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ABSTRACT
Electric vehicles (EVs) are expected to soon become widespread
in the distribution network. The large magnitude of EV
charging load and unpredictable mobility of EVs make them
a challenge for the distribution network. Leveraging fast-
timescale measurements and low-latency broadband com-
munications enabled by the smart grid, we propose a dis-
tributed control algorithm that adapts the charging rate of
EVs to the available capacity of the network ensuring that
network resources are used efficiently and each EV charger
receives a fair share of these resources. We obtain sufficient
conditions for stability of this control algorithm in a static
network, and demonstrate through simulation in a test dis-
tribution network that our algorithm quickly converges to
the optimal rate allocation.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—control theory

Keywords
Electric vehicle charging, congestion control, distributed con-
trol

1. INTRODUCTION
Unlike gasoline-powered cars, battery electric vehicles and

plug-in hybrid electric vehicles, both referred to as ‘EVs’,
are powered by electricity stored in their on-board battery
which is charged when EVs are plugged in to chargers lo-
cated at homes or public charging stations. EV chargers can
impose a significant load on the distribution network: with
AC Level 2 charging, EVs can be charged at up to 80A at
240V [2], a load of 19.2kW, whereas a typical North Ameri-
can home has an average load of only 1kW. Therefore, a sin-
gle EV being charged at the peak Level 2 rate could impose
an instantaneous load as large as that imposed by nearly
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twenty average homes. Consequently, the large-scale intro-
duction of EVs is likely to greatly affect the electrical grid’s
distribution system [5,7,13]. It can cause overloading of dis-
tribution branches and transformers, and voltage drop at
distant buses. Persistent overloading can cause damage to
conductors, overheat transformers, and degrade their insu-
lation. Excessive voltage drop can cause damage to electrical
appliances. Both may eventually lead to a loss of reliability
due to the invocation of the protection system.

The branch and transformer congestion problem is known
as a major barrier to large-scale adoption of EVs [13]. Us-
ing lower-level charging does reduce the impact on the grid
but only at the expense of greatly increasing the duration
of the charging process and the inefficiency of the network
due to under-utilization. A compromise solution is therefore
to exploit elasticity of EV charging load to control charging
rates such that bottleneck lines and transformers are fully
utilized, and the line voltage level remains within a prede-
termined range.

Existing approaches to control EV charging load either
use a central controller to coordinate charging [10,13,20] or
cast the control problem in the form of a distributed opti-
mization [3,8,15]; in both approaches the charging schedule
is computed well ahead of time and decisions are made on
the basis of system-level considerations, such as mitigating
distribution system losses or maximizing the load factor. In
the centralized approach, the central controller uses power
flow analysis to compute a charging schedule that does not
congest any part of the distribution network. This analy-
sis requires an accurate model of the distribution network
and the expected locations of all EVs. In many cases, such
a model is either not available or not up-to-date. Critically,
both approaches also need to predict the future demand from
non-EV loads, the number of charging EVs at each time slot,
their locations, and their initial state of charge. The safety
margin built in to hedge against prediction errors makes
both approaches quite conservative.

Inspired by the design of the Internet, which offers best-
effort services to elastic applications that back off in case of
congestion [19], our approach is to quickly adapt EV charg-
ing rates to the condition of the network [4]. Specifically, we
propose a distributed control algorithm so that every charger
can independently set its charging rate based on conges-
tion signals it receives from measurement nodes installed on
its path to the subtransmission substation. This algorithm
ensures that EV chargers receive a proportionally fair [11]
share of the available capacity of the distribution network,
and lines and transformers are not overloaded. Therefore, an
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EV can be charged at the maximum rate when its feeding
branches and transformers are lightly loaded (e.g., during
off-peak hours), and it is charged at a relatively low rate
when they are heavily loaded (e.g., during on-peak hours).
This is a best-effort service; hence, in the rare event that
the grid is overly congested some EVs might not be fully
charged by their deadlines. Note that this is in line with
today’s practice where operators shed the load in favor of
protecting their transmission and distribution assets.

We make the following three specific contributions:

• We formulate the EV charging control problem as an
optimization problem where the objective function is
chosen such that proportional fairness is achieved at
its solution.

• We decompose the optimization problem into a set of
distributively solvable subproblems and derive stable
control laws by iteratively solving these subproblems.

• We illustrate using numerical simulations that this con-
trol converges in a small number of iterations to the
solution of the utility maximization problem.

In this paper, we focus on a static network scenario in
which the residential load is constant and a fixed number
of EVs are connected to chargers. We explain in Section 3.2
that the dynamic case can be decomposed into a series of
static snapshots. Thus, the control algorithm developed for
a static scenario can also be used in a network with variable
home loads and number of plugged-in EVs.

We make the critical assumption that the congestion level
of every branch is measured in real time and is commu-
nicated to downstream EV chargers with a reasonably low
delay. This requires an infrastructure which allows fast mea-
surement and communication. The future smart grid is likely
to have a considerable number of measurement and control
devices that are interconnected by a ubiquitous low-latency
broadband communication network [6]. This allows us to use
fast time scale measurements and communication to rapidly
adapt the charging rates of EVs to the available capacity of
the network such that sustained overloading of branches is
avoided [4].

