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ABSTRACT

Distributed systems are characterized by the fact that the constituent processes have nei
ther common memory nor a common system clock. These processes communicate solely 
via message passing. While providing a number of benefits such as increased reliability, 
increased computational power, and geographic dispersion, this architecture significantly 
complicates many of the tasks of software development and verification, including evalua
tion of the program state. In the case of distributed systems, the program state is comprised 
of the local states of the constituent processes, as well as the state of the channels between 
processes, and is called the global state.

With no common system clock, many distributed system protocols rely on the global 
ordering of local process events imposed by the message passing that occurs between pro
cesses. This leads to a partial global ordering of local process events, which can then be 
used to determine which process states could (or could not) have occurred simultaneously, 
e.g. determine which global states are consistent.

Traditional predicate evaluation protocols evaluate predicates on the global state of a 
distributed computation using consistent global states. This evaluation is complicated by 
the fact that the event ordering imposed by message passing is only partial. A complete 
history of the global states that occurred during am execution cannot always be constructed. 
This introduces inefficiency into predicate detection protocols and prohibits detection of 
certain predicates.

The assumption that no global time base exists because no global system clock exists 
is overly restrictive in certain cases. A number of fault-tolerant clock synchronization pro
tocols have appeared in the literature. These protocols keep the difference in process clock 
readings at any instant within some known bound, creating a rough global time base for 
the distributed system.

This dissertation explores the use of this rough global time base for global state predi
cate evaluation within distributed systems. By structuring the evaluation on the assumption 
that a global time base exists, we can develop simple and efficient protocols for both stable 
and unstable predicate evaluation. Further, we can evaluate certain predicates which are 
not easily evaluated using consistent global states. We demonstrate these advantages by 
developing protocols for detection of distributed termination, distributed deadlock detec
tion, and detection of certain unstable predicates as they occur. As the global time base is 
rough, we can only detect unstable predicates which remain true for a sufficient duration. 
We additionally develop several formalizations which assist the protocol developer in deal
ing with the fact that the global time base is not perfect. We demonstrate the application 
of these formalizations within the protocols that we develop.

xi
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Chapter 1

Introduction

1.1 Introduction

Distributed systems are characterized by the fact that the constituent processes have nei

ther a common memory nor a common system clock. Processes are connected via some 

communication medium, or channel. The processes then communicate solely via message 

passing. This system architecture provides a number of benefits.

•  Distributed systems can perform computations redundantly. This increases overall 

system reliability. This type of distributed system is often used for life critical control 

system applications. Fly-by-wire aircraft control systems are an example. In this 

type of control system, several microprocessors perform identical computations using 

redundant inputs. The processors then vote on the output control signal, voting out 

any processor which has strayed too greatly from the others [2].

• Distributed systems can be geographically dispersed. This allows remote access to 

centralized services, such as access to a file system maintained by a library. These are

2
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CHAPTER 1. INTRODUCTION 3

often client-server applications. It also allows a number of geographically dispersed 

resources to be connected into a single application, such as banking transaction man

agement.

• Finally, distributed systems can provide greater computational power than that pro

vided by a single computer. An example of this type of system is message-passing 

multiprocessors. These are computers which are comprised of a number of connected, 

but autonomous, microprocessors, which are used concurrently for parallel computa

tions.

While providing a number of benefits, this system architecture significantly complicates 

the task of software development and verification. One of the fundamental problems is 

that no global state exists naturally in these systems. It must be constructed via message 

passing.

Knowledge of the system state, and the ability to evaluate predicates on that state, are 

required for application development on any system architecture. For instance, production 

computations are often monitored through the use of assert macros to assure continued op

eration in accordance with the specification [22]. The ability to set breakpoints and examine 

the current program state is fundamental to program debugging. Application control often 

requires the ability to detect certain system states, such as termination, deadlock, or the 

loss of a token.

In a sequential program, construction of the global state is trivial. It is simply a snapshot 

of all program variables’ values, including implicit variables, such as a program counter and 

a stack pointer, at some instant in time. In a distributed system, however, the program 

state is not so readily available due to the lack of a common time base and the physical
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CHAPTER 1. INTRODUCTION 4

dispersion of program components.

For example, consider a system of N  processes. If the process clocks are perfectly 

synchronized, we can easily construct a global state. Each process just takes a snapshot of
*
j its state at some agreed-upon clock value T. These local states can then be accumulated,
*\
( via message passing, into a snapshot of the global system state at the instant all processi|
' clocks read T. However, if the clocks are not synchronized, a global state constructed in

this manner is meaningless. Each process clock may have read T  at different instants in
ii
| real time.
1
2 i

I 1.2 Event Ordering
I
1

In the absence of a global time base, message passing is the primary mechanism for ordering 

local events globally. We know that a message takes non-zero time to travel from one process 

to another. We then know that any event prior to, and including, a message send in one 

process occurred before any event after, and including, the corresponding message receipt 

in another process. If it weren’t for the ordering imposed by message passing, there would 

be no way to determine when the events of one process occurred in relation to the events 

of another process (unless the execution were artificially controlled in some way).

Lamport formalized this notion as the “happens before” relation He defined it as 

the smallest relation satisfying the following three conditions [34].

1. If o and b are events in the same process, and o comes before 6, then a b.

2. If a is the sending of a message by process Pi and b is the receipt of that message by 

process Pj then a —► b.
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CHAPTER 1. INTRODUCTION 5

3. If a -¥  b and 6 —► c, then o —> c.

If a -fit b and 6 -f* a, then a  and b are said to be concurrent, a||6. Concurrent events 

could have occurred at the same time instant during the execution. This type of ordering is 

sometimes referred to as the causal order, since we can determine when one event a might 

have an impact on (caused) another event 6 based on this ordering.

nv

01:;

a.

ai

Figure 1.1: Causal Ordering

An example is shown in figure 1.1. Here the events executed in processes Pi, Pj, and 

Pit shown in their order of occurrence. We know that real time increases along each 

axis of the figure. However, in the absence of a global time base, we don’t know the when 

the events in one process occurred relative to the events in other processes, other than the 

fact that we know messages won’t travel backwards in time. Each axis may be scaled on 

a different and varying real time scale. The time scale is irrelevant to this event ordering. 

We could expand or shrink any process’ time line, so long as the local event order was 

maintained and messages didn’t  travel backward in time, and the causal event ordering 

would be unchanged.

We then know that event must occur before event 62, as message transmission requires
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CHAPTER 1. INTRODUCTION 6

nonzero real time. Thus ai —► 62. Since we know that events can only occur sequentially 

in any single process, we also know that at occurs before 63. Finally, we can say nothing 

definitive about the order of occurrence of event C2 in relation to any of the events in 

processes Pi and Pj. Event C2 is then concurrent with each of the events in processes Pi

ij and Pj.
j

This ordering underlies the notion of a consistent global state [43]. A consistent global 

state is a set of local process states, one from each process, and channel states, one from
i
\ each channel, which could have occurred at some instant in real time during the execution.)

Most predicate evaluation algorithms evaluate predicates over consistent global states.

j A consistent global state can be constructed by taking a cut through the ordered sets

of events, one from each process and channel, comprising an execution. All events leading 

to the states contained in the cut are part of the cut. The cut is then consistent if, for any 

event 6 in the cut, if a -> b then a is also in the cut. This is illustrated in figure 1.2. Cut A 

is inconsistent because a state in process Pk in which message m has been received cannot 

have occurred at the same time as a state in process Pt in which message m has not yet 

been sent.

Henceforth we use the term “instantaneous” global state synonymously with global state 

to refer to a set of process states, one from each process, which occurred at the same time 

instant. This emphasizes its difference from a consistent global state, which may or may 

not have ever occurred during the execution. Note that an instantaneous global state is 

consistent, but a consistent global state is not necessarily an instantaneous global state.
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CHAPTER 1. INTRODUCTION 7

Cut B 
Consistent

Cut A 
Inconsistent

m

) Figure 1.2: Consistent Global States
i

i 1.3 Global Predicate Evaluation

Since a consistent global state may, or may not, have ever occurred during the computation, 

it is impossible to detect certain predicates using only consistent global states. For exam

ple, suppose the following code segments run on two processors Pi and Pj simultaneously. 

Further suppose that we want to detect the predicate ” Variable y has the value 3 in all 

processes”.

P i: Pj-
y»3 input (y)
input(x) z*y+3
i f  (x -  TRUE) y*3

y*5

Now suppose we observe the following states of each process for some execution.

Pi: P  •r j  •
y*3 y»2
x*TRUE z*5
y»5 y*3

In the absence of communication, each state in P, is concurrent with every state in Pj,
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CHAPTER 1. INTRODUCTION 8

and vice-versa. Based on this knowledge alone, we cannot determine whether or not the 

predicate ever held at some real time instant, only that it could have.

If we had a  perfect global time base then we would know the time at which each of 

these events occurred. We could then determine whether or not the predicate held at some 

point. For example, suppose that each process clock reads integer values and we observed 

the following states.

With the additional information about the system’s behavior in an absolute time frame, 

we can determine that the predicate was never true.

Construction of a consistent global state can also be complex. For example, consider Lai 

and Yang’s algorithm for global snapshots [62]. According to their protocol, each process 

takes a snapshot at its convenience, but adheres to the following rules.

• Every process is initially white and turns red when it takes a snapshot.

• Every message sent by a red(white) process is colored red(white).

• A white process must take a snapshot before it receives a red message. (Thus, the 

arrival of a  red message will cause a white process to take a snapshot.)

This scheme is more complex than the method we outlined earlier, by which a global 

snapshot is taken by having each process take its state at an agreed upon time instant.

Further, it would be more complex to have multiple snapshots in progress. For example, 

consider the execution depicted in figure 1.3. Here, process colors, as indicated by line type, 

are shown as a function of real time for a two process system. In order to have multiple

Ci =  1 : y*3 Cj = 1' y=2
Ci =  5 : x«TRUE Cj =  2 : z»5
Ci =  6 : y*5 Cj =  3 : y=3
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CHAPTER 1. INTRODUCTION 9

p.
t

♦

pj
t

Figure 1.3: Simultaneous Snapshots

snapshots in progress, each process would have to keep track of what colors it had already 

been so that, upon receipt of a colored message, the process knows whether or not it has 

already taken its state. For example, in the figure, process Pj receives two messages which 

are colored white. Further, Pj is a color other than white at the time the messages are 

received. In the absence of other information, Pj would have to assume that it should take 

its state when it receives each of these messages. A naive approach to remedy this problem 

would be to suggest that we ensure that each process receives a unique snapshot “initiation” 

message. Then processes only take their state on receipt of an “initiation” message. This 

is shown in figure 1.3. When Pj receives message mai(init), it knows, by virtue of the 

fact that the message contains the init field, that it should take its state. Similarly, the 

absence of the init field in message ma2, lets Pj know that it need not take its state, and 

should forward the received message to the collector. In this case, though, messages colored
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CHAPTER 1. INTRODUCTION 10

with, a color the process has not yet been, would have to be buffered until the snapshot 

initiation message is received. For example, if Pj received ma2 before it received message 

max, message maz would have to be buffered until Pj takes its state, to avoid an inconsistent 

snapshot. Thus, the process would again have to know what color it had been so that it 

knows whether or not the message should be buffered. If snapshots are “instantaneous”, 

these ordering problems can be avoided.

1.4 Thesis Outline

The assumption that no globed time base exists is, in certain cases, more stringent than is 

necessary. Although it is impossible to achieve perfect clock synchronization in a distributed 

system [67], clocks are commonly roughly synchronized. By roughly synchronized, we mean 

that the difference between any two system clocks at some instant in time is always within 

some known fixed bound. If we denote the reading of Pj’s process clock at real time instant 

t by Ci(t), this is more formally stated as follows:

| Ci(t) — Cj(t) |<  e for all t.

Although roughly synchronized clocks have been applied toward a number of distributed 

system problems [36, 54], their application toward global predicate evaluation has received 

little attention to date [68].

Our thesis investigates the use of a rough global time base in global predicate evaluation. 

We examine both how a global time base can be used to advantage in predicate evaluation 

and propose ways to deal with the fact that the clock synchrony is rough.
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CHAPTER 1. INTRODUCTION 11

We will show that algorithms structured on the use of a rough global time base can 

provide several advantages over algorithms structured on the use of consistent states.

•  Using roughly synchronized clocks, we can develop simple and efficient stable predicate 

evaluation algorithms. Evaluating predicates over a consistent state is sufficient for 

stable predicates. However, the use of a rough common time base can lead to simple, 

efficient, and flexible algorithms for evaluation of stable predicates in certain types of 

distributed systems.

• Using roughly synchronized clocks we can readily evaluate certain time-based pred

icates. Algorithms structured on the use of consistent states cannot easily answer 

questions like “Were all the valves closed by two o’clock?” or “At what time did 

the system terminate?” Evaluation of these types of predicates is important for dis

tributed monitoring systems.

• Using roughly synchronized clocks, we can reduce the amount of computation required 

for post mortem analysis of a given execution. When clocks are roughly synchronized, 

we can significantly reduce the number of consistent states. Any local process states 

which occurred at clock readings that differ by more than 6, the maximum difference 

in clock readings at an real time instant, cannot have occurred simultaneously during 

the computation.

• Using roughly synchronized clocks we can detect, with certainty, the truth of certain 

unstable predicates which are undetectable using consistent global states. Clearly, 

the use of roughly synchronized clocks in detecting unstable predicates is limited. We 

cannot detect all unstable predicates. However, we can detect unstable predicates
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which remain true for a sufficient duration.

12

In chapter 2, we discuss clock synchronization and related work. We then develop some 

\ general techniques for applying roughly synchronized clocks in global predicate evaluation.
i

] In chapter 3, we demonstrate the use of these techniques by applying them to the evaluationt
Ii
j of stable predicates. In chapter 4, we discuss both runtime and post mortem evaluation of

unstable predicates. Finally, in chapter 5, we give our conclusions.
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! Chapter 2
!
ii

Applying Roughly Synchronized
t
\

Clocks

In this chapter we present a foundation for applying roughly synchronized clocks to predicate 

evaluation. First, we develop the system model that we will use throughout the remainder 

of the thesis. We then discuss the basis for structuring predicate evaluation around a rough 

global time-base: clock synchronization. We address the immediate questions of reliability 

and achievable clock skews. In section 2.3, we discuss the traditional asynchronous foun

dation for structuring predicate evaluation protocols: causal event ordering. A thorough 

understanding of causal event ordering is required to put our work into context. In section 

2.4, we then discuss related work. Finally, in section 2.5, we develop constructs to facilitate 

development of protocols which assume the existence of a rough global time base.

13
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2.1 System  M odel

We consider a distributed system to be a set of reliable processes { P o , P n_i}. These 

processes share no memory and communicate solely via message passing. As a notational 

convenience we denote the set of system process indices by SYS. Each process is assumed 

to have access to a local clock.

Each process has a local state which changes as a  result of the actions which the process 

performs. Processes perform two kinds of actions: internal actions, which change the local 

state, and message send or receive actions. Both a message send and receive are performed 

as atomic actions, along with any associated change to the process state. The term action 

is used synonymously with event

Each process is also assumed to have access to a local clock. The clock for Pi is repre

sented by the nondecreasing real valued function Ct, where Ci(t) = T  is the time on Pi's 

clock at real time instant t. Throughout this work we adopt the notational convention 

that read times axe denoted by lowercase letters amd process clock values are denoted by 

uppercase letters. C f l (T) represents the intervad of read time instants at which Ci reads 

the value T. Ci(a) denotes the vailue of Ct when event a  is executed by Pi.

Ci(t) is assumed to be a nondecreasing function of real time with sufficient resolution 

to distinguish between any two actions by P,. The clocks are assumed to be roughly 

synchronized within some known bound e. System clocks also have an associated drift rate 

p which is the rate of drift of clock time from real time. The drift rate of C,- is given by pt . 

We assume that these drift rates are bounded by some maximum p^.

We state the clock assumptions formally in our clock axioms.
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Cl. For all *, j  G SYS  and for all t > 0 , |Ci(t) - Cj(t)\ < e.

C2. For all l in SYS, if C*(t) > then t>  if and if t > tf then Ci{t) > C tf) .

| C3. For all t in SYS, there exists pm <S[ 1 such that (1 — PM)(tr — t)<  Ci(t/) — Ci(t) <

j (1 + P A f)(t'-t).

