4 research outputs found

    Escalonamento e alocação de registradores sob execução condicional

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós -Graduação em Computação.Esta dissertação descreve como resolver dois problemas clássicos da Síntese de Alto Nível, através de uma abordagem orientada à exploração de soluções alternativas. O primeiro é o problema de escalonamento de operações de um dado algoritmo sob restrição de recursos físicos, cuja solução define quando cada operação é executada, respeitando a ordem de precedência imposta pelo algoritmo. O segundo é a respectiva alocação de registradores, cuja solução determina quantos registradores são necessários no circuito digital para armazenar todos os valores produzidos por algumas operações até serem consumidos por outras. Como um algoritmo pode conter construções condicionais (ex. "if-then-else"), possivelmente aninhadas, o conceito de predicado é introduzido para permitir a modelagem de execução condicional, substituindo a tradicional noção de dependência de controle, que limita a exploração de paralelismo. Esta dissertação descreve a abordagem proposta, a modelagem que a ampara e a implementação de ferramentas que a suportam (escalonador e alocador). São apresentados resultados experimentais que se mostram promissores quando comparados aos obtidos em outras abordagens

    Power and memory optimization techniques in embedded systems design

    Get PDF
    Embedded systems incur tight constraints on power consumption and memory (which impacts size) in addition to other constraints such as weight and cost. This dissertation addresses two key factors in embedded system design, namely minimization of power consumption and memory requirement. The first part of this dissertation considers the problem of optimizing power consumption (peak power as well as average power) in high-level synthesis (HLS). The second part deals with memory usage optimization mainly targeting a restricted class of computations expressed as loops accessing large data arrays that arises in scientific computing such as the coupled cluster and configuration interaction methods in quantum chemistry. First, a mixed-integer linear programming (MILP) formulation is presented for the scheduling problem in HLS using multiple supply-voltages in order to optimize peak power as well as average power and energy consumptions. For large designs, the MILP formulation may not be suitable; therefore, a two-phase iterative linear programming formulation and a power-resource-saving heuristic are presented to solve this problem. In addition, a new heuristic that uses an adaptation of the well-known force-directed scheduling heuristic is presented for the same problem. Next, this work considers the problem of module selection simultaneously with scheduling for minimizing peak and average power consumption. Then, the problem of power consumption (peak and average) in synchronous sequential designs is addressed. A solution integrating basic retiming and multiple-voltage scheduling (MVS) is proposed and evaluated. A two-stage algorithm namely power-oriented retiming followed by a MVS technique for peak and/or average power optimization is presented. Memory optimization is addressed next. Dynamic memory usage optimization during the evaluation of a special class of interdependent large data arrays is considered. Finally, this dissertation develops a novel integer-linear programming (ILP) formulation for static memory optimization using the well-known fusion technique by encoding of legality rules for loop fusion of a special class of loops using logical constraints over binary decision variables and a highly effective approximation of memory usage

    Coordinated parallelizing compiler optimizations and high-level synthesis

    Full text link
    We present a high-level synthesis methodology that applies a coordinated set of coarse-grain and fine-grain parallelizing transformations. The transformations are applied both during a presynthesis phase and during scheduling, with the objective of optimizing the results of synthesis and reducing the impact of control flow constructs on the quality of results. We first apply a set of source level presynthesis transformations that include common sub-expression elimination (CSE), copy propagation, dead code elimination and loop-invariant code motion, along with more coarse-level code restructuring transformations such as loop unrolling. We then explore scheduling techniques that use a set of aggressive speculative code motions to maximally parallelize the design by re-ordering, speculating and sometimes even duplicating operations in the design. In particular, we present a new technique called "Dynamic CSE" that dynamically coordinates CSE and code motions such as speculation and conditional speculation during scheduling. We implemented our parallelizing high-level synthesis in the SPARK framework. This framework takes a behavioral description in ANSI-C as input and generates synthesizable register-transfer level VHDL. Our results from computationally expensive portions of three moderately complex design targets, namely, MPEG-1, MPEG-2 and the GIMP image processing too], validate the utility of our approach to the behavioral synthesis of designs with complex control flows