2. RELATED WORK
Potential impacts of introducing a large number of EVs

to the distribution network have been explored extensively
in the literature and many scheduling algorithms have been
proposed to shift the EV charging load to off-peak hours,
thereby avoiding branch congestion and voltage drop in the
distribution network. Most existing work suggests a central-
ized control for EV charging load. However, as discussed in
a recent white paper [22], coordinating control at different
levels becomes infeasible with such centralized control. This
highlights the need for distributed control of EV charging
and other responsive loads.

The closest lines of work to ours are by Gan et al. [8] and
Ma et al. [15] which use distributed control to obtain a day-
ahead charging schedule for EVs. In [8], it is assumed that
the distribution transformers and EV chargers are instru-
mented with computation and communication devices, EVs
are charged at a fixed rate, and the charging process cannot
be interrupted. Based on these assumptions, the EV charg-
ing control problem is formulated as a discrete optimization

problem with the objective of flattening the aggregate de-
mand served by a transformer. A stochastic distributed con-
trol algorithm is proposed to find an approximate solution
to this optimization problem; it is shown that this algorithm
almost surely converges to one of the equilibrium charging
profiles. In [15], a decentralized algorithm is proposed to find
the EV charging strategy that minimizes individual charg-
ing costs. It is shown that the optimal strategy obtained
using this algorithm converges to the unique Nash equilib-
rium strategy when there is an infinite population of EVs.
In the case of homogeneous EV populations, this Nash equi-
librium strategy coincides with the valley-filling maximizing
strategy (i.e., the globally optimal strategy).

Our approach differs from the approach of these two pa-
pers in three ways. First, we control charging of EVs in real
time, whereas they compute a day-ahead charging schedule
based on predictions. Second, their goal is to simply flatten
the load at a single point in the network, whereas we deal
with line and transformer overloading in the entire distribu-
tion network. Third, these algorithms do not guarantee fair
allocation of available network capacity to EVs while this is
an important property of our control mechanism.

The idea of real time distributed control of the EV charg-
ing was first introduced in a vision paper [4]; a measurement
and signalling architecture was proposed, and three possible
distributed congestion control schemes for EV charging were
outlined. This paper builds upon the architecture proposed
in [4]. We make more precise assumptions about the underly-
ing system, and propose a distributed algorithm that would
enable fair, timely, and efficient charging of EVs starting
from a static centralized optimization problem.

Our EV charging control problem has the same mathe-
matical formulation as the rate control problem which was
extensively studied in the context of the Internet [12,14,17,
21,23,24] and was used to analyze stability and other prop-
erties of the TCP congestion control protocol (see [4] for a
comprehensive comparison of congestion control in a packet-
switched network and the power distribution network). The
common goal is to determine the available resources and al-
locate these resources among users to maximize a global ob-
jective function of the users’ utilities that takes fairness into
account. Control rules are found by solving the optimization
problem in a distributed fashion exploiting the hidden de-
composition structure of the optimization problem (see [18]
for an introduction to network utility optimization and de-
composition theory). Depending on the choice of the ob-
jective function, the solution to this maximization problem
provides different notions of fairness, namely proportional
fairness, max-min fairness, minimum potential delay fair-
ness, and the more general notion of utility proportional
fairness.

3. BACKGROUND AND ASSUMPTIONS
The electrical grid consists of generation, transmission,

and distribution systems. The electricity generated by power
plants is transmitted over long distances by the transmis-
sion network, i.e., a mesh network of high voltage lines and
step up transformers. Near demand centers, the voltage is
stepped down to the primary distribution voltage at sub-
transmission substations. The distribution system, which is
the focus of this paper, is responsible for delivering electric-
ity from these substations to consumers. A radial distribu-
tion system has a tree structure and is comprised of nodes
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Figure 1: A one-line diagram displays the tree structure of
a radial distribution network. Dotted circles represent up-
stream buses that supply a load connected to the pole-top
transformer denoted by A.

(or buses) interconnected by lines (or feeders)1. A one-line
diagram of a typical North American radial distribution sys-
tem [16] is depicted in Figure 1. This diagram indicates each
circuit irrespective of the number of phases with a single
line. A load bus, represented by a circle in Figure 1, is a
single point of connection on a circuit, and represents the
location where power is consumed. In a distribution net-
work a load bus is either a transformer connection to the
subtransmission system (the root of the distribution tree),
or a distribution substation from which distribution feeders
originate and supply downstream distribution transformers,
which step down the voltage to the secondary distribution
voltage, and various loads, including homes and EV charg-
ers. Loads are usually connected to leaf nodes of the distri-
bution tree (e.g., pole-top transformer A in Figure 1) and
are not drawn in the one-line diagram.

3.1 Measurement and Communication
Currently, only a few measurement nodes are installed at

buses. In the smart grid, we assume that many more such
measurement nodes will be installed at load buses and pole-
top transformers, as shown in Figure 2. A measurement node
could be a current transformer which measures the current
flowing through a line, a voltage transformer which measures
the line voltage, or a sensor which measures the winding
temperature of a transformer. These nodes are capable of
continuously measuring the parameter of interest and com-
puting an average every few milliseconds. This permits us
to compute the congestion state of a line or a transformer.
We define the congestion state as the difference between the
nominal setpoint of the line or the transformer and its load-
ing level. The nominal setpoint should be chosen such that
continuous loading of a line or a transformer at this level

1Most distribution systems are radial; in cases where the
network topology is a mesh, normally-open switches ensure
that power flows only on a radial sub-graph. Thus, in this
paper we assume that the distribution network forms a tree.
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Figure 2: An illustration of a smart distribution network
consisting of MCC nodes, and communication links (dashed
lines).

does not cause any damage; thus, the nominal setpoint is
always less than or equal to the nameplate rating. The con-
gestion state is used to compute the congestion price of a line
or a transformer (see Section 5). Congestion prices are used
by EV chargers to set their rates as described in Section 6.
They are communicated to EV chargers in a signalling cycle
as explained in Section 3.3.

