7,492 research outputs found

    Global state predicates in rough real-time

    Get PDF
    Distributed systems are characterized by the fact that the constituent processes have neither common memory nor a common system clock. These processes communicate solely via message passing. While providing a number of benefits such as increased reliability, increased computational power, and geographic dispersion, this architecture significantly complicates many of the tasks of software development and verification, including evaluation of the program state. In the case of distributed systems, the program state is comprised of the local states of the constituent processes, as well as the state of the channels between processes, and is called the global state.;With no common system clock, many distributed system protocols rely on the global ordering of local process events imposed by the message passing that occurs between processes. This leads to a partial global ordering of local process events, which can then be used to determine which process states could (or could not) have occurred simultaneously.;Traditional predicate evaluation protocols evaluate predicates on the global state of a distributed computation using consistent global states. This evaluation is complicated by the fact that the event ordering imposed by message passing is only partial. A complete history of the global states that occurred during an execution cannot always be constructed. This introduces inefficiency into predicate detection protocols and prohibits detection of certain predicates.;This dissertation explores the use of this rough global time base for global state predicate evaluation within distributed systems. By structuring the evaluation on the assumption that a global time base exists, we can develop simple and efficient protocols for both stable and unstable predicate evaluation. Further, we can evaluate certain predicates which are not easily evaluated using consistent global states. We demonstrate these advantages by developing protocols for detection of distributed termination, distributed deadlock detection, and detection of certain unstable predicates as they occur. as the global time base is rough, we can only detect unstable predicates which remain true for a sufficient duration. We additionally develop several formalizations which assist the protocol developer in dealing with the fact that the global time base is not perfect. We demonstrate the application of these formalizations within the protocols that we develop

    QuaRel: A Dataset and Models for Answering Questions about Qualitative Relationships

    Full text link
    Many natural language questions require recognizing and reasoning with qualitative relationships (e.g., in science, economics, and medicine), but are challenging to answer with corpus-based methods. Qualitative modeling provides tools that support such reasoning, but the semantic parsing task of mapping questions into those models has formidable challenges. We present QuaRel, a dataset of diverse story questions involving qualitative relationships that characterize these challenges, and techniques that begin to address them. The dataset has 2771 questions relating 19 different types of quantities. For example, "Jenny observes that the robot vacuum cleaner moves slower on the living room carpet than on the bedroom carpet. Which carpet has more friction?" We contribute (1) a simple and flexible conceptual framework for representing these kinds of questions; (2) the QuaRel dataset, including logical forms, exemplifying the parsing challenges; and (3) two novel models for this task, built as extensions of type-constrained semantic parsing. The first of these models (called QuaSP+) significantly outperforms off-the-shelf tools on QuaRel. The second (QuaSP+Zero) demonstrates zero-shot capability, i.e., the ability to handle new qualitative relationships without requiring additional training data, something not possible with previous models. This work thus makes inroads into answering complex, qualitative questions that require reasoning, and scaling to new relationships at low cost. The dataset and models are available at http://data.allenai.org/quarel.Comment: 9 pages, AAAI 201

    How to Achieve the Physicalist Dream Theory of Consciousness: Identity or Grounding? (2020)

    Get PDF
    I argue for three claims. First, there is a strong argument for identity physicalism (Lewis, Sider, Dorr) over dualism. It does achieve the physicalist dream of a maximally simple and uniform view of reality. However, there are also strong arguments against identity physicalism concerning the special nature of conscious experiences. Second, although nonidentity "ground" physicalism (Campbell, Johnston, Schaffer) is a possible fallback position, there is no reason to prefer to property dualism. It provides an equally complex and unattractive picture of nature. Third, assuming identity physicalism fails, we also should not much care about which of these options is right. In fact, it becomes difficult to understand the difference. The upshot is that, when it comes to the metaphysics of consciousness, the ā€œbig divideā€ is between identity physicalism (Lewis, Sider, Dorr) and all the rest. This is where the debate should focus
    • ā€¦
    corecore