!
j

C4. If a and b are events within process Pi then Ct(o) ^  Ci{b).

j

In axiom C3, we assume that the error caused by the discrete clock granularity is
i
! negligible compared to that due to drift. Typical values of the constant p for quartz clocks
!
i
’ are on the order of 10 . Thus, throughout the paper, we ignore terms on the order of p
1i
\ or smaller.
ij
! A process execution sequence Si is the ordered set of events that occur within process Pi

during a given execution. An execution sequence S  is the set of process execution sequences 

which comprise a particular execution; i.e., 5  =  {«Sf, t in SYS}. A process time history maps 

a process execution sequence into an absolute real time frame. It is the ordered set of pairs 

(a, Ct(a)), where one component of each pair corresponds to an event a 6  «St. Similarly, 

an execution time history is comprised of the set of process time histories, one from each 

process in the system, for a particular execution. Thus, two execution sequences can be 

identical; however, if the actions comprising the sequences occur at different instants of real 

time, the associated time histories are different.

2.2 Clock Synchronization

Clock synchronization is done in hardware [28, 57, 64], software [21, 38, 37, 61], and hybrid 

combinations of hardware and software [53]. The bound on clock skew depends on which
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of these methods is employed.

Hardware solutions operate in a phase-locked loop. The hardware clock at each node 

is the output from a voltage-controlled oscillator. The voltage applied to the oscillator is 

proportional to the phase error between its own clock and a reference signal generated from 

the other system clocks. Since all clocks adjust to this reference signal, the clocks are kept 

in synchrony. Hardware solutions are typically able to provide skews on the order of tens of 

nanoseconds [64]. However, hardware schemes are often prohibitively expensive, especially 

in large distributed systems. Further, these schemes are impractical in systems which are 

physically dispersed.

Software solutions work by maintaining a logical clock in addition to the hardware clock. 

The logical clock is synchronized to the other logical clocks and provides the time base for 

activities at that node. A synchronization algorithm runs periodically at each node and is 

responsible for updating the logical clock.

As an example, we consider a software synchronization scheme proposed by Cristian 

[10]. The problem, obviously, in software clock synchronization is the variability in message 

delay. His scheme is based on the observation that the error in Po’s reading of P i’s clock 

at some real time instant is a function of the round trip delay of the message used by Po to 

obtain P i’s clock value. Since the value of any single observed delay lies on some distribution 

of all possible delay times, Po can make repeated readings of P i’s clock to attempt to get a 

reading closer to the minimum message delay, thus reducing the reading error.

For example, suppose that process Po reads the clock of process Pi by sending a message 

requesting the current time. When Pi receives the message, it responds with its current 

clock value. Let D be the round trip delay between the sending of the initial message and
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the reception of the reply as measured by the hardware clock at P0. Here the value on 

the hardware clock is represented by the function £(,-(£). This hardware clock function is 

assumed to obey clock axiom C3. Cristian observed that H\(t), where t is the instant that 

Po received P i’s reply, is somewhere on the interval

[T -I- m in * (1 -  pM), T  + 2£>(1 -+- 2p*f) -  m in * (1 +  pm)],

! where min is the minimum message transmission time, and T  is the clock value contained
i
i in P i’s reply message. Thus, Po can determine the interval which contains Pi’s clock value

j by measuring the round trip delay 2D. If Po then assumes that C\(t) is the midpoint of this

interval, the maximum error e of Po’s estimation of C\S  value is

e  = £>(1 -F 2 p) — min.

Then the smaller the round trip delay is, the smaller Po’s error in reading P i’s clock. 

Thus, if Po wants a minimum reading error of £ then it must discard any reading attempt 

for which it measures a round trip delay greater than 2(7, where

U =  (1 — 2pAf)(e 4- min).

Any round trip delay smaller than 2(7 is successful, and 2(7 is referred to as the timeout 

delay necessary for achieving reading precision e. When Po observes a successful round trip, 

it has reached rapport with Pi-

Let p is the probability that Pq observes a round trip delay greater than the timeout
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delay 2U. In order to avoid Po attempting to read P i’s clock ad infinitum, a maximum 

value k for number of successive attempts must be chosen. Then the probability of success 

within k  attempts is

1 - p k

and the average number of messages n for achieving rapport is

2n =   -------- .
1 ~  PM

Cristian’s protocol assumes the existence of a unique, continuously available, master 

time source. This might be implemented using a radio receiver, which receives Universal 

Time Coordinated (UTC) broadcasts from the National Bureau of Standards. The receivers 

can be attached to processors via dedicated busses. Masters have access to this external 

time and synchronize to it. Slaves then synchronize with the masters, in a similar fashion.

A slave synchronizes with the master by periodically attempting to reach rapport. Each 

attempt at rapport is comprised of at most k attempts to read the master’s clock. Successive 

read attempts are separated by W  clock time units, where W  > 2U. If all A; attempts fail, 

then the slave must leave the group of synchronized slaves. When rapport is reached, the 

speed of the slave’s logical clock Cq is set according to the relation

Co(t) s  H0(t) + A(t).

The adjustment function must avoid logical discontinuities. He considers the linear adjust-
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ment function

A (t)= m * H 0(t)+ N ,

I where m and N  are computed periodically. If, at local rapport time £, a slave estimates

that the master clock displays time M ., the speed of the slave clock must be adjusted so 

that it shows time A 4 + a , instead of £  -F a, or time units after the rapport. Here a  is the

amortization parameter. Then, since the slave clock shows the value £  =  ff0(t)(l+ m ) + N  

1 at the beginning of the amortization interval and the value (Ho(t) -F a)( l  -F m) -F AT at the

| end of the amortization interval, then

i
!
j m  =  (M  — £)(at), and N  = £  -  (1 + m )H 0(t)

for the a  time units after rapport. The slave clock can be allowed to run at the speed of the 

local clock between the end of the amortization interval and the time of the next rapport. 

The maximum difference ms between Co, the slave logical clock, and Ci, the master logical 

clock, is given by the relation

ms > U — m in + p m * fc(l +  pm )W.

Thus, for some choice of U, k, and W, the smallest master slave maximum deviation that 

can be achieved is

msmin > U -  m in + Pm * k (l +  p m W -

Thus, for aggressive algorithms for which U is close to min, deviations close to pm * &(1 +  

Pm )W  can be achieved. I f  U is chosen to be close to the m axim um  message delay, thus
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ensuring that rapport is always reached, then the deviation is close to (max — min), where 

max is the maximum message delay.

j There are many methods for synchronizing clocks in software, and the characteristics
j
| of the clock skew bound varies accordingly. The algorithms can largely be classified into
I
| those which guarantee synchronization in the presence of arbitrary failures, and probabilis-
f

tic algorithms, such as Cristian’s protocol, by which there is a non-zero probability that 

the clocks will lose synchronization. The clock skew achievable by each approach varies
ii
\ greatly. The algorithms which guarantee that synchronization is maintained have larger
j

\ skews than probabilistic algorithms. However, several of the algorithms which guarantee
S

j the synchronization [61, 21] are able to provide clock skews which are at least on the or-

[ der of the message passing delay, i.e., tens of milliseconds [55]. (This would be close to

(max — min), the “safe” delay for Cristian’s protocol.) However, these algorithms require 

that message delay be bounded and that this bound be known. Probabilistic schemes do 

not require bounded message delay. Further, they are able to provide even tighter skews, 

significantly less than the median message delay, as we showed above.

Ramanathan proposes using a combination of software and inexpensive hardware [53]. 

His protocol is based on the observation that the variability in message passing delay can 

be significantly reduced by timestamping synchronization messages in hardware prior to 

their use by the synchronization software. His algorithm guarantees that synchronization 

is maintained and yet is able to provide worst case skews two to three orders of magnitude 

tighter than software schemes which guarantee synchronization maintenance. For example, 

on a 512 node hypercube, allowing two faults, they were able to achieve a worst case skew 

of 200 microseconds, even when the maximum message transit delays were as large as 50
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Figure 2.1: Lamport Logical Clocks

milliseconds.

Thus, we can assume that fault-tolerant clock synchronization is available and that clock 

skews at least on the order of message passing delays can be practically obtained.

2.3 Causal Ordering

We have already formally defined Lamport’s “happens before” relation, which is the basis 

for ordering events so that we can partially determine the real time ordering of system 

events. In this section, we look at two well-known protocols for ordering the events within a 

given execution according this relation. We also show how this event ordering can be used 

to determine whether a set of channel and local process states, one from each process and 

channel, could have occurred simultaneously during the execution, i.e., establish whether a 

set of local process and channel states is consistent.

There are two well-known approaches to establishing the “happens before” relation on 

the events of a particular execution: Lamport’s logical clocks [34] and Mattern’s vector time
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[43].

Lamport’s logical clocks satisfy the following condition.

For any events a, 6 : if a —f 6 then L{a) < L(b), where Lt is a clock function 

[ which, assigns a number Lt-(a) to event a; if a is an event at Pi then L{(a) = L{a).

In order to satisfy this condition, the clocks at each process must obey the following 

implementation rules:

LIR1. Every Pi, i in S Y S , increments Li between any two successive local events.

] LIR2. (a) If event a is the sending of a message m  by process Pi, then Pi appends timestamp

\ L j(a )  to the message.
f

(b) Upon receiving the message m , P j sets L j  greater than or equal to the maximum 

of the current value of L j  and the message timestamp.

An example execution is given in figure 2.1. Here we show a three process execution. 

Event, logical clock value pairs are shown along each axis. It is important to note that 

Lamport’s clock conditions only ensure that if a happens before b then C(b) is greater than 

C(a), but that the converse is not true. For example, 02 happens before 65 and C{a-Y) is 

greater than C(bs). However, C(bs) is greater than C'(cs), but 65 is concurrent with C5.

Unlike Lamport’s logical clocks, Mattem’s implementation provides a necessary and 

sufficient condition to determine the causal relation between any two events. His clock 

values are vectors with one component for each process. Each local process clock must 

satisfy the following conditions.

MIR1. A process Pi increments its component of the local time vector Vi prior to each local 

action; i.e., V̂[x] «- K[»] +  I*
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Figure 2.2: Mattem’s Vector Clocks

MIR1. If event a is the sending of a message by process Pi, then Pi appends its time vector Vi

to the message. Upon receiving this message, and after incrementing Vj\j\, Pj updates 

its vector to be the component-wise maximum of its current vector Vj and the vector 

timestamp Vmsg on the message; i.e., Vj <— sup(Vj, Vmsg)-

He defines the following operators on the vector clock values.

For any two time vectors u and v

u  <  v  iff Vi : u[i] < t»[t], 

u <  v  iff (Vi : u[i] < u[i]) A ( u ^  v), and 

u||u iff —i(u < v) A -<(v < u).

Vector clocks implemented according to these rules have the following property.

For any two distinct events a and b: a -* 6 iff V(a) < V(b), and a||6 iff 

V(a)||V(6).
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Figure 2.2 shows the vector clock values for the same execution given in figure 2.1. Here, 

the clock values reflect the fact that 02 -*■ 65 and that 65 ||cs.

Our goal for predicate evaluation is to determine which sets of channel and process
1
j  states could have occurred simultaneously during an execution. This can be determined by
s
I partitioning the the set of system events into a consistent cut. If E  is the set of all system
i

events, then a consistent cut k is a finite subset of E, containing at least one event from 

each process, such that if a € k and b happens before a, then 6 G k [43]. In other words, any
i
j message received before the cut was sent before the cut. A consistent global state is then

\ the state of all channels (those messages which cross the cut line) and the set of local states,

! one from each process, at the moment the cut event occurs. Cut events do not change the
i

state of a process. Both a consistent and and inconsistent cut are depicted in figure 1.2 in 

chapter 1.

2.4 R elated Work

Some groundwork for the development of clock based predicate evaluation is available in 

the work of Neiger and Toueg [49]. They developed results for a restricted class of predi

cates called internal specifications. Briefly, a predicate is internally specified if it makes no 

reference to real time. For example, the specification

Vi > 0 Vi, j  e  SYS [ | Ci(t) -  Cj[t) |<  e ],
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which specifies that all system clocks are roughly synchronized, is not an internal specifica

tion, because it cannot be stated without reference to real time. Whereas, the specification

i Vi e  SYS [a eS i ] ,
iI
Ii
i

which specifies that every process eventually executes action a is an internal specification.

Their result for systems with rough clock synchronization additionally requires that 

message delivery time be bounded, and that each message be timestamped, by the sender,
j

j with the sender’s clock value at the time of the send, and that it is held in the receiver’s

j buffer until the receiver’s clock has exceeded the message timestamp. They showed that
(

in such systems, if a problem has an internal specification then an algorithm to solve the 

problem can be developed under the assumption that clocks are perfectly synchronized.

Kopetz studied the application of roughly synchronized clocks to distributed real-time 

systems. He proposed that significant system events be restricted to the lattice points of a 

globally synchronized space/time lattice [23].

The goal of this restriction is to ensure the following properties.

PI All nodes act on different observations in the same order (consistent order property).

P2 All nodes act on the same observation at about the same time (simultaneity property).

P3 All nodes act on different observations in the temporal order of their occurrence 

(temporal order property).

He defines the precision of the local clocks relative to the number of ticks each one has
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gone through. The precision of the clocks is then

26

n = MAX( Vj, k  € SYS, Vn|z(fc„) -  z(jn)I)

1 where the kn denotes the nth tick of the clock for process Pk and z(kn) is the value of

absolute real time when the clock at process Pk ticks for the nth time.

A notion of “global time” can be approximated by incorporating only certain ticks of 

the local clocks. The spacing of these local ticks constitutes the granularity gg of the “global 

clock”. Then, if gg > II, all local clocks will tick for the ith time within the same interval. 

Suppose then that ga is equal to II +  K. If all events are restricted to the K  time interval, 

they will all be timestamped with the same tick value by every clock.

He then shows that all three properties can be guaranteed by confining the significant 

events in the system to a sparse time base. If the granularity of this time base is greater 

than 2gg + 5, where 6 is the maximum message passing delay, then all three properties given 

above can be guaranteed.

Neiger and Toueg’s is a powerful result, but is restrictive in that it is only applicable 

to problems with internal specifications. This would certainly seem to exclude unstable 

predicates, whose truth may oscillate arbitrarily, as well as predicates based on attainment 

of a certain system state at a real time instant. Kopetz’ result requires that either all events 

be restricted to the sparse time base, or that the events that should be restricted are known 

in advance.

In the following section, we develop several constructs that facilitate the application of 

roughly synchronized clocks to the specific problem of predicate evaluation. Unlike Neiger
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and Toueg’s result, the approaches we develop are applicable to predicates which are not 

internally specified. Further, unlike Kopetz’ sparse time, we do not require the ability to 

determine in advance which actions should be confined to a sparse time grid.

2.5 Synchronous and Globalized Local Properties

2.5.1 D efin itions

A local property Ai is an assertion about the local state of process P,. It is simply a boolean 

expression evaluated over the set of variables defined by a single process (including implicit 

system variables such as the process’ program counter if necessary).

A time-stamped local property (TLP) is a triple, denoted £(T, z, A,-), where T  is a process 

clock value, i is a process index, and A,- is a local property of process Pt. At was evaluated 

on the state of Pi at some instant when Ci read T. We call T  the property’s timestamp. 

More formally,

£(T, z', A,-) holds if and only if A,- holds for Pj at some real time instant t such 

that C{(t) = T.

A TLP is then a statement about a given process which was known when that process’ 

clock read the timestamp value T. Since the clocks in the distributed system are only 

roughly synchronized, At- need not hold when any other processor clock reads T. The 

local significance of the timestamp on a TLP makes it somewhat useless. The roughness 

in the synchronization of clocks introduces a degree of uncertainty into the notion of time 

provided by the collection of physical clocks. That uncertainty manifests itself when trying 

to combine TLPs from different processors to make an assertion about the joint states of
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T + 2e - -

A i true

real time

i
\ Figure 2.3: Local Significance of SLP Timestamps

i
I those processors. For example, let L\ be C(T,i, “ x=3 ”) and £<2 be C(T,j, “ y=3 ”). We

I cannot be sure that the values of x and y were ever 3 at the same instant of real time, as
i
J

each process clock could have read T  at a different real time instant. L\ is meaningful only 

in the context of P , and I <2 is meaningful only in the context of P j .

A synchronous local property (SLP), denoted S(T, i, At), is a local property that remains 

true for at least the maximum clock skew e, as read by the local process clock. More formally,

S(T, t, At) if and only if A+ holds over the interval [<1, <2], inclusive, where 

Q (ti) =  T  and C*(*2) =  T  +  e.

Note that we do not require that the property be true for all real time instants fi at which 

Ci(t 1) =  T  or, similarly, all <2 such that <7f(*2) = T  + e.

If a property remains true for at least e then the timestamps on the local assertions can, 

under certain restrictions, be used to detect an instant in time at which some property is 

true for all processes in the system. We discuss this in more detail in the following section. 