We distinguish between two types of congestion: line con-
gestion and transformer congestion. A line is said to be con-
gested when the current passing through it exceeds its rat-
ing. Likewise, a transformer is said to be congested when it
is loaded higher than its nameplate rating.

In a distribution network, the protection system consist-
ing of fuses, relays, and circuit breakers, disconnects the load
shortly after a persistent line or transformer congestion is de-
tected. We define persistent congestion as a congestion event
which lasts for a certain number of cycles of AC power; this
is a characteristic of the distribution network’s protection
system. When persistent congestion is detected, a protec-
tive relay initiates the tripping action after a certain delay,
which is an operating characteristic of the relay, to avoid
further damage to equipment. This results in a power out-
age in the area supplied by the congested line/transformer.
Therefore, we need to allocate charging rates to EV charg-
ers without triggering the protection system (i.e., without
causing persistent congestion).

We assume that each measurement device is supplemented
with a communication and control module. We refer to the
entire device as a ‘Measurement, Communication, and Con-
trol (MCC)’ node. These MCC nodes form a logical tree
(Figure 2). In a smart grid, a communication network will
connect these MCC nodes to EV chargers (or other control-
lable loads) to enable the transmission of control signals.

3.2 Assumptions
We now lay out the assumptions that we make in this

paper.

• Line or transformer overloading can be attributed en-
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Figure 3: The proposed control algorithm adapts charging
rates of EV chargers to the available capacity of the network.

tirely to its downstream loads. Therefore, if a measure-
ment at a node indicates congestion, it can be ame-
liorated by sending a congestion signal to the node’s
descendants.

• An overload can be detected within a few cycles of its
occurrence, before the invocation of protection mech-
anisms.

• It is not possible to infer congestion implicitly at the
end nodes2. Therefore, congestion must be explicitly
signalled.

• The distribution system can be subject to a transient
congestion for a short durations of up to τ c seconds
before protection mechanisms, such as protective re-
lays are brought to bear3. This gives a congestion sig-
nalling mechanism breathing room to reduce transient
EV overloads. Moreover, we can choose system param-
eters conservatively such that an overshoot above a
nominal setpoint, which is always lower than the name-
plate rating, triggers congestion signalling, but does
not trigger the protection system.

• The communication network is broadband, reliable,
and has a low latency. We also assume that all EV
chargers experience roughly the same delay when they
receive signalling packets from MCC nodes (this is
never exactly true but simplifies the analysis). We de-
note the feedback delay by d.

• The speed-of-light propagation delay between any charger
and its connected substation is small, and typically less
than 1ms. Thus, it is reasonable to ignore it in our
model.

2In recent work, it has been shown that local sensing of the
line voltage or frequency at end nodes can be used to implic-
itly infer the aggregate demand or the power imbalance at
higher levels in the distribution network [9]. Developments
arising from this pioneering work may allow implicit conges-
tion sensing even in the electrical grid.
3We note that τ c is typically inversely proportional to the
magnitude of the overload current.

• EV chargers are owned by electric utilities. Further-
more, they are tamper-resistant and always set their
rate based on signals they receive from MCC nodes.

• An EV battery can be charged at any rate less than the
maximum Amperage rating of its charger, independent
of its state of charge4.

• The load from an EV charger can be increased or de-
creased at a fast time scale (on the order of millisec-
onds) with negligible effect on the EV battery lifetime.

• Rate updates at EV chargers are synchronized. Mea-
surements of the congestion state at MCC nodes are
also synchronized. This can be achieved by a broadcast
time signal.

• The timescale of changes of uncontrolled loads and ar-
rival and departure of EVs is slower than the timescale
of rate updates in our distributed algorithm (Figure 3),
and hence we can decouple them. This permits us to
study our control problem using a model that describes
a snapshot of the system in which uncontrolled loads
are constant and the number of plugged-in EVs is
fixed.

These assumptions imply that it is feasible to design and
implement a control algorithm that changes the EV charg-
ing rate rapidly in response to the congestion state of the
distribution system. With our proposed approach, if an EV
is charging at a rate that overloads the distribution system,
its rate can be decreased before τ c, averting damage and
invocation of grid self-protection mechanisms.

3.3 System Operation
We now describe the operation of our system. Every Tc

milliseconds, the root MCC node initiates a signalling cycle
by sending its congestion price to its direct children. Upon
receiving the congestion price(s), an intermediate MCC node
sends its own congestion price, computed using its latest
recorded congestion state (as discussed in Section 5.3.1),
along with the received price(s) to its children. A signalling
cycle ends when EV chargers receive the congestion prices
from all their parents. In Section 5.3.2, we explain how EV
chargers use congestion prices of MCC nodes located on their
path to set their charging rate.

