optimal rate allocation

    Distributed control of electric vehicle charging

    Full text link
    Electric vehicles (EVs) are expected to soon become widespread in the distribution network. The large magnitude of EV charging load and unpredictable mobility of EVs make them a challenge for the distribution network. Leveraging fast-timescale measurements and low-latency broadband com-munications enabled by the smart grid, we propose a dis-tributed control algorithm that adapts the charging rate of EVs to the available capacity of the network ensuring that network resources are used efficiently and each EV charger receives a fair share of these resources. We obtain sufficient conditions for stability of this control algorithm in a static network, and demonstrate through simulation in a test dis-tribution network that our algorithm quickly converges to the optimal rate allocation

    Effects of Delay on the Functionality of Large-scale Networks

    Get PDF
    Networked systems are common across engineering and the physical sciences. Examples include the Internet, coordinated motion of multi-agent systems, synchronization phenomena in nature etc. Their robust functionality is important to ensure smooth operation in the presence of uncertainty and unmodelled dynamics. Many such networked systems can be viewed under a unified optimization framework and several approaches to assess their nominal behaviour have been developed. In this paper, we consider what effect multiple, non-commensurate (heterogeneous) communication delays can have on the functionality of large-scale networked systems with nonlinear dynamics. We show that for some networked systems, the structure of the delayed dynamics allows functionality to be retained for arbitrary communication delays, even for switching topologies under certain connectivity conditions; whereas in other cases the loop gains have to be compensated for by the delay size, in order to render functionality delay-independent for arbitrary network sizes. Consensus reaching in multi-agent systems and stability of network congestion control for the Internet are used as examples. The differences and similarities of the two cases are explained in detail, and the application of the methodology to other technological and physical networks is discussed

    Queue Dynamics With Window Flow Control

    Get PDF
    This paper develops a new model that describes the queueing process of a communication network when data sources use window flow control. The model takes into account the burstiness in sub-round-trip time (RTT) timescales and the instantaneous rate differences of a flow at different links. It is generic and independent of actual source flow control algorithms. Basic properties of the model and its relation to existing work are discussed. In particular, for a general network with multiple links, it is demonstrated that spatial interaction of oscillations allows queue instability to occur even when all flows have the same RTTs and maintain constant windows. The model is used to study the dynamics of delay-based congestion control algorithms. It is found that the ratios of RTTs are critical to the stability of such systems, and previously unknown modes of instability are identified. Packet-level simulations and testbed measurements are provided to verify the model and its predictions
    corecore