However, the timestamp on such a property is not necessarily meaningful on any other
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process’ clock. If a process asserts S(T ,i,A i), then A,- was not necessarily true when the 

clock of any other process read T . This is depicted in figure 2.3. Here we show the process 

clock values of Pi and Pj versus absolute real time, The real time interval over which At- is 

true if Pi asserts 5(T,t,A*) is marked. (For clarity, we depict systems with infinite clock 

resolution, although this is not required of the system clocks.) Note that At- was not true 

when Cj read T  although Cj s clock clearly obeys the clock axioms.

In order to make the timestamp on a  local property meaningful globally, we introduce 

the concept of a globalized local property (GLP). A GLP is denoted Q(T,Ai), where T  is a 

timestamp and Aj is a local property of process Pt. A globalized local property is just like 

a TLP with the additional requirement that for all j  € SYS, A,- is known about the state 

of P{ when Cj reads T. We formally define a GLP as follows:

Q(T, A,) if and only if Aj holds for all { t : Ci(t) =  T}, i in SYS.

Obviously protocol must be developed in order to globalize a TLP. In the next section we 

give a simple protocol for globalizing the timestamp on a local property and develop several 

properties of SLPs and GLPs which facilitate simple and efficient predicate detection.

2.5.2 Properties of SLPs and G LPs

We now develop several useful properties of SLPs and GLPs. The first theorem underlies 

a protocol for globalizing a TLP. It shows that if the truth of a local predicate remains 

constant over an interval of 2e, as read by the local process clock, then a time-stamped 

assertion can be made with a timestamp that is meaningful by any process clock.

Theorem  1 If A* holds over the interval [ti, <2], where Ci(t\) =  T S —e and =  TS-he, 

then $(TS,Ai).
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statej P j’s state, initially false
Tj value of Cj(t) when C(Tj,j, A) can first be asserted
alarmj(T) alarm which signals Pj when Cj(t) =  T; alarmj{0) cancels the alarm
TSj timestamp of the globalized local predicate

statej Event Action
unsatisfied Aj Tj = C j(t)  

assert C (T j,j,A j)  
alarmj(Tj ■+■ 2e) 
statej =  transition

transition ->Aj timerj(0)
statej =unsatisfied

timer j  expires TSj = T j+ e  
assert Q (TSj,A j)

Figure 2.4: Process State and Protocol for Globalizing a Time-stamped Local Property

P r o o f :  Let Cj{tsj) = TS. By clock axiom Cl, T S  — e < Ci(tsj) <  T S  +  e. By our 

assumption, At holds over the interval [TS — e,TS +  e], inclusive, as read by Thus, A, 

holds at Cj{tSj) =  T S  for all j  € SY S  and, by definition, Q{TS, Ax). I

Thus if Pi wants to be able to tell its peers in the system some important fact about its 

state at a certain point in its computation, it simply ensures Q(T,Ai) using theorem 1 and 

it can then convey this information to its peers.

A simple protocol for making such an assertion is given in figure 2.4. The protocol is 

specified as a set of actions that process Pj  takes in response to events when it is in a given 

state. Here process Pj  is asserting the truth of a predicate Aj  over its local process state. 

Pj begins in state unsatisfied. As soon as the local predicate Aj  becomes true, Pj can assert 

the TLP C(Tj ,j ,Aj) .  Pj then sets its timer for Tj +2e and enters the transition state. 

In the transition state, Pj  is waiting for the timer to expire. If Aj  becomes false before 

the timer expires, the GLP cannot be asserted, so Pj resets the timer and re-enters the 

unsatisfied state. When the timer expires, the local predicate Aj  has remained true for 2e 

and the GLP G(TSj , Aj)  can be asserted. At this point, Aj was true when the clock of any
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maximum clock value

T+2E

minimum clock value
T+E - -

latest SLP interval
earliest SLP interval

A j true

realtime

Figure 2.5: Overlap of SLPs with Unequal Timestamps

other processor read TSj .

It should be clear that, if each process Pj, j  in SYS,  asserts a GLP Q(TS,Aj) with 

the same timestamp TS,  then there was an instant in real time at which all of the local 

predicates Aj  were true. By definition, when a process asserts Q(TS, Aj), the local predicate 

Aj  was true when the clock of any other process read TS.  If all processes have asserted GLPs 

with this same timestamp, then all the local predicates were true when the clock of process 

Pi read TS.  In fact, all the local predicates were true when any process clock read TS.  

Clearly, then, there was an interval of real time values at which all the predicates were true.

If each process Pj, j  in SYS,  instead asserts an SLP S(T S , j ,A j )  with the same times

tamp, there was an instant in time at which the all of the local predicates were true, but 

we know only that the clock of some processor read T S  at this instant. This is shown in 

the following theorem.
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Theorem 2 l fS (T S ,i , Ai) holds for all i  in SYS then there exists a real time instant t such 

that C(Ci(t),i, Ai) for all i  in SYS. Further, Ci(t) =  T S  for some Pi, i in SYS.

j
j P r o o f :  Suppose S(TS,i,A i) for every i  in SYS. Now consider the last instant at which
|

any process clock reads TS. Let this instant be if  and let Cj[tf) =  TS. Then, by clock 

axiom Cl and our assumption that i f  is the last instant some process reads TS,
t

T S  < Ci(if) < T S  + e for every i in SYS.

! By assumption, S(TS, i, Ai) holds, and thus Ai holds over the interval [TS, T S  + e], as read

I by Ci for every i in SYS. Thus, at real time instant if, the predicate (Aq A A\ A ... A  A ^ - i)
I
| holds and Cj(tf) =  TS. I
i

If we assume that the bound e on the clock skew is tight, that is, |(7,-(£) — Cj[t)\ <  e, 

rather than |C,-(f) — Cj(t) | < e, then it is simple to show that if the timestamps on SLPS 

are not equal, then the real time intervals over which the local predicates are true may or 

may not overlap. This is illustrated in figure 2.5. Here we show the value of local clock Ci 

versus real time. We assume that Pi has asserted the SLP S(T, i, A{). We also show the 

minimum and maximum values any other process clock can read given the value shown for 

Ci. Using these clock values, we show the latest and earliest real time intervals over which 

some other process’ SLP with this same timestamp can occur. These intervals overlap only 

at real time instants fi and <2- Clearly, then, if the timestamp on the other process’ SLP is 

either greater than, or less than, T, then the intervals do not necessarily overlap.

These theorems form a foundation from which we can develop protocols that exploit the 

advantages of assuming a global time base for predicate evaluation. In the next two chapters
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we will look, in turn, at the evaluation of stable and unstable predicates. In each case, the 

assumption of a global time base allows development of simple and efficient protocols for 

predicate evaluation. In certain cases, these protocols detect predicates which would be 

difficult, if not impossible, to detect without the assumption of a global time base. As we 

will see, the use of SLPs and GLPs greatly facilitates development of these protocols.

iI
j
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Stable Predicates

and SLPs in evaluation of certain stable 

in any consistent global state, it remains 

true indefinitely. Common stable predicates are termination, deadlock, and token loss.

We begin, in section 3.1, by demonstrating the application of GLPs and SLPs by solving 

the well known termination detection problem. We present several algorithms which, in 

addition to demonstrating the application of GLPs and SLPs, demonstrate the advantages 

of structuring certain predicate evaluation algorithms on the use of a global time base. 

In section 3.2, we show that the approach taken in detection of distributed termination 

can also be used to develop simple and efficient solutions to the more complex problem of 

distributed deadlock detection and resolution. Finally, in section 3.3, we discuss evaluation 

of general stable predicates.

i

■ In this chapter, we demonstrate the use of GLPs
j

predicates. After a  stable predicate becomes true

34
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3.1 D istributed Termination

Detection of termination, a stable global predicate, is a  well-known problem for distributed 

systems. It contains many of the challenges characteristic of distributed processing. It
i

| has been studied extensively, and solutions abound in the literature [12, 18, 19, 11, 56, 63,
1
| 39, 32, 50, 33]. In this section, we use this problem to demonstrate both the advantages

of structuring predicate evaluation algorithms on the use of a global time base and the 

j application of GLPs and SLPs.
I

We begin by describing the problem of distributed termination detection. We then 

present protocols which solve the problem. The first four protocols, given in section 3.1.2, 

solve the problem for the same simple system with one exception, the system clocks have

varying precisions. We contrast the assumptions that clocks sure not synchronized, that

they are perfectly synchronized, and that they axe roughly synchronized. These protocols 

demonstrate the advantages of assuming a global time base and the use of GLPs and SLPs.

In the remaining algorithms, give in section 3.1.3 we demonstrate the ease with which 

the approach used in the earlier algorithms is extended to varying system architectures 

and performance goals. We present solutions tailored for various system characteristics 

including bounded message delay, asynchronous communication, and a broadcast network. 

We also present an algorithm which ensures that processes receive at most one control 

related message during any period of application processing.

3.1.1 P roblem

The general problem of distributed termination detection can be stated as follows. We con

sider a system comprised of N  processes. These processes communicate solely via message
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passing. Bach process is considered always to be in one of two states, either active or pas

sive. When active, a process is performing application-related processing. When passive, 

a process performs only control-related processing, that is, processing used to determine
i
j whether or not the application is terminated. A process may transition from active to
i
1 passive spontaneously upon satisfaction of some local predicate. A process may transition
!

from passive to active only upon receipt of an application message from an active process.
j

The problem is to determine when the application is terminated.
i
l If communication is synchronous then the application terminates at the first instant all
«
i
• processes become simultaneously passive. As all processes are passive at this instant, the
i
| only way the system could reactivate is if some process receives an application message which

j is currently in the channels. However, synchronous communication is “instantaneous,” so

the channels must be empty if all processes are passive. If communication is asynchronous, 

we must deal with the possibility of outstanding messages. In this case, the system is ter

minated at the first instant all processes are passive and there are no outstanding messages.

3.1.2 A  Sim ple System

In this section we present several algorithms that focus on termination detection for a 

specific distributed system architecture. We consider a system in which communication is 

synchronous and reliable, processes are reliable, and control messages travel unidirectionally 

through a ring of the system processes. Application message routing is unrestricted. This 

system was chosen because it is simpler than many other distributed systems and because 

solutions already exist in the literature for both systems with no clock synchronization and 

systems with perfect clock synchronization.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



CHAPTER 3. STABLE PREDICATES 37

The first of these algorithms, by Dijkstra, Feigen, and van Gasteren [11], assumes no 

clock synchronization. The second, by Rana [56], assumes perfect clock synchronization, 

Le., Ci(t) =  Cj(t) for every real time instant t  and for every i , j  in SYS. In the third 

•• algorithm [44], we use the techniques presented in the previous chapter to adapt Rana’s

{ algorithm to systems in which the process clocks are only roughly synchronized. These
|

algorithms demonstrate the advantages of structuring predicate evaluation algorithms on 

the assumption of a global time base and the application of GLPs. With the fourth algorithm 

« [45], we address efficiency considerations in using GLPs. This algorithm solves the problem

; for the same system as the previous three protocols; however, we make use of SLPs rather

| than GLPs, contrasting the application of each.

i
!

3.1.2.1 Solution Without Clock Synchronization

Dijkstra’s algorithm is token-based. One process, P q, initiates all tokens and eventually 

detects the termination. All tokens Pq initiates are colored w h ite . A process receiving the 

token waits until it is passive to propagate it. Thus, all processes propagating the token 

are passive. This would be sufficient, except a process which has already propagated the 

token can be activated by some process which has not yet propagated the token, but will 

eventually. A coloring scheme is used to detect any such activations.

All processes are initially white. A process sending an application message turns itself 

black. A white process propagates a white token. Black processes turn a received token black 

prior to propagating it. A process becomes white again once it propagates the token. Thus, 

a token only remains white if no application messages were transmitted during its traversal. 

Termination is declared when Pq receives a white token. Thus, if Pq declares termination, all

i
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processes were passive when they propagated the token and they will remain so indefinitely, 

as no process could have been reactivated by one of its successors in the control cycle after 

having propagated the token.
3

j A lgorithm  The algorithm is given below. (Here “message” refers to an application mes-

! sage; the token is the sole control message.)

(1) A process sending a message makes itself black.

(2) Pq initiates a token by making itself white and sending a white token to Pi.

(3) When active, Pt keeps the token; when passive, it sends the token to P(,+i)rnodiv-
i
I

(4) When Pt propagates the token, it sends a black token to P(,+i)m0<nv if it is black itself:
I

if P{ is white, the token color is unchanged.

(5) After completion of an unsuccessful (black) token Pq initiates a next token.

(6) Upon transmission of the token to machine P(i+i)m0dJV> P  becomes white.

Perform ance Dijkstra’s algorithm is O(MN)  in the number of messages passed to detect 

the termination, where M  is the number of application messages transmitted during the 

execution. It detects termination in at most two cycles of the first token initiated once the 

system is terminated. It does not require that the application freeze in order to detect the 

termination.

3.1.2.2 Solution w ith  Perfect Clock Synchronization

Rana’s algorithm is based on the same assumptions as Dijkstra’s, with the exception that he 

assumes that each process has an independent clock and that all these clocks are perfectly
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state} indicates Pj’s state, initially active
TSj Pj’s timestamp, initially 0
Token(TSi, i) token initiated by Pi with timestamp TSi
c l o c k current value of Pj’s clock

«
0

statej Event Action
active satisfy local predicate TSj <— clockj 

initiate Token(TSj,j) 
statej «— idle

Token(TSi,i) received discard Token(TSi, i)
idle application msg received statej *— active

Token(TSi, i) received if (TSj <  TSi) A (i =  j)  th en  
declare termination 

if {TSj <  TSi) A (i *  j) th e n  
propagate Token{TSi,i) 

if (TSj > TSi) th en
discard Token(TSi, i)

Figure 3.1: Protocol (TD-Rana): Rana’s Termination Detection Protocol

[ synchronized. His algorithm is also token based. However, all processes initiate tokens
4i
' and any process may detect termination. Unlike Dijkstra’s protocol, the solution is fully

distributed and symmetric.

A lgorithm  The protocol and associated process state are shown in figure 3.1. The algo

rithm is presented as a set of rules for the way that process P j  reacts to events when it is 

in a given state.

Processes can be in one of two states with respect to the protocol, either active or idle. In 

the active state, processes are performing application related processing. In the idle state, 

processes are passive with respect to the application; they are performing only control- 

related processing. Each process initiates a token upon transitioning from the active to the 

idle state. The token is timestamped with the time at which the process became passive. It 

also contains the initiating process’ index. The index is used to determine whether or not 

the token has circulated completely. (In Rana’s algorithm the token contained a counter,

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow ner. Further reproduction  prohibited w ithout p erm issio n .



CHAPTER 3. STABLE PREDICATES 40

rather than the initiator’s index. We use the process index here to be consistent with 

algorithms presented later in the chapter.)

An active process receiving the token discards it. A passive process receiving another 

process’ token compares the timestamp on the token with its own local timestamp. If its
&
) local timestamp is less than or equal to the timestamp on the token then the token is
iI
! propagated. If its own timestamp is greater than the timestamp on the token then the

token is discarded. If a process receives its own token, with its current timestamp value,
j
1 then termination is declared; otherwise, the token is discarded.

i

| Correctness Rana proved the correctness of his protocol [56]. Here, we present similar
}

arguments for reference in the discussion of the next protocol. The original protocol pre-
1
I sentation did not address the clocks’ granularity. In order to simplify the discussion, we

assume the system clocks have infinite resolution.

In order to prove the algorithm correct, we must establish that: if termination is declared 

then the system is terminated (safety), and if the system is terminated then some process 

will declare the termination (liveness).

Throughout the remainder of this chapter, we let C f l (T) denote any real time instant 

t at which C,- read T. If clocks have infinite resolution, then C~l(T) denotes a unique time 

instant. Otherwise, C~l(T) represents any instant t in the interval of real time at which C, 

read T.

Theorem  3 (Safety) If a process Pj declares termination then the application is termi

nated.

PROOF: By the protocol, Pj only declares termination if it has received its own token. If
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Pj has received its own token, then every Pi, i in SYS, i ^  j , has propagated Pj's token.

Let t±i be the real time instant at which Pi propagates Token(TSj, j)  and let TSi be Pi's 

timestamp at that time. By the protocol, Pi only propagates Token(TSj,j) if its timestamp
i
j TSi is less than or equal to TSj. Then, given perfect clock synchronization, all processes
ft
| were passive at Cj (TSi). Since process clocks are non-decreasing,

i

| C - l (TSi) < C ~ l (TSj)

l»
j Clearly, the instant ft, at which Pt- propagates the token is greater than or equal to the

| instant C ~ l (TSj) at which Pj's clock reads the timestamp value. Thus
s
iii
! C j \ T S i )  <  C ~ l (TSj) <  t t i .