4. OPTIMIZATION PROBLEM
In this section we formulate the control problem as a cen-

tralized static optimization problem. The global objective
function is chosen such that the solution to this optimiza-
tion problem satisfies the definition of proportional fairness.

4.1 Utility Function
We attribute a utility, i.e., a measure of satisfaction, to an

EV owner whose EV is connected to a charger denoted by s.
This charger is capable of charging EVs at rates that are in
[0,ms], where ms is the peak charging rate that it supports.
Since the departure of EVs from homes and charging sta-
tions is non-deterministic, it is reasonable to assert that EV
owners are greedy and prefer to finish charging their EVs as

4With some battery technologies, the charging rate de-
creases as the state of charge increases. We do not consider
this in our present analysis.
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soon as possible to avoid range anxiety. Hence, we define the
utility of a greedy EV owner by its charging rate xs, i.e., the
EV owner’s satisfaction is proportional to the rate at which
their EV is charged.

4.2 Primal Problem
Our objective is to allocate the available capacity of the

network fairly among EV chargers without straining the dis-
tribution network; this is generally done by solving a con-
strained optimization problem. There exist different fairness
criteria as discussed by [11], and they are differentiated by
the global objective function of the optimization problem.
We adopt the notion of proportional fairness which satisfies
axioms of fairness specified in game theory5. A proportion-
ally fair allocation is in fact a Nash bargaining (arbitrated)
solution [23]. It can be shown that proportional fairness is
achieved if we maximize the value of a global objective func-
tion which is the sum of the logarithm of the utility func-
tions. For notational simplicity, we denote log(xs) by Us.
Observe that Us is infinitely differentiable, increasing, and
strictly concave on its interior domain.

Our optimization problem would therefore become a max-
imization of the sum of the Us of those chargers that are
charging an EV, subject to physical constraints imposed by
chargers, lines, and transformers. Since lines and transform-
ers supply the aggregate load imposed by both homes and
EV chargers, and the home loads are supposedly uncon-
trolled, it is necessary to subtract the load of every home
from the rated capacity of its feeding transformers and lines
to obtain the available capacity of every line and trans-
former. In effect, based on the last assumption of Section 3.2,
we consider a snapshot of the system in which home loads
are constant and a fixed number of EVs are plugged in to
chargers.

The control problem can then be formulated as follows:

max
x

∑
s∈S

Us(xs) (1)

subject to 0 ≤ xs ≤ ms ∀s ∈ S∑
s:Rsl=1

xs ≤ cl ∀l ∈ L,

where S and L are the sets of active EV chargers, and distri-
bution lines and transformer respectively, cl is the available
capacity of line or transformer l, and R is a |S| by |L| matrix
encoding the topology of the network

Rsl =

{
1 if line/transformer l supplies charger s
0 otherwise

We say that a line or a transformer supplies an EV charger
when it is located on the path from the subtransmission
substation to that charger.

This problem is a convex optimization problem as it max-
imizes an objective function which is the sum of concave
functions (and is therefore concave), and each constraint de-
fines a convex set. We denote a rate allocation, i.e., a vector
of charging rates of all chargers, by x =< x1, · · · , x|S| >. A
rate allocation is feasible if it satisfies all constraints of the
optimization problem.

5We have chosen proportionally fair resource allocation since
it is the only one that provides a scale invariant Pareto op-
timal solution.

The two constraints of the above optimization problem
can be written in matrix form:

0 � x � m
xR � c,

where x, c, and m are vectors with |S|, |L|, and |S| com-
ponents respectively, and � is the generalized inequality for
vectors. We refer to the second constraint as the coupling
constraint ; it couples charging rates of different EV charg-
ers supplied by the same line or transformer.

In the next section we write the dual problem and apply
the dual decomposition method to obtain a set of distribu-
tively solvable subproblems. We then design a distributed
algorithm which solves the dual problem by solving these
subproblems locally and independently.

5. CONTROLLER DESIGN
The centralized optimization problem formulated in the

previous section can be solved to find a rate allocation that
is proportionally fair. This requires full knowledge of the
topology of the distribution network, the available capacity
of lines and transformers, and the number and the location
of plugged-in EVs. The distributed approach to solve the
optimal control problem has three key advantages over the
centralized approach. First, it gives autonomy to local con-
trollers thereby increasing robustness of the control system.
Second, it significantly reduces the communication overhead
and is therefore more scalable. Third, it decreases the overall
latency of control as control decisions are made locally.

Our plan is therefore to design a distributed control algo-
rithm by solving the Lagrangian dual of the centralized opti-
mization problem. We apply the dual decomposition method
to obtain distributively solvable subproblems that are con-
trolled at the higher level by a master problem through con-
gestion prices. The proposed algorithm requires solving the
master problem and these subproblems in an iterative fash-
ion. From a control theory standpoint, solutions to these
problems constitute our controls and congestion prices are
feedback.