    Techniques d'exploration architecturale de design à usage spécifique pour l'accélération de boucles

    Get PDF
    RÉSUMÉ De nos jours, les industriels privilégient les architectures flexibles afin de réduire le temps et les coûts de conception d’un système. Les processeurs à usage spécifique (ASIP) fournissent beaucoup de flexibilité, tout en atteignant des performances élevées. Une tendance qui a de plus en plus de succès dans le processus de conception d’un système sur puce consiste à spécifier le comportement du système en langage évolué tel que le C, SystemC, etc. La spécification est ensuite utilisée durant le partitionement pour déterminer les composantes logicielles et matérielles du système. Avec la maturité des générateurs automatiques de ASIP, les concepteurs peuvent rajouter dans leurs boîtes à outils un nouveau type d’architecture, à savoir les ASIP, en sachant que ces derniers sont conçus à partir d’une spécification décrite en langage évolué. D’un autre côté, dans le monde matériel, et cela depuis très longtemps, les chercheurs ont vu l’avantage de baser le processus de conception sur un langage évolué. Cette recherche a abouti à l’avénement de générateurs automatiques de matériel sur le marché qui sont des outils d’aide à la conception comme CapatultC, Forte’s Cynthetizer, etc. Ainsi, avec tous ces outils basés sur le langage C, les concepteurs ont un choix de types de design élargi mais, d’un autre côté, les options de designs possibles explosent, ce qui peut allonger au lieu de réduire le temps de conception. C’est dans ce cadre que notre thèse doctorale s’inscrit, puisqu’elle présente des méthodologies d’exploration architecturale de design à usage spécifique pour l’accélération de boucles afin de réduire le temps de conception, entre autres. Cette thèse a débuté par l’exploration de designs de ASIP. Les boucles de traitement sont de bonnes candidates à l’accélération, si elles comportent de bonnes possibilités de parallélisme et si ces dernières sont bien exploitées. Le matériel est très efficace à profiter des possibilités de parallélisme au niveau instruction, donc, une méthode de conception a été proposée. Cette dernière extrait le parallélisme d’une boucle afin d’exécuter plus d’opérations concurrentes dans des instructions spécialisées. Notre méthode se base aussi sur l’optimisation des données dans l’architecture du processeur.---------- ABSTRACT Time to market is a very important concern in industry. That is why the industry always looks for new CAD tools that contribute to reducing design time. Application-specific instruction-set processors (ASIPs) provide flexibility and they allow reaching good performance if they are well designed. One trend that gains more and more success is C-based design that uses a high level language such as C, SystemC, etc. The C-based specification is used during the partitionning phase to determine the software and hardware components of the system. Since automatic processor generators are mature now, designers have a new type of tool they can rely on during architecture design. In the hardware world, high level synthesis was and is still a hot research topic. The advances in ESL lead to commercial high-level synthesis tools such as CapatultC, Forte’s Cynthetizer, etc. The designers have more tools in their box but they have more solutions to explore, thus their use can have a reverse effect since the design time can increase instead of being reduced. Our doctoral research tackles this issue by proposing new methodologies for design space exploration of application specific architecture for loop acceleration in order to reduce the design time while reaching some targeted performances. Our thesis starts with the exploration of ASIP design. We propose a method that targets loop acceleration with highly coupled specialized-instructions executing loop operations. Loops are good candidates for acceleration when the parallelism they offer is well exploited (if they have any parallelization opportunities). Hardware components such as specialized-instructions can leverage parallelization opportunities at low level. Thus, we propose to extract loop parallelization opportunities and to execute more concurrent operations in specialized-instructions. The main contribution of this method is a new approach to specialized-instruction (SI) design based on loop acceleration where loop optimization and transformation are done in SIs directly, instead of optimizing the software code. Another contribution is the design of tightly-coupled specialized-instructions associated with loops based on a 5-pattern representation
    corecore