By the protocol, any process propagating Pj's token is continually passive over the 

interval [ C ~ 1( T S ' i ) ,  tti]- Thus, all processes are passive at real time instant C j l (TSj) and, 

under synchronous communication, the computation must be terminated. I

Lem m a 1 Let T Smax be ike highest valued timestamp generated during the computation, 

and let Pj be a process which generated timestamp TSmax- Then the system is terminated 

at Cj (TSmax)-

P r o o f :  Let T S finai be the final timestamp generated by any process Pi, i e  SYS. Since

TSmax >s the highest timestamp generated during the computation, TS/,-naf < T Smax. Since 

clocks are perfectly synchronized, all processes were then passive at C“ l (T5/,na/). Since the 

clocks are non-decreasing, C J l (TSfinai) < C J l (TSmax). Thus, all processes became finally
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passive at or before C ~l (TSmax)-, and the computation must be terminated at that time. I

Theorem  4 (Liveness) I f  the system is terminated then some Pj will eventually declare 

termination.

P r o o f : Consider the highest valued timestamp TSmax generated during the computa

tion. Let Pj be a process which generated timestamp TSmax- By lemma 1, the system is 

terminated at C J 1 (TSmax)-

According to the protocol, upon its transition to the idle state, Pj will initiate a token 

Token(TSmax, j ) . Then, since the system is terminated at C~l(TSmax), all processes will 

receive Pj's token in the idle state. By our assumption, all processes have timestamps less 

than or equal to TSmax- By the protocol, all processes will then propagate the token and 

Pj will detect the termination. I

Performance Like Dijkstra’s algorithm, Rana’s does not require that a process freeze 

application processing in order to detect termination. Also like Dijkstra’s algorithm, it 

requires 0(M N ) messages to detect termination. However, it requires only a single to

ken circulation once the system is terminated. Further, it does not require selection of a 

“leader” to initiate tokens and detect the termination. The algorithm is fully distributed 

and symmetric.

Thus, the assumption of perfect clock synchronization, though unrealistic, facilitates 

development of a more efficient and simpler algorithm. Further, if we assume that the 

system clocks are accurate then this algorithm can provide, via the message timestamp, 

additional information about the exact time at which the system became terminated.
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-process is active 
- process is passive

Tennination
Detected

Cj(tI)=Tl ■

Figure 3.2: Failure of Rana’s Termination Detection Protocol 

3.1.2.3 Solution W ith  Globally T im estam ped Properties

Although Rana’s algorithm is fully distributed and symmetric and detects termination faster 

than Dijkstra’s, the algorithm only works if clocks are perfectly synchronized. Figure 3.2 

illustrates a situation in which the algorithm fails when clocks are only roughly synchronized. 

Each axis in the figure represents execution for a single process and is scaled by absolute 

real time. Points of interest are labeled with the corresponding process clock values. Here, 

all processes went passive when their clocks read T l. The figure illustrates circulation of 

a single token, initiated by Pj, although by the protocol all processes will initiate a token. 

Pm s clock runs slower than the other process clocks, which are all synchronized perfectly; 

its clock reads the token timestamp value T l later than the other process clocks, but before 

the token has reached it. Thus, when the token reaches Pm, it will be propagated, and Pj
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statej indicates P j’s state, initially active
TPj Pj's  clock value at the instant it satisfied its local predicate
TSj Pj's  timestamp, initially 0
alarmj (T) P j’s alarm which signals Pj when Cj reaches T; alarmj (Q) cancels the alarm
Tj  set of all tokens received by Pj during the current transition state, initially

empty; the operator tsnax applied to Tj returns the timestamp and process
index from the token with the largest timestamp value

Token(TSi, i) token initiated by Pi with timestamp TSi 
clockj current value of Pj's  clock

statej Event Action
active satisfy local predicate TPj  4— clockj 

alarmj (TPj +  2e) 
r> 4 -0
statej  4— transition

Token(TSi,i)  received discard Token(TSi,i)
transition application msg received alarmj  (0) 

statej 4— active
Token(TSi, i) received Tj 4— r j  u  {Token(TSi, t)}
alarmj  expires TSj  4— TPj  -He 

TSi, i  4— tsmax(rj )
if (TSi > TSj)  then

propagate Token(TSi,i)
else

initiate Token(TSj,j) 
statej  4— idle

idle application msg received statej  4— active
Token(TSi,i)  received if (TS,- < TSi)  A ( j  =  t) then  

declare termination 
if (TSj < TSi)  A C i) then  

propagate Token(TSi, i) 
if (TSj > TSi)  then

discard Token(TSi,i)

Figure 3.3: Protocol (TD -G LP ): TD with Rough Clock Synchronization

will declare termination. However, during the lag time between the real time instant Pi’s 

clock read T l and the instant Pm’s clock read Tl, Pm reactivated Pj, which had already 

propagated Pj’s token, and the application is not terminated.

In Rana’s algorithm, each process asserts the time that it went passive relative to the 

time the token initiator went passive, by comparing its local timestamp with the token 

timestamp value. This comparison guarantees that all processes propagating the token were 

passive at the instant the token was initiated, the token timestamp value. The algorithm
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fails if clocks are only roughly synchronized because the token timestamp value and the 

local clock value cannot be meaningfully compared. Thus, it would seem that if each 

process globally timestamps its passivity, i.e., Pi asserts the GLP Q{TSi, Pi passive), then 

| Rana’s algorithm would work with no additional modifications and, in fact, this is the case.

| We describe the modified algorithm more formally below.

!
Algorithm The protocol and associated process state are shown in figure 3.3. Like 

] Rana’s, our algorithm is token-based. Processes can be in one of three states, active ,
i

| transition, or idle. A process is active with respect to the application in the active state.
i*

j It is passive with respect to the application in both the transition and idle states. The

| transition state is entered upon satisfaction of the local predicate. It is essentially a pause
it

of duration 2e in order for Pj to globally timestamp the local property “Pj is passive.” The 

idle state is entered from the transition state once the local property has been globally 

timestamped. In the idle state, a process is waiting for an application message, receipt of 

its own token, or declaration of termination.

Rather than initiating a token immediately upon satisfaction of the local predicate, as 

done in Rana’s algorithm, each process Pj waits until the local property “Pj is passive” 

has been globally timestamped in accordance with theorem 1, given in chapter 2. Then, 

if it has not received a token with an equal or higher timestamp during the period it was 

globalizing the timestamp, it initiates a token and enters the idle state. If it has received 

a token with an equal or higher timestamp, then it propagates the highest-valued token it 

has received and enters the idle state. (This is done for efficiency. The algorithm works 

equally well if all tokens with equal or higher valued timestamps are propagated, as is done 

in Rana’s algorithm.) The criterion for token propagation from the idle state is the same as
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that for Rana’s algorithm; tokens with equal or greater timestamps are propagated. As in 

Rana’s algorithm, termination is declared when, a process receives its own token containing 

its current timestamp value.
3
i

| C orrectness In order to prove the algorithm correct, we must establish safety and Iive-

1 ness, as we did for Rana’s algorithm.

The safety proof for Rana’s algorithm essentially showed that, for every Pi propagating

•; Pj's winning token Token(TSj,j), that is, a  token which circulates completely, Pi was
|
j passive at C ~ l (TSi), where TSi is Pi's timestamp when it propagates Pj's token. Then
ii
\
! C j \ T S i ) <  C ~ l (TSj) < tPi,
i
I
}I

where tpi is the real time instant at which Pi propagated the token. Rana’s algorithm fails 

when clocks are only roughly synchronized because the timestamp comparison alone does 

not ensure that all processes were passive when Cj read their timestamp values. However, 

globalizing timestamps assures this; i.e., Pi was passive at C~l (TSi). We do not repeat the 

safety argument here.

The liveness proof is also similar to that given for Rana’s protocol. We showed the system 

was terminated at C ~ l (TSmax), where TSmax is the highest valued timestamp generated 

during the computation and Pj is a process which generated timestamp TSmax- By using 

GLPs, it is easy to establish that this is true in a system with rough clock synchronization. 

The argument is virtually identical to that given for lemma 1, with one exception. If TSfinai 

is the final timestamp generated by any Pj, i in SYS, then we know that all processes were 

passive at C ~ l (TSfinal) by theorem 1, given in chapter 2, rather than relying on perfect clock
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synchronization. Once we have established that the system is terminated at Cj"1 {TSmax), 

we only need argue that all processes will propagate a token with this timestamp. Such an 

argument would be identical to that made for Rana’s protocol if processes in the transition 

f state propagated all tokens with equal or higher valued timestamps. However, for increased

efficiency, only a single token leaves any process when it changes from the transition state 

to the idle state. We give the modified proofs below.

Theorem  5 (Liveness) If the system is terminated, then some Pj will eventually declare | J
i

| termination,
\
i
; PR O O F: Consider the highest valued timestamp T Smax generated during the computation,

j and let Pj be a process which generated timestamp TSmax. If more than one process

generates timestamp T Smax, let Pj be the process whose alarm expires first. By lemma 1, 

the system is terminated at C~l (TSmax).

By assumption, Pj is the first process with timestamp TSmax whose alarm expires. 

Thus, Pj could not have received a token with a greater timestamp than its own, TSmax» 

while in the transition state and, by the protocol, will initiate Token(TSmax, j)-

Any process receiving Tofcen(T5mai, j)  must be in either the transition or the idle state. 

By the protocol, any process which receives a token with timestamp TSmax in the idle state 

will propagate it. A process in the transition state may discard a token with this timestamp. 

However, all processes in the transition state will propagate some token with timestamp 

TSmax, and, by the nature of the control cycle routing, some token with timestamp TSmax 

will circulate completely, and termination will be detected. I
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Performance Assuming that processes me never swapped out and that the time required 

to execute the instructions given in the protocol is insignificant in relation to message 

transmission delay, this algorithm detects termination within an interval of N5 -I- 3e( 1+ p m ) 

from the instant at which the final process becomes passive, where 8 is the maximum 

message transmission time. The interval between the instant at which the application first 

terminates and the instant at which the termination is detected is called the detection delay. 

We prove this bound on detection delay below.

Lemma 2 Assume that instruction execution time is insignificant in relation to message 

transmission time, and that processes are never swapped out. Then the detection delay of 

the algorithm given in figure 3.3 is N8 +  3e(l -F p m )-

P r o o f : Let tt be the instant at which the system terminates and let th be the latest

instant at which a token leaves a process in the transition state. Then, ignoring instruction 

execution time, the maximum detection delay (3 is th — tt + N8.

Let the highest valued timestamp generated during the computation be TSmax- We have 

already shown that some token with timestamp TSmax will circulate and detect termination. 

Let Pj be any process with timestamp TSmax whose token circulates completely. We have 

already shown that the system is terminated at C J1 {TSmax)- Let tpj be the earliest instant 

for which Cj(tpj) = T S max — e, then

tpj < tt.

Now consider the real time instant try at which Pj initiates Token{TSmaxi j)- (This is 

based on our assumption that processes are not swapped out and that instruction execution
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time is negligible.) By the protocol, Cj{trj) =  TSmax +  €- Then, by clock axiom C3,

trj -  tpj < 2(1 + p m )€-

By clock axiom Cl, C7t(tr; ) > TSmax, * hi SYS. By the protocol, any process Pi which 

propagates Tofcen(T5'max,y) must have a timestamp TSi less than or equal to TSmax. Also 

by the protocol, Pi must leave the transition state and propagate Token(TSmax,j) by the 

time Ci reads TSmax +  e- Then

th < trj +  (1 +  pm )e-

Thus,

0 < th  — tt + NS

fi trj +  (1 +  PAf)e — tt  +  NS 

< trj ■+• (1 +  pm )e — tpj + NS 

S  3(1 +  pm )^ NS.

I

Like Dijkstra’s and Rana’s algorithms, ours requires 0{M N ) messages in order to detect 

termination. Also like Rana’s, this algorithm can detect termination in a single token

circulation once the system is terminated. However, it delays the token prior to initiation.

As we have shown, this delay is at most 3(l+pA/)e, neglecting instruction execution time and 

assuming that processes are never swapped out. The efficiency gain in detecting termination, 

once the system is terminated, by using this algorithm, rather than Dijkstra’s, will then 

depend on how close e is to the average message delivery time and how many processes

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



CHAPTER 3. STABLE PREDICATES 50
i

comprise the system.

Also like Rana’s, this algorithm provides information about when the system became 

terminated. If we assume that all system clocks are accurate, then we know that the system
k
t was terminated at the token timestamp value in real time. This is not the first instant at
I
| which the system was terminated, as in Rana’s algorithm; however, it is within e of the

j initial instant at which the system became terminated.

Finally, like Rana’s, our algorithm is fully distributed and symmetric. Thus, using rough
j
I clock synchronization, we can construct an algorithm that provides the benefits of usingii

perfect clock synchronization, with only a small performance degradation.
j
Il

3.1.2.4 Efficiency Considerations
1

Rana’s protocol uses circulation of a timestamped token to detect the truth of the global 

predicate. Complete circulation of the timestamped token indicates that the global predicate 

is true when the token initiator’s clock reads the token timestamp value. By using GLPs, it 

is easy to see that our modification to Rana’s protocol works, even though clocks are only 

roughly synchronized. The correctness arguments are essentially the same.

Although not quite so obvious, the algorithm works equally well if SLPs, rather than 

GLPs, are used. In this case, all processes are passive at or before the instant that Pj 

initiates the winning token, rather than when Cj reads the token timestamp value. We 

present the modified algorithm and correctness proofs below [45].

A lgorithm  The protocol is identical to protocol TD-GLP (figure 3.3) with the exception 

that processes wait only e prior to initiating or propagating a token. Each process times

tamps the token with its SLP timestamp, the clock value at the beginning of the e interval.
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statej
TPj
TSj
alarmj (T)
r,

Token(TSi, i) 
clockj

indicates P j’s  state, initially active
Pj’s clock value at the instant it satisfied its local predicate 
Pj’s timestamp, initially 0
Pj's  alarm which signals Pj when Cj reaches T; alarmj(0) cancels the alarm 
set of all tokens received by Pj during the current transition state, initially 
empty; the operator t s m a x  applied to r ,  returns the timestamp and process 
index from the token with the largest timestamp value 
token initiated by Pi with timestamp TSi 
current value of Pj's clock

statej Event Action
active satisfy local predicate TPj clockj 

alarmj (TPj + e)
r ,  <-0
statej *— transition

Token{TSi,i)  received discard Token{TSi,t)
transition application msg received alarmj (0) 

statej *— active
Token(TSi,i)  received r ,  <— r ,  U  {Token(TSi,i)}
alarmj expires TSj  «- TPj 

T S i,i  «— t s m a x ( r 7 )  

if (TSi > T S j) then
propagate Token(TSi,i)

else
initiate Token(TSj,j) 

statej  «— idle
idle application msg received statej *— active

Token(TSi,i) received if (TSj < TSi) A  (J =  i) then  
declare termination 

if {TSj < TSi)  A  (j #  i) then 
propagate Token{TSi,i )  

if {TSj > TSi)  then
discard Token{TSi,i)

Figure 3.4: Protocol (TD-SLP): Efficiency Modification to Protocol TD-GLP
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Thus, if Pi’s clock value is TPi when it satisfies its local predicate, its timestamp will be 

TPj, rather than TP* +  e. The modified algorithm is shown in figure 3.4.

] Correctness We again present safety and liveness arguments in order to verify our pro-
I
| tocol. We begin by proving a token propagation theorem which will be useful in this
I
| correctness argument, as well as later correctness arguments. The theorem asserts that if a

timestamped token is propagated in the manner of the previous algorithm, but using SLPs 

instead of GLPs, then the global predicate holds at the earliest instant the winning token 

; could be initiated.J

j
Lemma 3 Suppose Pj establishes S (T S j,j, Aj) and then initiates a token with timestamp

j TSj. Now suppose that Pi establishes <S(T5t,i, Aj), that TSi < TSj, and that A,- is true

continuously from the time Pi establishes its SLP until it receives P j’s token. Then A,- is 

true at the earliest real time instant trj for which Cj(trj) = T S j +  e

P r o o f : Let TSi be P j ’s  timestamp when it propagates Pj's token Token{TSj,j) and let

tpi be the latest instant at which Ci(tpi) =  TSi. Let trj be the earliest instant at which 

Cji.trj') =  T S j 4- e. By clock axiom Cl, Ci{trj) > TSj. By our assumption TSi < T Sj and 

then, by clock axiom C2, tp, < trj.

Clearly, given non-zero message transmission time, the instant tti at which Pi propagates 

the token must be later than the instant at which Pj could first have released the token. 

Thus

tpi < trj < tti,

and, by the protocol, A,- must have held over this entire interval, [tp,-, ft,-]. Thus, A, held at 

real time instant try. I
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Theorem  6 (Safety) I f  any process Pj declares termination, then the application is ter

minated.