5.1 Dual Problem
The Lagrangian function of our optimization problem is

g(λ) = max
0�x�m

{
∑
s∈S

log xs +
∑
l∈L

λl(cl − yl)}, (2)

where λ = (λ1, . . . , λ|L|) is a vector of Lagrangian multipliers
associated with the coupling constraints, and

yl =
∑

s:Rsl=1

xs ∀l ∈ L

Thus, the Lagrangian dual problem would be

min
λ

max
0�x�m

{
∑
s∈S

log xs +
∑
l∈L

λl(cl − yl)} (3)

subject to λl ≥ 0 ∀l ∈ L,

which is equivalent to

min
λ

{∑
l∈L

λlcl + max
0�x�m

{
∑
s∈S

fs(xs;λ)}

}
(4)

subject to λl ≥ 0 ∀l ∈ L,
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where

fs(xs;λ) = log xs − xs
∑

l:Rsl=1

λl, (5)

In the above equation, f(x;λ) represents f as a function
of x parameterized by λ. Since fs(xs;λ) is the sum of two
concave functions of xs, it is also concave and has a unique
maximum.

We note that (4) is derived from (3) by using the following
equation.

∑
l∈L

λl ∑
s:Rsl=1

xs

 =
∑
s∈S

xs ∑
l:Rsl=1

λl

 = xRλT

An important remark is that strong duality holds as all
inequality constraints are affine. Therefore, we can write the
following KKT optimality conditions

1

x̂s
=

∑
l:Rsl=1

λ̂l ∀s ∈ S (6)

0 ≤ x̂s ≤ ms ∀s ∈ S (7)

λ̂l ≥ 0 ∀l ∈ L (8)

λ̂l(ŷl − cl) = 0 ∀l ∈ L (9)

where x̂ and λ̂ are the unique optimizers of the Lagrangian
dual problem. The first condition says that the gradient of
Lagrangian vanishes at the optimal point, and the last con-
dition, i.e., the complementary slackness condition, implies
that either the optimal Lagrangian multiplier is zero, or the
corresponding line or transformer is fully utilized, i.e., the
line or transformer loading reached its nominal setpoint.
Combining the first three conditions gives us the following
relation between x̂ and λ̂.

x̂s = min

{
1∑

l:Rsl=1 λ̂l
,ms

}
(10)

5.2 Dual Decomposition
Writing the Lagrangian dual problem in the form of (4)

reveals its hidden decomposition structure [18]. Particularly,
each EV charger can locally solve a subproblem given by

max
0≤xs≤ms

fs(xs;λ), (11)

provided that it knows the sum of the Lagrangian multi-
pliers corresponding to the lines and transformers that are
supplying its load. It turns out that Lagrangian multipliers
play the role of congestion prices (or shadow prices [12]) in
our problem.

These subproblems are controlled by a master problem by
means of congestion prices. The master problem is respon-
sible for updating the congestion prices and can be written
in the following form

min
λ�0

{∑
l∈L

λlcl +
∑
s∈S

fs(x̂s;λ)

}
. (12)

where fs(x̂s;λ) is the optimal value of (11). Observe that
the objective function of the master problem is linear in λ
and its derivative with respect to a Lagrangian multiplier is
given by

∂g

∂λl
(λ) = cl − yl

5.3 Control Laws
Our approach is to solve the dual optimization problem

using a distributed algorithm which has two separate parts.
The first part adjusts congestion prices of lines and trans-
formers by periodically measuring the available capacity and
solving the master problem at each MCC using the gradient
projection method. The second part updates charging rates
of EVs by solving the subproblems.

In the following we derive control laws for updating con-
gestion prices and adjusting charging rates by solving the
master problem and the subproblems respectively. These
control laws constitute the distributed algorithm outlined in
Section 6. In Section 7, we specify sufficient conditions for
convergence of this algorithm to primal and dual optimal
values.

5.3.1 A Control Law for Updating the Congestion
Price

Since the dual function is differentiable, we can adopt the
gradient method with a projection onto the positive orthant
to solve the master problem (12). The following algorithm
updates congestion prices in each iteration in opposite di-
rection to the gradient of the dual function.

λl(t+ 1) = max{λl(t)− κ(cl − yl(t)), 0} ∀l ∈ L (13)

Here κ is a sufficiently small positive constant which deter-
mines the responsiveness and stability of control, and has to
be selected carefully. Note that it is not necessary to esti-
mate cl and yl at an MCC node to compute cl − yl. This
is because cl − yl is equal to the line or transformer loading
subtracted from its nominal setpoint denoted ξl. The nomi-
nal setpoint of a line or transformer is known a priori and its
loading can be measured by the corresponding MCC node.

5.3.2 A Control Law for Adjusting the Charging Rate
We denote the latest congestion price vector that an EV

charger received by λ(t̄). The subproblem (11) can be easily
solved by finding the stationary point of fs(xs;λ).

f ′s(xs(t);λ(t̄)) =
1

xs(t)
−

∑
l:Rsl=1

λl(t̄)
set to

= 0→

xs(t) = min

{
1∑

l:Rsl=1 λl(t̄)
,ms

}
(14)

Note that xs(t) would be the rate of EV charger s for the in-
terval [t, t+1), and adjusting the charging rates impacts the
loading of upstream feeders and transformers immediately6.
More specifically, yl(t) is given by

yl(t) =
∑

s:Rsl=1

xs(t) ∀l ∈ L (15)

We end this section by a remark that the unit of time
in (13) and (14) is Tc milliseconds, and therefore t̄ equals
t− d

Tc
as congestion prices are received by EV chargers after

d milliseconds.