P r o o f : If Pj declares termination, then it has received its own token Token(TSj,j). If Pj 

receives its own token, then every Pi, i in SYS, i  ^  j  has propagated Pj’s token. Clearly 

then, by the protocol and theorem 3, all processes are passive at the earliest real time 

instant trj for which Cj(trj) =  TSj + e and, under synchronous communication, the system 

must be terminated. I

The next lemma is useful for establishing liveness. In the previous two protocols we 

showed that the system is terminated at the instant(s) the clock of the token initiator 

Pj reads the token timestamp value TSmax, where TSmax is the highest token timestamp 

value generated during the computation. Here we show that the system is terminated at 

the earliest instant trj for which Cj(trj) — TSmax.

Lemma 4 Let TSmax be the highest valued timestamp generated during the computation 

and let Pj be a process which generated TSmax- Then the computation is terminated at the 

earliest real time instant trj for which Cj{trj) =  TS'max -t- e.

P r o o f : By clock axiom Cl, Ci(trj) > TSmax for every i in SYS. Now suppose some

process Pi is performing application processing at trj. Then, by the protocol, this process 

would generate a timestamp TSi which is greater than TSj, a contradiction. Thus, no 

process can be active at C~l{TSmax + e)- 1

Theorem  7 (Liveness) I f  the application is terminated, then some Pj will declare termi

nation.
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P r o o f :  Consider the highest valued timestamp T S m ax generated during the computation. 

Let Pj be a process which generated timestamp TSmax• If more than one process generates 

this same timestamp, then let Pj be the process whose alarm expires first. By lemma 4, 

the system must be terminated at the earliest instant try for which Cy(fry) =  TSmax-
f

i  By our assumptions, Pj could not have received a token with a higher valued timestamp
]I

while in the transition state, it will then initiate Token(TSmax, j)  from the transition state 

immediately prior to entry into the idle state, 

i This token can be received by processes in the transition or idle states. By the protocol,
t

any process in the idle state will propagate Token(TSrni,T. j ) . A process in the transition 

\ state may discard Token{TSmaxij)- However, all processes will propagate some token with

timestamp TSmax and, by the nature of the control cycle routing, one of these tokens will 

circulate completely and detect termination. I

Perform ance By an argument similar to that made for lemma 2, again assuming that 

processes are not swapped out and that instruction execution time is insignificant in relation 

to e and the maximum transmission time 5, the maximum detection delay is NS+2(1+p m )̂ - 

Thus, we have reduced the maximum delay by (1 -f pm )*, from the earlier algorithms.

However, the correctness proofs using this technique are not as straightforward. By 

using GLPs, we can reference all process timestamps to a single process clock. This allows 

us to order event occurrence in a single absolute time frame. This is not the case with SLP 

timestamps.
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3.1.3 G eneral Term ination D etection

The previous algorithms all focused on detecting termination within a single simple system. 

These algorithms demonstrated both the benefits of assuming a global time base and the 

application of SLPs and GLPs.

In each of the time based algorithms given so far we have used the same basic approach, 

circulation of a timestamped token to establish an instant in time at which some local 

property is true for every process. The truth of each of these local properties at the same 

instant then implies the truth of the global termination predicate. This is a natural approach 

to the termination detection problem and to predicate detection in general.

In each of the algorithms we have presented, the token traverses a ring of the system 

processes. Further, we have only examined a simple case of the termination detection 

problem.

In the following sections we present several algorithms which demonstrate the broader 

application of this approach. We choose to use SLPs as the resulting algorithms are more 

efficient. However, we could have applied GLPs as well.

We begin by presenting an overview of previous solutions to the termination detection 

problem. We then present several algorithms that address the problem within more varied 

system architectures.

3.1.3.1 Previous Work

Dijkstra presented the first solution to the termination detection problem in the context of 

diffusing computations [12]. A diffusing computation can be described as follows. Let A 

and B  be nodes within a finite directed graph. If there is an edge between A  and B, then
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B  is a successor of A , and A is a predecessor of B. The environment is a single node with 

only incoming edges. A diffusing computation starts when the environment spontaneously 

sends (just once) a message to one or more of its successors. After reception of its first 

message, an internal node is free to send messages to its successors. Nodes send messages 

to successors and receive messages from predecessors; they send signals to predecessors and 

receive signals from successors. Each node’s signalling obligation can be characterized by a 

“comet”, a bag in which one element has the special status of being “the oldest element”. 

Whereas a stack is characterized by “last in, first out", a comet is characterized by “very 

first in, very last out". Each message received on incoming edge adds an element to the 

bag, and a signal removes an element from the bag. When the environment receives a 

signal for each outgoing message, the computation is terminated. His protocol is valid for 

asynchronous communication and does not require FIFO channels.

Francez first proposed a solution to the problem which does not require the addition of 

communication channels between processes, like the system we described in the previous 

section [18]. However, the protocol may delay (freeze) execution of the underlying compu

tation. (He later presented a solution which does not require delay of application processing 

[19].)

These early protocols focus on systems with synchronous communication; further, they 

are not distributed in the sense that a single process initiates the termination detection 

computation and eventually detects the termination [12, 18, 19, 48, 11, 63].

Rana proposed the first well-known fully distributed and symmetric solution. As we 

discussed, his solution is also restricted to systems with synchronous communication. Sev

eral later symmetric protocols focused on removing the restriction of perfectly sychronized
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t, t. t.l '3 4

Figure 3.5: Successive Control Waves for a Four Process System

clocks, while retaining the assumption of synchronous communication [1, 8, 16].

1 Most later solutions focus on systems with asynchronous communication [47, 32, 40, 41,

25, 4, 50, 33]. Some of these require FIFO communication [47, 4] or take on the additional

■ complexity required to obtain fault-tolerance or handle dynamic systems [32, 33].

I Several protocols have been proposed to handle asynchronous message passing with ar

bitrary delivery order. Mattem proposed a simple protocol for detecting termination under 

this system model [40]. By his protocol, some process initiates a control wave, a message 

which causes receiving processes to report their state. By his “four counter” method, two 

successive control waves are initiated. This is illustrated for a four process system in figure 

3.5. Each process Pi keeps monotonically increasing counters for the total number of mes

sages sent (si) and the total number of messages received (rt). These values are reported as 

part of the process state during the control wave. Let S{t) be the system-wide send count 

at real time instant t, and let R(t) be the system-wide receive count at real time instant 

t; i.e., S(t) = JZiesYSsi(t) ^  -R(t) =  HiesysnCt), respectively. Let 5* and R* be the 

system wide send and receive counts reported by the first control wave. Similarly, let S'* 

and R'* be the counts reported by the second wave. It is easy to see that the following 

properties hold:
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• t< i!  implies that s<(t) <  Si(tf) and rt-(t) < n(1f),

• t < t '  implies that S{t) < S(tf) and R(t) < R (f),

• R* < R{ti), and

• S'* > S(t3).

It then follows that:

R *  =  S'* =► fl(i2) >  5(«3)

=► I2(t2) > 5(<a)

=► i2(<2) =  5 ( t2)

Then if 12* is equal to S'*, there are no outstanding messages at real time instant f2, and 

the system must be terminated.

So-called skeptic algorithms are a variant of the four counter method and use flags to 

detect activity to the right of the first wave, which can corrupt the values of counters 

obtained from this wave. This activity can be detected by the use of flags, initialized by 

the first wave, and set by processes when they receive or send messages. Then the second 

wave only need check to see if any flags have been set, in which case a possible corruption 

is assumed [40, 31]. (Several synchronous algorithms, which do not require counters, are 

based on this principle [19, 11, 63].)

Two cycles are required in order to detect the termination using either of these ap

proaches. Further, there is no upper bound on the number of control messages. Processes 

must guess when the algorithm should be restarted after an unsuccessful trial.
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Event Action
send application msg to Pi C N T  « -  C N T  4 -1

send msg{CLOCK,...) to Pi
receive application message 
m sg(TSTAM P , . . . )

C N T  C N T  + 1
T M A X  < -  max(TSTAMP, TM A X )

receive control message 
m sg(TlM E, ACCU, IN V A L ID , I  N IT )

if I  N I T  = j  th en
if  {ACCU  =  0) A ( - IN V A L ID ) 

terminate
else

try again?
else

send mag{TIME, ACCU  +  COUNT,
IN V A LID  V {TM A X  > T IM E ), 
I  N IT)  tO P(jmo<in)+l

starting control round CLOCK  < -  CLOCK + 1
send msg{CLOCK, COUNT, False, j )  to P ( , ' m o d n ) + i

Figure 3.6: Mattem’s Logical Clock Protocol for Termination Detection

Some protocols take an approach similar to that used by Rana. These protocols are 

based on the use of some kind of logical clock. Eventually, some process will attain the 

highest logical clock value seen during the computation, and a token containing this times

tamp will circulate and detect the termination. Mattem gave one such protocol for a ring 

of processes, as in the system of the previous section. Each process is assumed to have a 

local message counter C N T , which indicates the total number of messages sent minus the 

total number of messages received, a discrete C L O C K , which is initialized to zero, and 

a variable T M A X ,  which holds the latest send time of all messages received by Pj. The 

protocol is given in figure 3.6.

This protocol can detect termination in a single token cycle. However, control informa

tion must be appended to every application message. Huang and Lai presented protocols 

based on this same principle; Lai’s protocol addressed dynamic systems [25, 32].

In the following section, we develop termination detection protocols for systems with 

reliable asynchronous message passing with arbitrary delivery order. As we will see, the use
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of roughly synchronized clocks enables detection of termination in a single token cycle, in 

all cases, without requiring any control data within application messages.

3.1.3.2 Asynchronous Communication

Asynchronous, rather than synchronous, communication is a common complication to the 

simple system of the previous protocols. In systems with asynchronous communication, 

processes return from a message send immediately; that is, they do not wait to find out 

whether or not a sent message has been received. In this case, even if all processes are 

simultaneously passive, there may be a message in the channels which will reactivate one of 

the system processes. Thus, under asynchronous communication, we must detect an instant 

at which all processes are passive and all the channels are empty.

Unbounded Message Delay Probabilistic clock synchronization algorithms do not re

quire a bound on message transmission time [10]. We can then assume a system with 

unbounded message transmission time, but in which clocks are roughly synchronized. Here 

we present an algorithm for this type of system.

We use message counters to detect whether or not the channels are empty. First, we 

modify the synchronous local property established by each process Pi, prior to initiating or 

propagating a token, to be the property “P,- is passive and has a message deficit of Imsgs ”, 

where the message deficit is the number of messages sent m inus the number received by 

Pi- Each process tracks its local message deficit using a counter variable. As the token 

circulates, it collects each process’ message deficit. As in the previous protocol, complete 

circulation of the token then indicates that all processes were passive at the same time 

instant. Further, in this case, the message deficit total in the token represents the system
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statej
\ TSj
\ alarmj (T)
I r >
j

clockj
Imsgsj
Token(TSi, i, gmsgs)

statej Event Action
active satisfy local predicate T Sj <— clockj 

alarmj (TSj + e)
T} *-<6
statej *— transition

receive Token(TSi, i, gmsgs) discard Token(TSi, i,gmsgs)
send application msg Im sgsf
receive application msg Imsgsj

transition receive application message alarmj (0) 
Imsgsj
statej *— active

receive Token(TSi, i, gmsgs) r ,  *— Tj U {Token(TSi, i, gmsgs)}
alarmj expires TSi, i,gmsgs <— tsm axfr,) 

if  (TSi > TSj) then
propagate Token(TSi, i, gmsgs +  Imsgsj)

else
initiate Token(TSj,j, Imsgsj) 

statej *— idle
idle receive application message Imsgsj

statej «— active
receive Token(TSi, i, gmsgs) if  (T S j <  TSi) A (i =  j)  A (gmsgs =  0) th en  

declare termination 
if  (T S j < TSi) A (i =  j)  A (gmsgs ^  0) th en  

discard Token(TSi, i, gmsgs) 
if  (TSj < TSt) A (i £  j)  th en

propagate Token(TSi, i, gmsgs 4- Imsgsj) 
if  (TSj > TSi) th en

discard Token(TSi, i, gmsgs)

Figure 3.7: Protocol (TD-Asynch): TD Under Asynchronous Communication

indicates Pj's state, initially active 
Pj's timestamp, initially 0
Pj's alarm which signals Pj at Cj(t) =  T; alarmj(0) cancels the alarm
set of all tokens received by Pj during the current transition state, initially
empty; the operator tsmax applied to r ,  returns the timestamp and process
index from the token with the largest timestamp value
current value of Pj's clock
Pj’s message deficit, initially 0
token initiated by P, with timestamp TS,-; the total of all message deficits 
for processes which have propagated the token is contained in gmsgs
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wide message deficit at this same time instant. If this cumulative deficit is zero, then the 

system is terminated.

A lgorithm  The modified protocol and associated process state are given in figure 3.7. 

In addition to the process state required for the previous protocol, each process keeps an 

additional variable containing its local message deficit. Once again, each process Pi initiates 

a token each time that it becomes passive. The token contains a timestamp, the process 

index of the initiating process *, and Pi’s local message deficit. A process receiving the token 

can either discard it or propagate it. The criteria for token initiation and propagation are 

the same as that for the previous protocol. Each process establishes an SLP indicating its 

passivity prior to initiating or propagating a token. Tokens received by passive processes, 

other than the token’s initiator, and which have timestamps greater than or equal to the 

receiving process’ timestamp are propagated; tokens with lower timestamps are discarded. 

Here, though, a process propagating the token will first add its own local message deficit to 

the cumulative deficit contained in the token. If a process receives its own token containing 

a cumulative message deficit of zero, then termination is declared.

Correctness In theorem 3, we showed that if a token circulated completely, in the manner 

of the previous protocol, then the local predicates were all true at the same real time instant. 

In the previous protocol, each local predicate A,- was the predicate “Pt- is passive.” Here 

we have only modified the SLP asserted by each process, prior to initiating or propagating 

a token, to handle asynchronous communication. In protocol TD-SLP, given in figure 3.4, 

each process asserted the SLP S{TSi,i, “Pi is passive”). In this algorithm, each process 

asserts the SLP S(TSui,A i) where A* is the property “Pi is passive and has a message
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deficit of Im sgsi” Since processes cannot send messages from the transition or idle states 

and since they transition to the active state upon receiving a message, each local message 

deficit remains constant during any transition and idle intervals. By theorem 3 then,

complete circulation of the token, with a cumulative message deficit of zero, indicates that
ij
■ at the instant the token initiator’s clock read the timestamp value all processes were passive
i

and there were no outstanding messages.

Theorem  8 (Safety) I f any process Pj declares termination, then the application is ter-
i
I minated.

P r o o f : If Pj declares termination then every Pi, i in SYS , has propagated fVs token
fs

Token(TSj, j, gmsgs) and the received token contained a cumulative message deficit of zero.

By the protocol, every process establishes the SLP S(TSi,i,A i) where A, is the prop

erty “Pi is passive and has a message deficit of Imsgsi”, i in SYS, prior to initiating or 

propagating the token. Further, since passive processes cannot send messages and pro

cesses which receive a message transition back to the active state, the property asserted by 

each SLP remains true whenever a process in in the transition or idle states. By theorem 

3, all processes were passive at the earliest instant trj at which Cj(trj) =  TSj,  and the 

global message deficit at that time was zero. Then, under asynchronous communication, 

the computation must be terminated. I

The liveness argument is also similar to that made for the previous algorithm. The 

system is terminated at the earliest instant trj at which Cj{trj) =  TSmax +  £, where TSmax 

is the highest valued timestamp generated during the computation and Pj is a process 

which generated timestamp TSmax- The proof of this fact, given for the earlier protocol, 

is not affected by the fact that communication is asynchronous. By clock axiom Cl, all

I
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process clocks must read some value greater than TSmax at real time instant Cy(try). By 

the protocol, any process active after this time instant would generate a timestamp greater 

than TSmax, & contradiction. Then, since the token and process message deficits are not 

considered when a process decides whether or not to propagate the token, some token with 

timestamp T S max will circulate completely. In this case, however, we must also show that 

the message deficit contained in the token will be zero.

Theorem  9 (Liveness) I f  the application is terminated, then some Pj will declare termi

nation.

P r o o f : Consider the highest valued timestamp TSmax generated during the computation.

Let Pj be a process which generated timestamp TSmax• II more them one process generates 

timestamp TSmax, let Pj be the first such process to enter the idle state. By an argument 

identical to that made for theorem 7, a token with the highest valued timestamp TSmax 

will circulate completely. However, in order for termination to be declared, the message 

deficit contained in that token must be zero.

Each process adds its local message deficit to the token as it circulates. By an argument 

identical to that made for theorem 8, the message deficits contained in the token must 

represent the system-wide total at try, where try is the earliest instant at which Cy(try) =  

TSmax- Then, if the system is terminated at try, the sum of the message deficits contained 

in the token must be zero.

Thus, some token with timestamp TSmax will circulate completely, the token will contain 

a message deficit of zero, and the termination will be declared. I
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indicates Pj’s state, initially active 
Pj’s timestamp, initially 0
Pj’s alarm which signals Pj at Cj(t)  =  T; alarm , (0) cancels the alarm 
set of all tokens received by Pj during the current transition state, initially 
empty; the operator t s m a x  applied to Tj returns the timestamp and process 
index from the token with the largest timestamp value 
current value of Pj's clock
value of Cj at instant of most recent message send 
token initiated by P, with timestamp TSi
maximum message transmission delay between any two system processes, as 
measured by any process clock

statej Event Action
active satisfy local predicate TSj *— clockj +max(0, (8 — clockj +  lastsendj)) 

alarmj(TSj  +  e )  
r j* -g l
statej *— transition

receive Token(TSi,i) discard Token(TSi, i)
send application msg lastsendj *—clockj

transition receive application message alarmj (0) 
statej <r- active

receive Token(TSi, i) Tj  « —  r *  U  {Token(TSi,  t ) }

alarmj  expires T S i,i  < —  tsmax(r7 ) 
if (TSi > TSj)

propagate Token(TSi,i)
else

initiate Token(TSj,j) 
statej  « —  idle

idle receive application message statej  « —  active
receive Token(TSi, i) if (TSj < TSi)  A (i = j)  th en  

declare termination 
if  (TSj < TSi)  A (i /  j)  th en  

propagate Token(TSi,  t) 
if  (TSj > TSi)  th en

discard Token(TSi, i)

Figure 3.8: Protocol (TD-Bnd): TD With Bounded Message Transmission Time

i!I

statej
TSj
alarmj(T)
r,

clockj
lastsendj
Token(TSi,i)
8
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Bounded Message Delay Many clock synchronization algorithms assume that message 

transmission time is always within some known bound 6 . In this case, we can eliminate the 

message deficit counters of the previous protocol and use the bound on message transmission 

j time to determine that the channels are empty.

! The protocol modification becomes clear if we restate the termination predicate as fol-
»

lows. The system is terminated if there is an instant at which every process Pi, i  in SYS, 

is passive and all of /Vs outstanding messages have been received. Since the message delay 

bound is known, each process knows that all its outstanding messages have been received$

after an interval of 6  has elapsed since the instant its last message was sent. Thus, each 

\ process Pi should establish the SLP “Pj is passive and all its messages have been received.”
I

The token circulation will then detect an instant at which this property is true for all Pi 

and termination can be concluded.

A lgorithm  The protocol and associated process state are given in figure 3.8. Again, each 

process initiates a token each time that it becomes passive and propagates tokens based on 

their timestamp value. However, in this protocol, each process must establish the SLP “Pt 

is passive and all its ou tstand ing  messages have been received.” It makes this assertion by 

keeping track of the time at which it last sent a message and using this value to modify 

the alarm setting. On each transition from the active state, Pi sets its alarm for at least e. 

However, it adds an additional interval to this e to ensure that, when the alarm expires, it 

has been at least e + 6  since its last message was sent. By definition, S is the maximum 

message transmission time as measured by any process clock. Thus, when P ,’s alarm expires 

it can assert S(TSi, i, Ai), where TSi is Pi's timestamp and A, is the property “Pj is passive 

and all its outstanding have been received.”
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Correctness The liveness argument for this protocol is identical to that given on page 

53 for protocol TD-SLP. The system is terminated at real time instant C ~l (TSmax 4- e), 

where TSmax is the highest valued timestamp generated during the computation and Pj 

is a process which generated timestamp TSmax- Then by the protocol, some token with 

timestamp TS'max will circulate completely. Here we give only the safety argument.

Once again, we only need prove that each process which propagates the token asserts 

an SLP which remains true throughout the transition and idle intervals and which, when 

asserted by all processes, ensures termination. Once this is established, the safety argument 

is the same as that given for the previous protocols. Complete circulation of the token 

indicates that the property held for all processes at the same instant in real time. Here 

we only prove that each process Pi can assert the property “Pj is passive and all of P ’s 

messages have been received” and that this property remains true throughout the transition 

and idle intervals.

Lemma 5 I f Pi propagates Token(TSj,j) then S(TSi,i,A i), where A, is the property “Pi 

is passive and all its outstanding messages have been received. ” Further, once the SLP is 

established, it remains true until the instant the token is propagated.

P r o o f : Let TSi be P f’s timestamp when it initiates or propagates Token(TSj,j). When

Pi satisfies its local predicate, it sets its timer for the maximum value of e and 5 — clockj +  

lastsendj. Cj's timer then cannot expire until it has been at least e + 6 since its last 

message send. In order for the timer to expire, Pi must remain continuously passive from 

the instant it set the timer and, by the protocol, Pi's timer must expire before it will initiate 

or propagate a token. Then, since S is the maximum message transmission time as read by 

any process clock, Pi can assert the SLP <S(T5t, *, A,-) where A,- is the property “Pi is passive
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and all its outstanding messages have been received.” Further, since passive process cannot 

send messages and Pi must be passive in order to remain in the idle state and propagate 

tokens, the property will remain true until the instant at which Pj propagates any token 

using timestamp T S i• I
2t
}
i

! Discussion Both asynchronous com m unication algorithms require O ( M N )  messages to

detect the termination. The detection delay is O (N ) .  Each requires an additional delay

I prior to initiating the final token to account for the rough clock synchrony and, in the

case of bounded message delay, the maximum message transmission interval. Further, both

1 algorithms are fully distributed and symmetric.
i
f

A number of algorithms have been presented for static systems with reliable asyn-
j

chronous communication including [1, 50, 32, 43, 5, 47, 12, 4]. However, many of these 

are not symmetric [50, 32, 43, 12, 4], or make additional constraints on message delivery 

order [5, 47].

Few of these algorithms are symmetric. Arora et. al introduced a symmetric algorithm 

for distributed termination detection in [1]. However, their algorithm required that each 

process Pi sends a message to every neighbor Pj each time that Pi transitions from active 

to passive.

Thus, their algorithm can require significantly more message passing. The detection 

delay of their protocol is also O (N ) .  Thus, by structuring the algorithm on the use of a 

global time base, we are able to develop a fully distributed algorithm that is simple and 

efficient. Further, if all system clocks are known to be accurate, then we know not only that 

the system is terminated, but we also know that it was terminated at the token timestamp 

value in real time.
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statej
TSj
alarmj (T)
rj

clockj
Token(TSi, i)
Reply(TSi)
nrepliesj

statej Event Action
active satisfy local predicate T S j *— clockj 

alarmj (TSj -He)
Tj 4— 0
statej 4- transition

receive Token(TSi, i) discard Token(TSi, i)
receive Reply(TSi) discard Reply(TSi)

transition receive application message alarmj (0) 
statej 4- active

receive Token(TSi, t) Vj 4— ITy U {Token(TSi, i)}
alarmj expires broadcast Token(TSj,j) 

for all Token(TSi, i) € r ,  
if  (TSi > TSj)  th en  

send Reply (TSi) to P i 
nrepliesj 4— 1 
statej 4— idle

receive Reply (TSi) discard Reply(TSi)
idle receive application message statej 4— active

receive Token(TSi,i) if  (TSi < TSj) then
discard Token(TSi, i)

else
send Reply (TSi) to Pi

receive Reply (TSi) if (TSi = TSj) then  
nreplies*+

if  (nrepliesj =  N) th en  
declare termination

Figure 3.9: Protocol ( TD-Bcast): TD with Broadcasts

ii

indicates Pj's state, initially active 
Pj 's timestamp, initially 0
Pj’s alarm which signals Pj a t Cj(t) =  T; alarmj (Q) cancels the alarm 
set of all tokens received by Pj during the current transition state, initially 
empty
current value of Pj's dock
token initiated by Pi with timestamp TSi
reply sent to Pi in response to Token(TSi, i)
number of replies received in response to Pj’s most recently timestamped 
token
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3.1.3.3 Token Broadcasts

We can reduce the detection delay of our earlier protocols significantly by broadcasting 

the token. We assume that broadcasts can be made by creating and transmitting a single 

message. Further, by using token broadcasts, only a single message is required to notify all 

processes of the termination, once it is detected.

If we also assume well-ordered message passing, that is, the first message sent by any 

process is the first message received by any process, then we can eliminate the need for 

message counters. We consider a message sent when it is “on the wire,” and we consider 

a message received when it is ready for processing by the application process. (This is 

described in more detail below.) Both of these assumptions (single message broadcasts 

and well-ordered message delivery) would apply to a set of processors connected with an 

Ethernet and using an IP network layer.

A lgorithm  We refine our system model for this protocol. First, each process is assumed 

to have a message buffer in which incoming messages are stored until they can be processed. 

Both application messages and control messages are stored in this same buffer. Application 

messages take highest priority and will always be acted upon first. Control messages are 

assumed to be stored and processed in FIFO order. A control message can only be processed 

when there are no application messages in the buffer. A message is considered sent when 

it is “on the wire;” all application messages generated during an active interval must be 

on the wire before a process becomes passive. A message is considered received when it 

has been stored in the receiving process’ message buffer. We assume well-ordered message 

delivery, that is, the first message sent to a process Pi, by any process, is the first message
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i

received by Pi- (As we pointed out in our general system model, we further assume reliable 

message passing.)

Again, the algorithm is symmetric. Each process broadcasts a token each time that it 

' becomes passive. The token contains the initiator’s timestamp and process index. Each
9

i
j process receiving the token sends a reply to the token initiator if its own timestamp is less

than or equal to the token timestamp. If a process receives a reply from all other processes, 

then the computation is terminated. The protocol and associated process state are given 

in figure 3.9.

In this case, token propagation establishes the SLP “Pj is passive and has received all
'j

f messages destined for Pi.” If each process asserts this property for the same instant in time,

, there can be no outstanding messages and the computation is terminated. The protocol

requires no specific action to ensure that all outstanding messages have been received at 

the timestamp value. This is a result of assuming well-ordered lossless message passing. 

Under this assumption, the token will flush the channels of any messages sent at or before 

the token timestamp value.

Correctness The liveness argument for this protocol is virtually identical to that made 

for protocol TD-Asynch (figure 3.7). Some process Pj will generate a token with the highest 

valued timestamp TSmax generated during the computation and the system is terminated 

at the earliest real time instant try for which Cy(fry) = T5mai-f e. The channels will then be 

empty, all processes will then reply to Token(TSmax, j ) , and Py will detect the termination. 

We do not repeat the liveness argument here.

Also, the safety argument is similar to that of previous protocols. Once we prove that 

token propagation (in this case, sending a reply to the token initiator) establishes the
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appropriate local property with the token timestamp value, propagation of the token by all 

processes ensures that the local property was true for all processes at the same time instant. 

Here, we give only the proof of the SLP asserted by token propagation.

j
Lemma 6  I f Pi propagates Token(TSj,j) then S (T S j,j,A i), where Ai is the property “Pi 

is passive and all messages destined for Pi have been received. ” Further, this property will 

remain true until the earliest real time instant trj for which Cj(trj) =  TSj -he.

P r o o f : Let P i’s timestamp be TSi when it propagates Token(TSj,j) and let tti be

the real time instant at which it propagated the token. By an argument identical to that
i
j made in earlier protocols, if Pi propagates the token then it can assert S (T S j,j, At), where

Ai is the property “P  is passive.” Further, Pi must remain passive until the instant at 

which it propagates the token.

Now, consider the instant tpj at which Pj initiates the token. By the protocol, tpj > trj. 

Given FIFO delivery, all application messages sent prior to tpj must already have been 

received by p .  If any message had been in the channels at that time, Pi would have processed 

the message, and been reactivated. If Pi remains passive, then there were no application 

messages in the channels at tpj. Thus, if Pi propagates the token, it has received all messages 

destined for p .  I

Performance This algorithm is O(MN) in the number of messages required to detect 

the termination. However, the detection delay is lower than those in which the token is 

propagated in a unidirectional ring of the system processes. Let Ss be the maximum time 

required to send a control message and ST be the time required to receive a message. Assume 

that the time the message is on the wire and to the time to execute protocol instructions

i
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Taken InitiatorToken

Reply

Figure 3.10: Tree Token Routing

once the message is received are negligible compared to the message delivery times. Then 

the earlier protocols require N(Sa +  8r ) + 3e(l +  pm) to detect the termination. They also 

require an additional delay of (N  — 1)(<JS +  8 r) to notify all processes of the termination. 

The broadcast algorithm only requires 8, +  8r + 3e(l +  p m ), in  the worst case, to detect 

the termination. Further, it only requires a delay 8 , 4- 8 r to notify all processes of the 

termination.

Thus, by a simple routing modification, we reduce the detection delay significantly, 

without an increase in the worst case message complexity.

3.1.3.4 Tree-Based Routing

The previous algorithm reduced the detection delay from that of earlier protocols. However, 

it required well-ordered message passing and single message broadcasts. In the following 

algorithm, we achieve a similar result without making either of these restrictions on the 

system. This is accomplished by using a tree-based token routing scheme.
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statej 
alarm, (T)
r>

clockj, TSj 
Cj, [child 
ImsgSj
Token(TSi, i, gmsgs)

Reply(TSi, gmsgs)

nleaves
T
msgtotalj
nrepliesj

indicates Pj’s state, initially active
Pj’s alarm which, signals Pj at Cj(t) =  T; alarmj(0) cancels the alarm 
set of all tokens received by Pj during the current transition state, initially 
empty; the operator tsmax applied to r ,  returns the timestamp, process 
index, and message deficit from the token with the largest timestamp value 
current value of P j’s clock and Pj’s timestamp (initially 0), respectively 
set of all Pj’s children and Pj’s left child, respectively 
Pj's message deficit, initially 0
token initiated by P, with timestamp TSi; the total of all message deficits
for processes which have propagated the token is contained in gmsgs
reply containing message deficit gmsgs sent in response to a token initiated
by Pi with timestamp TSi
number of leaf nodes in the system
set of processes which first receive an initiated token
sum of message deficits from replies received by P,
number of replies received, for a given token, by Pj

statej Event [ Action
active satisfy local predicate TPj «— clockj +  e

alarmj(TPj +  e); r ,  «— 0; nrepliesj «— 0; msgtotalj <— 0 
if (Cj =  0) then

nrepliesj «- 1; msgtotalj <— Imsgsj 
statej *— transition

receive Token(TSi,i, gmsgs) discard Token(TSi,i, gmsgs)
receive Reply (TSi, gmsgs) discard Reply(TSi, gmsgs)
send (receive) application msg Im sgsf+ (ImsgSj )

transition receive Reply(TSi, gmsgs) discard Reply (TSi, gmsgs)
receive Token(TSi, i, gmsgs) Tj *— r ,  U {Token(TSi,i, gmsgs)}
application msg received alarmj (0); Imsgs] ; statej «— active
alarmj expires TSi, i,gmsgs <— tsaax(r,-) 

if  (TSi > TSj) then 
if (Cj =  0) then

send Reply(TSi,gmsgs +■ Imsgsj) to P i
else

send Token(TSi,i,gmsgs + Imsgsj) to Ichild 
send Token(TSi, i, 0) to all P i €  Cj, P i ^  Ichild 

if  (TSj >  TSi) then
send Token(TSj,j, 0)to all Pi 6 I  

statej «— idle
idle application msg received Imsgsj ; statej «— active

receive Token(TSi, i, gmsgs) if  (TSi > TSj) then 
if  (Cj =  0) then

send Reply(TSi,gmsgs + Imsgsj) to P i
else

send Token(TSi, i, gmsgs + Imsgsj) to Ichild 
send Token(TSi, i, 0) to all Pi 6  Cj, Pi #  Ichild

else
discard Token(TSi, i, gmsgs)

receive Reply(TSi, gmsgs) if (TSi = TSj) then
nrepliesf+; msgtotalj *— msgtotalj +  gmsgs 
if  (nrepliesj =  nleaves) A (msgtotalj =  0) th en  

declare termination
else

discard Reply(TS, gmsgs)

Figure 3.11: Protocol (TD-Tree): TD using Tree Routing
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Algorithm  Here again, each process initiates a token each time that it transitions from 

active to passive. The initiated token contains a timestamp, message deficit, and the ini

tiator’s process index.

The token routing is shown in figure 3.10. The system processes are assembled into a 

tree with an imaginary root. A process assumes the root position when it initiates a token. 

Thus, each process initiates a token by sending copies of the token to the same processes, 

e.g., Po and Pi of figure 3.10.

When an internal node Pi propagates a token, the token is replicated and a copy is sent 

to each child. The message deficit in the left child’s copy of the token is the sum of the 

deficit in the received token and Pi’s own local deficit. The message deficit in the tokens 

sent to all other children is zero. The process id and timestamp are unchanged. When a 

leaf node receives the token, it propagates a reply to the token initiator. The reply contains 

the token timestamp and a message deficit, which is the sum of the leaf's local deficit and 

the deficit in the received token.