6There is a fundamental difference between congestion con-
trol protocols in the Internet and our EV charge control
protocol. In computer networks, when traffic sources change
their rates it is only reflected on link utilization after a de-
lay, known as the forward delay. However, there is no for-
ward delay in our problem as power flows in the grid at the
speed-of-light.
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6. DISTRIBUTED CHARGING CONTROL
ALGORITHM

We now describe the algorithms that operate at the MCC
nodes and at EV chargers and implement the control laws
derived in Section 5.

6.1 Normal Operation
During normal operation, our distributed charging con-

trol algorithm measures the congestion state of a line or
a transformer and computes the corresponding congestion
price based on (13). This price is sent to descendant EV
chargers in a signalling cycle initiated by the root MCC node
every Tc milliseconds. Recall we assume that MCC nodes are
synchronized and therefore update their congestion prices at
the same time (see Algorithm 1).

Algorithm 1: Congestion price update at MCC node l
with nominal setpoint ξl

input: ξl, κ(> 0)

while true do
Measure load
congestion state← ξl − load
price← max {price− κ× congestion state, 0}
Send price along with all received prices to children
Wait until the next clock tick

end

After receiving congestion prices from upstream MCC nodes,
every charger computes its charging rate using (14) and
starts charging at this rate. We assume that EV chargers
are also synchronized, i.e., they adjust their rates at the
same time.

Algorithm 2: Rate adjustment at EV charger s

input: ms, new congestion prices

while true do
λ← vectorofnew congestion prices
aggregate price←

∑
l∈ascendants λl

rate← min { 1
aggregate price

,ms}
Start charging the battery at rate
Wait until the next clock tick

end

Note that the clock ticks every Tc in both algorithms.

6.2 Emergency Response Mode
To assure grid reliability at all times, we have designed

a ‘fail-safe’ load reduction mechanism to respond to sud-
den load spikes. This mechanism operates both at the MCC
nodes and at EV chargers. If any MCC node detects that
its overall load has exceeded the nominal setpoint of ξl by a
factor η, η > 1 for a duration that exceeds τ c−d, it sends an
emergency shutdown signal to all descendant EV chargers.
In response, all EV chargers reduce their charging rate to 0.
Since this response is guaranteed to move the system from
an overloaded state to an underloaded state within time τ c,
it avoids triggering the protection system, and at the same
time does not affect our proofs of system stability and con-
vergence, discussed next.
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Figure 4: The one-line diagram of our test distribution net-
work.

7. CONVERGENCE ANALYSIS
This section studies the conditions under which the pro-

posed distributed control algorithm converges to the solu-
tion of the centralized optimization problem (1) in a static
context, i.e., no EVs arrive or depart and the change in
the magnitude of uncontrollable loads is negligible. Recall
that the primal optimum is equal to the dual optimum as
strong duality holds. Therefore, we instead show that the
distributed control algorithm converges to the solution of
(3).

Our proof technique is to extend Theorem 1 in [14] to
derive the following result.

Theorem 1. Starting from any initial rates 0 � x � ms

and congestion prices λ � 0, the distributed algorithm in-
troduced in Section 6 converges to the primal-dual optimal
values if

(1) Tc ≥ d

(2) 0 < κ < 2

m2LS

wherem := maxsms, L := maxs
∑
lRsl, and S := maxl

∑
sRsl.

Recall that L is the maximum number of lines and trans-
formers which are instrumented with MCC nodes and are
supplying the load of an EV charger, S is the total number
of EVs being charged in the distribution network, and m is
the maximum charging rate supported by an EV charger.

To prove this theorem, we extend the proof in [14] by
showing that the first condition is satisfied when the commu-
nication delay is bounded by d. Recall that our algorithm re-
quires MCC nodes to update congestion prices periodically;
thus, congestion prices are unchanged between two consecu-
tive updates which are Tc milliseconds apart. Assuming that
t − d

Tc
is the last time that congestion prices are updated,

we have λ(t − d
Tc

) = λ(t) if Tc ≥ d. Substituting λ(t − d
Tc

)

with λ(t) in (14), our algorithm becomes identical to the one
presented in [14].

8. RESULTS
The behavior of our control algorithm is determined by the

value of two critical parameters κ and Tc. The first param-
eter determines the step size in changing congestion prices:
the larger this value, the more responsive the system. The
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Figure 5: The value of the step size κ determines how the
loading of the substation transformer changes over time
(Scenario A).

second parameter determines the frequency of control: the
larger this value, the less the control overhead, but the longer
the time that the system may be experiencing transient con-
gestion (to prevent triggering the protection system, we re-
quire Tc < τ c − d). Theorem 1 states sufficient conditions
under which the proposed distributed algorithm converges.
However, the space of possible parameters defined by The-
orem 1 is large and depending on their values the control
system exhibits different characteristics. In this section, we
simulate our algorithm in a test distribution network to in-
vestigate the sensitivity of the control to the choice of these
two parameters, and decide on their optimal values consid-
ering overall system constraints.

8.1 Test Distribution System
Our analysis is based on a 4.16kV radial distribution sys-

tem comprised of 13 buses. This system is obtained by sim-
plifying the IEEE 13-bus test feeder [1]. In particular, we
do not model in-line transformers, voltage regulators, shunt
capacitor banks, and protection switches. Moreover, we as-
sume that the three phase system is balanced, i.e., loads are
distributed as evenly as possible between the phases. Thus,
we perform a per-phase analysis of the network, assuming
that all lines and transformers are single-phase.