The criterion for token propagation is the same as in our earlier algorithms. Tokens 

that are received by a passive process and that have timestamps greater than or equal to 

the receiver’s timestamp are propagated. All others are discarded. Termination is declared 

if the initiator receives replies from ail leaf nodes, the replies contain the initiator’s current 

timestamp, and the message deficits in the replies sum to zero. The protocol and associated 

process state are given in figure 3.11.

Correctness This protocol is similar to protocol TD-Asynch (figure 3.7) except for the 

modifications made to the token routing. The criteria for token propagation and declaration 

of termination are the same. Thus, by an argument similar to that made for theorem 8, if
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Pj initiates or propagates a token then it has established the SLP S (T S j,j,A i), where Ai 

is the property “Pt- is passive and has a message deficit of Imsgsi”. Further, this property 

remains true while Pj is in the transition and idle states. Then, in order to apply theorem 

3 we only need show that each process must propagate the token in order for termination 

to be declared, which is apparent from the protocol.

The liveness argument, too, is essentially unchanged from that given for the earlier 

protocol. We do not repeat it here.

Perform ance This algorithm is 0 (M N ) messages in the number of messages required to 

detect the termination. The detection delay is 0(H ), where H  is the tree height. Nicol also 

gave a tree-based termination detection algorithm for systems with asynchronous communi

cation [50]. He assumes that the system is formed into a complete binary tree. His algorithm 

is also 0(logN) in the detection delay. However, his algorithm’s best case performance can 

be considerably better, whereas our algorithm’s detection delay is not variable.

Lai gave a tree-based algorithm for dynamic systems with reliable asynchronous com

munication [32]. His algorithm is also O(H) in the detection delay and 0(M N ) in the 

number of messages required to detect the termination.

However, both Nicol’s and Lai’s algorithms require significantly more state information, 

0{N) space complexity, in each process and on each message.

3.1.3.5 Reduced Active Process In terrup tion

The following algorithm is a modification to protocol TD-Asynch given on page 61. Here 

the token routing is modified to reduce the number of interruptions to active processes. 

By the following protocol, no active process receives more than one control message during
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flagj indicates whether or not Pj can initiate a token when it transitions to the
idle state, initially fa lsa  for all processes except Po, which initially has flagj 
equal to true

statej indicates Pj's state, initially active
TSj P j’s timestamp, initially 0
alarmj(T) Pj's alarm which signals Pj at Cj(t) = T; alarmj(0) cancels the alarm
r ,  triple containing the timestamp, process index, and message deficit from a

token received in the transition state; initially (0,0,0) 
clockj current value of P j’s clock
Imsgsj number of application messages sent minus then number received by Pj
gmsgs cumulative total of send and receive counts contained in a token received or

propagated by Pj
Token(TSi, t, gmsgs) token initiated by Pi with timestamp TSi ,the total application message sends

and receives for all processes which have propagated the token are contained 
in gmsgs

statej | Event Action
active satisfy local predicate TSj <— clockj 

alarmj (TSj +  e)
T, <-(0,0,0) 
statej <— transition

receive Token(TSi, i, gmsgs) discard Token(TSi, i,gmsgs) 
flagj <— true

send application msg Im sgsf^
receive application msg Imsgsj

transition receive application message Imsgsj
statej <— active

receive Token(TSi, i, gmsgs) flagj <— true
if  ('TSi < TSj) then

discard Token(TSi, i, gmsgs)
else

r ,  <- (TSi, i,gmsgs)
alarmj expires (TSi, i,gmsgs) «- Tj 

if  ( I ;  #  0) then
propagate Token(TSi, i, gmsgs + Imsgsj) 
flagj <— fa lse  

if  (flagj = true  ) then
initiate Token(TSj, j,lm sgsj) 
flagj *— fa lse  

statej «— idle
idle receive application message alarmj (0) 

Imsgsj
statej *— active

receive Token(TSi, *, gmsgs) if (TSj < TSi) A  (i =  j)  A  (gmsgs =  0) then  
declare termination 

if (TSj < TSi) A  (i =  j)  A  (gmsgs ^  0) then  
discard token 

if (TSj < TSi) A  (i /  j) then
propagate Token(TSi, i, gmsgs + Imsgsj) 

if (TSj > TSi) then
discard Token(TSi, i, gmsgs) 
initiate Token(TSj,j,lmsgSj)

Figure 3.12: Protocol (TD-Quiet): TD with Reduced Control Communication
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any single active period. This is accomplished by ensuring that at any given instant in the 

computation either a single token is circulating, or there is no token circulating and a single 

process, currently in the active or transition states, will initiate a token when its alarm next 

expires.

A lgorithm  The algorithm and associated process state are shown in figure 3.12. Initially, 

only Po can, and will, initiate a token. Once this token is in circulation, only a process which 

discards a received token can, and will, initiate a new token. Thus, only one token is ever in 

circulation. Otherwise, the protocol is the same as protocol TD-Asynch (figure 3.7). Each 

process Pi establishes the SLP “Pi is passive and has a local message deficit of Imsgsi” prior 

to initiating or propagating a token. A token is only propagated by passive processes whose 

local timestamp is equal to, or less than, that on the received token. Each process adds its 

own local deficit to the total contained in the token prior to propagating it. Termination is 

declared when a process receives its own token containing a message deficit of zero.

C orrectness In order for Pj to receive its own token, it must be propagated by each 

process and the criterion for token propagation is the same as that for protocol TD-Asynch 

(figure 3.7). Thus, the safety argument for this protocol is the same as that given for the 

earlier protocol. Here we give only the more complex liveness argument.

The following lemmas are useful in establishing the correctness of our protocol.

Lem m a 7 Suppose Pj asserts S (T S j,j,A j) at real time instant trj and that Pi receives 

this assertion at real time instant tti. I f Cj (trj) > TSj + e then Ci(tti) > TSj.

P r o o f : Clearly, given non-zero message transmission time, tti > trj. By clock axiom Cl,

Ci(tTj) > TSj. Then, by clock axiom C2, Ci(ttj) > TSj. I
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Lem m a 8  Other than the first token initiated by Po, for each token Token(TSj,j, Imsgsj) 

P j  initiates, it has previously discarded a token Token(TSi,i, gmsgs) where TSi < T S j .

P r o o f :  I n  o r d er  t o  in it ia te  a  to k e n , a  p r o c e s s  P j  m u s t  e i th e r  re c e iv e  a  to k e n  w h ile  in  t h e

I idle state or it must have the variable flagj set to t r u e . By the protocol, initially only Po
i
| has flagj set to true  and there are no tokens in circulation. The variable flagj can only be

set from fa ls e  to true  upon receipt of a token. Thus, only Po can initiate the first token. 

Po sets flago to fa lse  immediately after initiating the first token.
5

Tokens can only be initiated from the idle or transition states. By the protocol, clearly 

; a process in the idle state can only initiate a token after it has discarded one with a lower
t
43
; timestamp.
i
' P j  can only initiate a token from the transition state if the variable flagj is true  .

Initially, flagj is fa lse  for all processes except Po, which sets flago to fa lse  after initiating 

the first token.

By the protocol, P j  can only set flagj to tru e  while in the active or transition states. 

Now suppose P j  sets flagj to true  while in the active state. Then, by the protocol, it 

has discarded a token. By lemma 7 and the protocol, Pj ’s next timestamp will be greater 

than that on the discarded token. Thus, if P j  initiates a token from the transition state 

after setting flagj to true in the active state, then it has discarded a token with a lower 

timestamp.

Now suppose P j  sets flagj to true  in the transition state. Then it has received a token 

Token(TS i, i, gmsgs). If T S i  < T S j ,  then P j  will discard the token and any subsequently 

initiated token will have a higher timestamp. Suppose that T S ,  >  T S j .  Then either P j  

will propagate the token and reset flagj to false, in which case no token is initiated, or P j
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will transition back to the active state. If Pj transitions to the active state, then ly will be 

reset prior to initiation of any token, effectively discarding the received token. By lemma 

7 and the protocol, any subsequently initiated token will have a higher timestamp. Thus, 

if Pj initiates a token from the transition state after setting flagj to true in the transition 

state, then it has discarded a token and any subsequently initiated token will have a higher 

timestamp. I

Lem m a 9 Pj receives a single token during any interval in the transition state.

PROOF: By lemma 8 there can be only one token in circulation at any time. Thus, if

Pj receives a token in the transition state, it cannot receive another token until it either 

propagates the token or initiates a token of its own. By the protocol, Pj only propagates 

or initiates tokens from the transition state when its alarm expires, immediately prior to 

entering the idle state. Thus, Pj receives a single token during any interval in the transition 

state. I

Lem m a 10 If Pj discards a token Token(TS{, i, gm sgs), then TSj >  TSi and Pj will 

initiate a token Token(TSj,j, Imsgsj)

PROOF: A process can discard a token from any of the three states, active transition or

idle Suppose Pj discards a token in the active state. We must show that Pj will eventually 

initiate a token and that the timestamp on this token will be greater than that on the 

received token.

If Pj discards a token Token(TSi, i, gmsgs) in the active state, it sets the variable 

flagj to true  . Pj will then initiate a token when its alarm next expires (which it must 

eventually, if the computation terminates) unless it sets flagj to fa lse  prior to initiating
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the token. In order for Pj to set flagj to fa ls e  , Tj must be non-empty. However, by 

lemma 8, only one token can be in circulation at any time. Thus, Pj cannot have received 

a token since it received Token(TSi, i, gmsgs) and ly must be empty. Further, by lemma 

7, when the alarm expires, P /s  timestamp will be greater than TSi. Thus, if Pj discards 

a token Token(TSi, i, gmsgs) horn the active state, then it will eventually initiate a token 

Token{TSj, j, Imsgsj) with TSj > TSi.

Suppose that Pt discards a token while in the the idle state. In this state, it only discards 

tokens which have timestamps less than its own and does so immediately prior to initiating 

a token with its own timestamp.

Suppose, finally, that Pj discards a token Token(TSi, *, gmsgs) in the transition state. 

Then, by the protocol, it will only discard the token if TSi < TSj. At this point it will 

set flagj to tru e  . Then, by the protocol, Pj will initiate a token Token(TSj,j, Imsgsj) 

when its alarm next expires unless flagj is set back to fa ls e  before Token(TSj,j, Imsgsj) 

is initiated. Pj will only set flagj back to fa ls e  if T, is non-empty when the alarm expires. 

In order for I*/ to be non-empty, either it must already be non-empty, prior to the recep

tion of Token(TSi,i,gmsgs), Pj must receive another token between the time it received 

Token(TSi, i, gmsgs) and the time its alarm expires. By the protocol, Pj empties ly  prior 

to entering the transition state. By lemma 9 Pj can only receive a single token while in the 

transition state. By lemma 8, there can only be one token in circulation, and Pj cannot 

receive another token until it initiates one. Thus, Pj will not set flagj back to fa ls e  and 

will initiate a token, with a higher timestamp, when its alarm next expires.

Thus, if any process discards a token, it initiates a token of its own with a greater 

timestamp. I
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Lem m a 11 Pj discards a token Token(TSi, i, gmsgs) if and only if it subsequently initiates 

a token Token(TSj,j, gmsgs) where T Sj > T S i■

P r o o f : This is a direct result of lemmas 8 and 10.

5

I T heorem  10 (Liveness) I f the application is terminated, then some Pj will declare ter-
i . .mination.

P r o o f :  Consider the process Pj which generates the highest valued timestamp T S max

generated during the computation. If more than one process generates this timestamp, 

consider any such process. By the same argument given for lemma 4, the system is termi

nated at the earliest instant trj for which Cj(trj) = T S max -I- e.

By lemma 11, unless some process has already declared termination, some process with 

timestamp T S max will eventually initiate a token. Clearly, this token will be initiated at an 

instant later than or equal to trj. Since the system is terminated at this instant, all processes 

receiving this token will be in the transition or idle states. By the protocol, all processes 

in the transition and idle states propagate tokens with equal or greater timestamps. Since 

no process has a timestamp greater than TSmax> all processes will propagate this token.

By the same argument given in theorem 9, the local message counts in the token repre

sent the local totals at trj. Then, since the system is terminated, the message deficits must 

sum to zero and the termination will be declared. I

Perform ance This algorithm trades an increase in detection delay for a decrease in the 

number of interruptions to active processes. In the worst case, it will require two token 

circulations to detect the termination rather than a single circulation. The worst case mes

sage passing is O(MN).  Thus, its performance is similar to that of the first algorithm
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presented in this chapter, Dijkstra’s termination detection algorithm for systems with syn

chronous communication. However, by basing the algorithm on the use of time, we achieve 

a simple symmetric algorithm capable of handling the more complex case of asynchronous 

communication.

3.1.4 Conclusions

The termination detection protocols presented in this section perform well in comparison 

to protocols which make no assumption about the existence of a global time base. Like 

protocols which require two passes in order to detect the termination [40], no information 

need be appended to application messages. Like protocols based on the use of logical clocks 

[40, 25] they are (always) able to detect termination in a single pass. Further, each process 

knows when it should initiate a control wave, so the number of control messages is bounded.

The same general approach is readily adapted to varying topologies and performance re

quirements. These protocols further demonstrated that the use of SLPs and GLPs simplifies 

protocol development and verification within a rough global time base.

3.2 Distributed Deadlock

The problem of distributed deadlock detection has been studied extensively [7, 46,14,17, 59, 

20, 58]. It is a problem of concurrency control, coordinating the actions of processes that 

operate in parallel, access shared resources, and therefore potentially interfere with each 

other. Although some concurrency control protocols are deadlock free, most are vulnerable 

to deadlock [30].

Detecting and resolving distributed deadlock is a complex problem. The complexity
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of the distributed deadlock detection problem is evident solely by the number of protocols 

proved correct [6 , 46, 24, 51, 26, 59], which were then later proved incorrect [30, 20, 27, 

15, 20, 17]. This complexity is partially attributable to the lack of a global time base [52]. 

Further, the problem is similar to that of detecting distributed termination. Therefore, 

before we turn our attention to general stable predicate evaluation, we study how a rough 

global time base can be applied to the problem of distributed deadlock detection.

There are several models of distributed deadlock including the One-resource, AND, 

OR, AND-OR, (£), and Unrestricted models[30]. We first give a distributed database 

model followed, in section 3.2.1, by a description of the One-resource model of distributed 

deadlock. Then, in section 3.2.3, we present a brief overview of previous solutions to the 

general problem (all models) of distributed deadlock detection. We then give a time-based 

solution in section 3.2.4 for the One-resource model. Finally, we conclude in section 3.2.5 

with a discussion of the application of our technique to the more general, and complex, 

deadlock models.

3.2.1 System  M odel

We consider a database system comprised of the following components:

• a static set D  of n non-terminating data manager processes, (Di, Z?2> —■> Dn],

• a set R  of data resources,

• a set M  of m non-terminating transaction manager processes {Mi, M2,..., Mm}, and

• a set P  of transaction processes.
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Each data manager Dt- is bound to a single node of the network and controls access to 

resource iZ,-, which is assumed to reside at that node. Similarly, transaction manager Mi 

executes at a  single node of the network and controls a single transaction process Pi. All 

processes, and the network, are assumed to be fully connected and reliable.

In order to access a resource, a transaction must first receive permission from the data 

manager responsible for controlling the resource. Transactions do not request resources di

rectly from data managers. A transaction’s requests are handled by its transaction manager, 

which then communicates directly with the appropriate data manager.

We assume two-phase locking is used for concurrency control. In two-phase locking, 

a transaction which has released a lock may not obtain any more locks. A transaction 

manager sends a Request message to lock a data resource. If the resource is available, then 

the data manager will reply with a Grant message. Otherwise, the data manager sends 

a Hold message to indicate that another transaction currently has the resource. When a 

transaction has all the necessary locks, then it may read and write the data resource. After 

the transaction has committed or aborted its changes, it releases the resource by sending a 

Release message to the appropriate data manager.

Processes are assumed to communicate via reliable, asynchronous message passing with 

arbitrary delivery order. We define four types of messages through which transaction man

agers and data managers coordinate resource requests.

•  Request (i,q) is a message sent from a transaction manager M, to data manager DMq 

requesting resource q.

• Release(i, q) is a message sent from a transaction manager Aft- to data manager DMq 

when Pi is releases resource q.
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• Grant (q) is a message sent from a data manager DMq to a transaction manager Mi 

granting Mi access to resource q.

• Hold(q) is a message sent from a data manager DMq to a transaction manager Mi 

notifying Mi that the requested resource q is not available.

W e further define four interprocess com m unication  primitives by which communication 

between a transaction and its transaction m anager take place. These communications are 

assumed to fully reliable and synchronous.