Figure 4 depicts our test distribution network consisting
of a main feeder connecting buses 1, 2, and 3 (the circles
labelled with these numbers in the figure) to the substation
and four sub-feeders branching out from the main feeder.
The main feeder is rated at 730A and sub-feeders 1 to 4
are rated at 340A, 340A, 140A, and 230A respectively. The
network is supplied by a single phase 2.5MVA transformer
which is installed at the substation and steps down the volt-
age from 115kV to 4.16kV. The voltage is further reduced to
the secondary distribution voltage by pole-top transformers
that are connected to buses. For sake of simplicity, in this
paper we do not model these transformers and feeders ra-
diating from them, although the analysis would be exactly
similar to what we do in this section.
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Figure 6: The number of iterations it takes to achieve 95%
convergence (Scenario A).

We assume that the nominal setpoint of each line or trans-
former is equal to its nameplate rating, and every bus in
the test distribution network is instrumented with an MCC
node. Spot loads are connected to selected load buses. We
assume that they draw constant current from the network
and the power factor at the substation bus is one. This per-
mits us to ignore the reactive power flow in our simulations.
Furthermore, it is assumed that EV chargers that support
charging at up to 16A are also connected to selected load
buses.

Table 1 summarizes our simulation scenarios. A simula-
tion scenario describes a snapshot of the system in which
constant current spot loads are connected to buses, and a
number of EVs are charged by chargers which are down-
stream of these buses. We choose Scenario A so that the
substation transformer is the only congested resource when
allocating proportionally fair rates to EV chargers. In con-
trast, in Scenario B, both the substation transformer and
the line connecting buses 2 and 8 become congested simul-
taneously when allocating proportionally fair rates to EV
chargers.

8.2 Sensitivity Analysis
In this section, we compare the number of iterations that

it takes to achieve 95% convergence and the maximum de-
viation from the nominal setpoint value of a line or a trans-
former for different values of κ.

Consider the first simulation scenario. In this case, the
maximum step size for which the convergence of the algo-
rithm is guaranteed is κ∗ = 2

162×18×5
= 8.68× 10−5. As we

increase the value of κ, the control system transitions from
an over-damped system to an under-damped system and
eventually to an unstable system for κ > 8.05× 10−4 which
is much larger than κ∗. Figure 5 shows how the loading of
the substation transformer varies over different iterations for
three different values of κ.

Changing the value of κ changes the system responsive-
ness, specifically, the number of iterations it takes to achieve
the 95% convergence, where the 95% convergence is said to
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The bus number 3 4 5 6 7 8 9 10 11 12
Scenario A 30 2 40 2 40 2 10 2 20 2 70 0 20 2 100 2 20 2 40 2
Scenario B 30 2 40 2 40 2 10 2 20 2 160 0 20 2 10 2 20 2 40 2

Table 1: For each bus the first column shows the spot load connected to it (in Ampere) and the second column shows the
number of EV chargers supplied by it.
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Figure 7: The maximum deviation from the rating of the
substation transformer (Scenario A).

be achieved when the loading of a line or transformer re-
mains in the boundary given by ±5% of its nominal set-
point. Figure 6 shows that the number of iterations required
for 95% convergence decays exponentially as we increase the
value of κ. When the step size is equal to κ∗, it takes 242
iterations to achieve 95% convergence; assuming that Tc is
20 milliseconds the algorithm achieves 95% convergence in
4.8 seconds. Should we set the step size larger, for example
κ = 4×10−4, it takes only 54 iterations to achieve 95% con-
vergence which is equivalent to approximately one second
(though, at this value of κ, convergence is not guaranteed!).

We find that the maximum deviation from the set point
value is almost 4% for a wide range of step size values includ-
ing κ∗ (see Figure 7). However, once κ is large, the system
starts oscillating around the set point value and the maxi-
mum deviation could be relatively high.

Now consider the second simulation scenario. We find that
similar to Scenario A, the number of iterations it takes to
achieve 95% convergence decays exponentially as we increase
the value of κ. If we set the step size to κ∗, the algorithm
converges after 354 iterations and the maximum deviation
is about 1%.

Lastly, we validate the assumption that if the timescale of
changes of uncontrolled loads and arrival and departure of
EVs is slower than the timescale of rate updates in our algo-
rithm, the stability result obtained for a static network sce-
nario can be extended to the dynamic case. To see this, sup-
pose that uncontrolled loads vary every 5 seconds in our test
distribution network, and the system can be described in an
interval of 15 seconds by the following sequence of snapshots:
Scenario A, Scenario B, and again Scenario A. Figure 8 and
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Figure 8: Loading of the substation transformer as the sys-
tem transitions from Scenario A to Scenario B after 250
iterations and back to Scenario A again after another 250
iterations.

Figure 9 show the substation transformer loading and the
loading of the line connecting buses 2 and 8 respectively, as-
suming that the step size is κ∗, and Tc is 20 milliseconds. It
can be readily seen that since κ and Tc are chosen according
to Theorem 1, transitions from one scenario to another one
does not destabilize the system.

As an extreme case, we consider the situation where the
home load goes from zero (so that all EVs are charged at
their maximum rate) to Scenario A, where the transformer
is congested, and back to zero in the three time periods (Fig-
ure 10). Here, at time 5s, without the emergency response
mechanism, the transient congestion at the transformer lasts
for 30 iterations or 0.6s. However, by adding the emergency
response mode which is invoked after 5Tc = 100ms, the tran-
sient load does not exceed the design specification of τ c =
200ms, avoiding invocation of the grid protection system.

8.3 Proportional Fairness
The solution to the centralized optimization problem (3)

indicates that the fair share of every EV charger in Scenario
A must be 11.72A. Our results also show that when the
algorithm converges, 11.72A is allocated to each charger.
Figure 11 shows the charging rates of a few EV chargers
over time.

In Scenario B, the proportionally fair rate of chargers con-
nected to buses 9 and 12 is 2.5A, whereas the proportionally
fair rate of all other chargers is 14.35A (see Figure 12). This
is because chargers connected to buses 9 and 12 have both
bottleneck resources on their path to the substation, and
therefore their fair rate would be smaller than other charg-
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Figure 9: Loading of the line connecting buses 2 and 8 as
the system transitions from Scenario A to Scenario B after
250 iterations and back to Scenario A again after another
250 iterations.

ers. Note that the optimal congestion price of non bottleneck
lines and transformers is zero (see Equation 9).

8.4 Design Space
As discussed earlier, our design space is defined by the

conditions of Theorem 1. Clearly, the step size should be
equal to κ∗ to increase responsiveness of the control system,
thereby reducing the number of iterations it takes to achieve
95% convergence. Once we fix the value of κ, we decide on
the value of Tc. Since the 95% convergence time is propor-
tional to Tc, we prefer to set it as small as possible, i.e. equal
to d.

However, in practice Tc is also bounded from below by an-
other parameter. It turns out that sending congestion prices
periodically from MCC nodes to EV chargers causes a signif-
icant communication overhead. In effect, the communication
medium and the protocol chosen for transmission of these
signals determine the fastest rate at which we can propa-
gate updates in our algorithms. Hence, although the com-
munication delay is of the order of a few milliseconds, it is
not feasible to update congestion prices faster than every 20
milliseconds.

9. DISCUSSION AND CONCLUSION
Our work represents a novel approach to controlling the

charging of electric vehicles. Instead of forecasting the num-
ber of EVs and the non-EV load several hours ahead and
solving an optimization problem, we rely on fast measure-
ments and communication to avert persistent congestion and
the invocation of protection mechanisms. Moreover, by us-
ing a mathematical framework originally developed for rate
control in the Internet, each EV charger can independently
update its charging rate, yet the global allocation converges
to the nominal operating setpoint, the allocated rates are
proportionally fair, and the allocation is optimal. Addition-
ally, the use of an emergency response mode averts protec-
tion events without compromising these benefits.
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Figure 10: Loading of the substation transformer as the sys-
tem transitions from zero home load to Scenario A after 250
iterations and back to zero home load again after another
250 iterations.

Our control algorithm can be used to implement demand
response (via EV charging) in a distribution network. This
requires defining a new type of congestion which corresponds
to generation shortfall. Concretely, when supply falls short
of demand, the system operator sends a signal to root MCC
nodes. Consequently, each root MCC node indicates conges-
tion by increasing its congestion price or sending an emer-
gency shutdown signal to controlled loads in its distribution
tree.

A possible extension to our work would be to investi-
gate the voltage drop problem at distant buses. This re-
quires adding other constraints to the centralized optimiza-
tion problem. A voltage drop can be modeled as line con-
gestion. Corresponding MCC nodes should update their con-
gestion state based on the difference between the measured
line voltage and their rated voltage.

Another direction for future work is to design an asyn-
chronous distributed algorithm to control EV charging, sim-
ilar to the algorithm proposed in [14]. This eliminates the
need for time synchronization between EV chargers and MCC
nodes and would give us a new bound on step size values for
which convergence of the algorithm is guaranteed.

It is interesting to compare our distributed approach with
a centralized one. They can be compared in terms of robust-
ness, efficiency, communication overhead, and control and
communication delay. The distributed approach is more ro-
bust as there is no single point of failure. The centralized
approach is potentially more efficient if the primal optimiza-
tion problem can be solved quickly. Both approaches are
expected to have roughly the same overhead and delay. A
further comparison of these two approaches is left for future
work.

The main limitation of our approach is that it requires
a heavy communication overhead; our design point is one
message to each EV every 20ms. Reducing this overhead by
decreasing the communication frequency, or by using an un-
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Figure 12: Changes to charging rates of three chargers over
time obtained for Scenario B.
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Figure 11: Changes to charging rates of three chargers over
time for Scenario A.

derlying broadcast medium, such as 700 MHz cellular radio,
is a clear direction for future work.

A second problem with our approach is that it does not
scale well: the choice of κ, which controls system respon-
siveness, is constrained by the number of EVs and the max-
imum EV charging rate. As these increase, κ and system
responsiveness decrease. What is needed is a less conserva-
tive bound for κ that has better scaling properties. Alterna-
tively, we could use a larger value of κ than κ∗ and then rely
on the emergency response mode to address any resultant
overloads. We plan to investigate these alternatives in future
work.

Finally, our operating parameters, such as the protection
threshold τ c, safety margin η, and communication inter-
val Tc would be better chosen from a realistic EV charging
testbed. We hope to validate our choice of these parameters
through a deeper engagement with electric utilities.
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