• Required(7£j) is a communication  between transaction Pi and its transaction man

ager Mi of the set of resources 72* required by P*. Upon issuing Required(72*), Pj 

is blocked until it is granted the needed resource(s); which resources are required in 

order for the transaction to continue is a property of the deadlock model.

• Obtained(q) is a communication from transaction manager M* to transaction Pi that 

the resource q has been granted to P(.

•  Free(q) is a communication from transaction Pt to its manager Af* that resource q 

can be released. Once Pi issues Free(<7) it cannot request any more resources.

• A bort is a communication from transaction manager Mi to transaction P, aborting 

the transaction.

Transactions are either blocked or executing. Each transaction presents a single resource 

request to its transaction manager. This request may be for a single resource or it may have 

a more abstract meaning, such as a request for multiple resources. A transaction process is 

blocked from the time it presents the request to its transaction manager until the request is
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Figure 3.13: Transaction Wait For Graph (WFG)

granted. When it has received the resources it needs to proceed, then it is executing. (The 

deadlock model under consideration dictates which resources, of the set requested by the 

RequiredC&i) primitive, must be granted in order for the transaction to proceed.)

A transaction wait for graph (WFG) is a directed graph used to model resource requests. 

The vertices of the graph represent transactions. Directed edges represent the blocking 

relation between transactions. If transaction Pi is blocked waiting for a resource currently 

held by Pj, then there is a directed edge from P, to Pj. A WFG is shown in figure 3.13. 

Whether or not the graph contains a deadlock depends upon the system deadlock model.

3.2.2 P roblem

The algorithm we present is for the simplest model, the single resource model. Here trans

actions can have at most one outstanding resource request. Under this model, finding a 

deadlock corresponds to finding a cycle in the WFG.

The solution is very similar to the one given in figure 3.4 for termination detection. Since 

we are looking for a cycle in the WFG, the token does not traverse all system processes, as in
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termination detection, but traverses the WFG via the appropriate transaction manager and 

data manager processes. Pi -»• Pj denotes the dependence of transaction Pi on a resource 

currently held by transaction Pj at an instant in real time. The system is deadlocked if 

there is a set of transaction processes S  =  Pi, P j , ..., Pk such that at some real time instant

Pi —*• Pj -*•... -*• Pk —L Pu * #  j  ^ k , S  C P , and | S  |>  1.

A transaction manager is active if it is not waiting for a request to be granted, more 

specifically, if the transaction manager has not received a Wait message. A transaction 

manager is idle if it has received a W ait message, but not yet received a Grant message. 

Peterson presented an algorithm, similar to Rana’s termination algorithm, for detecting 

deadlock under this same model [52]. Her protocol is based on the assumptions that channels 

are FIFO and system clocks are perfectly synchronized.

3.2 .3  Previous Work

Like termination, detection of distributed deadlock has received a great deal of attention. In 

traditional multiprocessing systems with centralized control and shared memory, deadlock 

detection protocols maintain TWF graphs. Early distributed deadlock detection protocols 

were based on this paradigm [46, 26, 3, 15]. However, accurately maintaining the global 

system view contained in the TWF turns out to be costly and difficult. This complexity 

leads to protocol errors.

As an example, consider the protocol proposed by Mensace and Muntz [46]. Their 

system model is slightly different from ours in that transaction managers are assumed to

!

I
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Figure 3.14: Mensace and Muntz Protocol Example - Initial Resource Allocation

Figure 3.15: Mensace and Muntz Protocol Example - Requests, Local Blocking Pairs

reside at a data manager site. Transactions only send request messages when resources are 

needed at a site different from the one at which it resides. Each data manager maintains 

a condensed TWF graph. When a transaction manager TM y  requests a resource which 

cannot be granted, the data manager D M q adds an arc (!Z\,T2) to its TWF, where T2 is 

the transaction which currently holds the resource requested by Ty. If Ty resides at a site 

different from Dq, the blocking pair (T i,Tz)  is sent to the site where Ty resides.

Upon receipt of a blocking pair, the data manager adds the arc to its local TWF and 

examines the graph. If a cycle exists, then a deadlock has been detected. If the second 

transaction, T2 in our example, is blocked by a transaction T3, then a new blocking pair is 

generated, and sent to the site at which I 3 resides.

Gligor and Shattuck showed that this protocol is incorrect [20]. They give the following 

counterexample. Suppose that initially Ty holds the resource managed by Dy, T2 holds 

the resource managed by D2 , and that T3 holds the resource managed by D3. Further 

assume that each of these transaction, data manager pairs reside at the same sight. This
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Figure 3.16: Mensace and Muntz Protocol Example - Final TWF Graphs

is depicted in figure 3.14. Now suppose that T3 requests the resource managed by Di, 7\ 

requests the resource mananged by D2 , and that T2  requests the resource managed by £>3. 

Further suppose that these requests are received simultaneously. Then each data manager 

will add an appropriate edge to its local TWF graph. Each data manager will then send 

the blocking pair to the appropriate remote site. This is depicted in figure 3.15. Suppose 

that each of these blocking pairs are received simultaneously. Then each data manager will 

add the appropriate edge to its local TWF graph and the resulting graphs will look like 

those in figure 3.16. The protocol requires that a new blocking pair be generated if the 

second transaction in the received pair is blocked. Thus, the resulting TWF graphs will 

not generate any new blocking pairs, and the deadlock will go undetected. If the blocking 

pair (Ti,T2) had been received by D\ before the request from T3, then the blocking pair 

(I3 , T2 ) would have been generated and sent to D2 and £>3, and the deadlock would have 

been detected.

This exemplifes the complexity in constructing a current global view of a changing 

system using message passing. Gligor and Shattuck also showed the that the protocol given 

by Isloor and Marsland [26] is incorrect. Further, Badal acknowledges that his protocol 

detects false deadlocks, but claims that this is not a significant problem [3].

Token, or probe, protocols abandon the attempt to maintain a global view of the system
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state. By these protocols, a token traverses the edges of the TWF graph; return of the token 

to its initiator indicates deadlock. A simple protocol using this approach was proposed 

by Chandy, Misra, and Haas. Processes send two kinds of messages query (i, j, k) and 

reply(i,j,k), which indicate they are part of a detection wave initiated by process Pi and 

are being sent from Pj to iV  A blocked process Pi initiates detection of deadlock by sending 

queries to the data managers of all resources Pi is waiting to be granted (Pit’s dependent 

set).

An executing process Pk ignores all queries and replies. If Pk is blocked when it receives 

a query, it propagates the query to all processes in its dependent set. If this is the first 

query Pk has received since it was last executing, then Pk notes the number of queries it 

has sent in local variable num(i) and sets variable wait(i) to true, indicating that Pk has 

been blocked since it received the engaging query. Pk replies immediate to queries received 

while wait(i) is true.

Pk replies to its engaging query only upon receiving replies to all its queries. When the 

process which initiated this diffusing computation receives replies to ail its queries, then a 

deadlock has been detected.

By this protocol, processes may initiate several probes per blocked request. Further, 

every process in the cycle may detect the deadlock. This makes resolution difficult. Chandy, 

Misra, and Haas did not address deadlock resolution.

Sinha and Natarajan presented a protocol which addressed these deficiencies [59]. Their 

protocol ensures that a t most one process will detect the deadlock. They further specify 

that only one token per blocked request will be generated. They increase the protocol’s 

efficiency by transmitting state information, which can be saved and used in later deadlock
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detection activity, within the token.

Choudhary et al. showed that their protocol leads to detection of false deadlocks [17]. 

The problems are caused by out-dated information. Choudhary suggests a modification to 

the protocol presented by Sinha and Natarajan, but makes no attempt to prove his protocol 

correct.

We believe that the approach used in termination detection will simplify development 

of protocols for distributed deadlock detection. The use of a timestamped token should 

eliminate problems with out-dated state information and allow simple and efficient deadlock 

resolution.

3.2.4 A lgorithm

The algorithm for transaction manager Mj is given in figure 3.17. The algorithm for DM q 

is given in figure 3.18. Once again, each is specified as a set of rules for the way that Mj 

and DM q may respond to events that occur when they are in a given state.

Transaction managers can be in one of four states, active, transition, idle, or done. When 

in the active state, the transaction manager is either waiting to receive a resource request 

from its transaction process or it has posted a request to the appropriate data manager 

and is waiting for a reply. Upon receiving a Wait message, transaction manager Mj enters 

the transition state. In this state, Mj is waiting for the SLP interval to elapse prior to 

initiating a token. If M j waits for an interval of e, as read by the local clock of M j, then 

it will send a token to the data manager DM q of the resource it is waiting for and enter 

the idle state. Prior to entering the idle state, Mj will propagate all tokens with equal or 

greater timestamps received during the transition period. Mj has then established the SLP
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Tj
T,
TPj
TSj
rq
statej
Token(TS„

alarmj (T) 
clockj

set of all tokens retained during the idle period, initially empty 
set of resources currently held by Pj, initially empty 
Pj’s clock value at the instant it receives a hold message 
Pj’s timestamp, initially 0
index of resource for which Pj has an outstanding request 
indicates Pj’s state, initially active 

, m ,q, i, fi) Token initiated by Pm with timestamp TSm; on an incoming token q is the
resource needed by Pj’s predecessor in the control cycle routing and i is the 
index of Pj’s predecessor; on an outgoing token, q is the resource Pj needs 
and t is Pj’s process index; ft is the lowest index of any process which the 
token has visited
Pj’s alarm, signals Pj at Cj(t) =  T; alarmj(0) resets the alarm 
Pj's current clock reading

statej |___________ Event___________|______________________ Action
active Rree(g) Tj  4- Tj — q; send Release(j,q) to DMq; statej 4- done

receive Grant (g) from DMq Tj  <— Tj U q; Obtained(g)
Required({g}) send Request(j,q) to DMq\ rq  4— q
receive Wait(q) from DMq if g £  Tj then

TPj 4— clockj;alarmj(TPj +  e); T7 *— 0 
statej «— transition

receive Token(TSm, m , q, *, ft) discard Token(TSm, m, q, i, ft)
transition receive Grant(q) from DMq alarmj (0); Tj «— Tj Ug; Obtained(g); state <— active

receive Token(TSm, m, q, i, ft) if {TSm >  TSj) A (fc € Tj) th e n
Tj <- rj U Token(TSm, m , q, i, ft)

else
discard Token(TSm ,m ,q ,i,ft)

alarmj expires send Token(TSj,m ,rq, j ,min(j, ft)) to DMrq 
YToken{TSm,Tn,q,i, ft) 6 T do 

if (T Sm = TSj)  then
send Token{TSm,m,rq,j,m in(j, ft)) to DMrq

else
send Token{TSm ,m ,rq,j, ft) to DMrq 

statej «— idle
receive Wait{q) from DMq discard Wait{q)

idle receive Grant(q) from DMq Tj *- Tj U g; Obtained(g); statej 4- active
receive Token(TSm, m, q, i, ft) if (TSm <  TSj)  V (g £ Tj) th e n  

discard Token{TSm, m, q, i, ft) 
if (TSm = TSj)  A (m =  j) 

if  {ft =  j)  then  
A bort

else
discard Token(TSm, m, q, i, ft) 

if {TSm > TSj)  A (g 6 Tj) th e n  
if {TSm = TSj)  then

send Token{TSm,m ,rq , j,min{j, ft)) to DMrq
else

send Token{TSm, m , rq,j, ft) to every DMrq
receive Wait(q) from DMq discard Wait{q)

done Free(g) send Release{j, q) to DMq
receive Token(TSm, m, q, i, ft) discard Token{TSm, m, q, i, ft)

Figure 3.17: Protocol (DD-Oneres): Transaction Manager State and Protocol
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holder index of process which has been granted the resource
state,, Current state of DMq
ReqQ Queue of unserviced resource requests

The operator front(Q)  applied to ReqQ returns the 
process number at the head of queue Q; enqueue(Q, i) 
places i  at the end of queue Q; empty(Q) returns 
true  when queue Q is empty, false  otherwise.

statej Event Action
available receive Token(TSm ,m ,q, j, n) discard Token(TSm, m, q, p)

receive Request(i,q ) holder « —  t
send Grant(q) to Mi
stateq held

held receive Token(TSm, m, q, j ,p) if ( j  #  holder) th en
send Token(TSm ,m ,q, j ,  ft) to holder

receive Request(i,q) enqueue (ReqQ, i) 
send Wait(q) to Mi

receive Release(i,q) if empty(ReqQ) th en  
stateq * —  available

else
holder « —  front(ReqQ) 
send Grant(q) to Mkoider 
stateq *— held

Figure 3.18: Protocol (DD-Oneres-Dm): Data Manager Process State and Protocol

S (T S j,j, A j), where A j is the property “Pj holds all the resources in Tj  and is waiting for 

for resource rq”

An incoming token contains the initiator’s timestamp, the initiator’s process index, 

the index of the resource required by Pj ’s predecessor in the token’s path, the index of Pj ’s 

predecessor, and the minimum index of all processes which have seen the token. The token’s 

minimum index field is used to ensure that a single process aborts the transaction. When 

a transaction manager process Mj receives a token, it is propagated if the timestamp on 

the token is greater than or equal to its own and if Pj holds the resource designated in the 

token. Mj puts its own index and the index of the resource it needs in the appropriate token 

fields prior to propagating it. Additionally, prior to propagating a token with a timestamp 

equal to its own, M j checks the minimum index field. If the minimum index is greater than
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its own index, it overwrites the field with its own index prior to propagating the token. 

Since transaction managers propagate all tokens with greater or equal timestamps, even 

in the transition state, all transaction managers with the same, highest valued, timestamp 

that control processes in a deadlock may receive their own token. However, only the single 

transaction process with the minimum index will be aborted.

When a transaction manager is in the idle state, it is waiting for a Grant message or 

receipt of its own token, with its index in the minimum index field. Once a resource has been 

released, M j enters the done state. Once in the done state, the transaction managed by 

M j can no longer request resources, and thus the transaction cannot be part of a deadlock 

cycle. Once a transaction has released all its resources, it is free to terminate. Its presence 

is not required for correct functioning of the protocol. A transaction aborts by releasing all 

its resources.

Data manager DMq can be in one of two states, available or held. When in state 

available, the resource q which DMq controls is available. Upon granting the resource to 

a transaction, DMq enters state held. When DMq receives a token in the available state, 

the token is discarded, since there can be no dependency based on the resource it manages. 

When DMq receives a token in the held state, it forwards the token to the manager of 

the transaction which currently holds the resource. Using the token timestamp value, this 

process will determine if there was a dependency at the instant the token was initiated.

Correctness In order to establish the correctness of our protocol, we must show that if 

transaction process Pj is aborted, then there is a deadlock (safety) and that if a deadlock 

exists, then some transaction process Pj will be aborted (liveness).

The following lemmas are useful in establishing the correctness of our protocol. The
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first lemma shows that the set of resources held by a transaction process remains constant 

while its transaction manager is in the transition and idle states.

Lemma 12 The set of resources Ti held by transaction Pi remains constant while trans

action manager Mi is in the transition and idle states.

P r o o f:  This is a direct result of the protocol. The set of resources T,- held by Pi is only

modified upon receipt of a Grant(q) message by Mt. Whenever Mi receives a Grant(q) 

message while it is in the transition or idle states, Mi transitions back to the active state. 

Thus, the set of resources held remains constant while Mi is in the transition and idle 

states. I

The next lemma shows that when a transaction manager M j receives and propagates a 

token received from transaction manager Mi, the propagation establishes that a dependency 

existed between the transaction processes Pi and Pj at the instant the token initiator Mm 

released the token.

Lemma 13 Let Depends (Pi, Pj, t) denote that a dependency exists between transaction 

processes Pi and Pj at real time instant t, i.e., Pi is waiting for a resource currently 

held by Pj at real time instant t. If M j receives Token(TSm,m ,q ,i, p) and M j and subse

quently propagates it, then Depends(Pi,Pj,trm) where trm is the earliest instant for which 

Cm(tl'm) =  TSm.

PROOF: Let T Si be Afj’s timestamp when it sends Token(TSm, m, q, i, p) to M j (via DM q,

the data manager of the resource requested by Mi). If Mt- sends the token to M j, then Mi 

is in the transition or idle states. In order for Mi to enter the transition or idle states, 

alarrrii(TSi-i-e) must have expired. If alarmi(TSi-l-e) has expired, then M{ has received a
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Wait{q) message for a resource q which is not in Tt- at the time the Wait{q) message was 

received.

By the protocol, Mi adds resource q to Tt- whenever it receives a Grant(q) message.
i

Also by the protocol, whenever Af, receives a Free(g) communication from Pi, Mi releases 

resource q and enters the done state, from which it cannot transition to any other state. 

Thus, when Mi sets alarmi, Mi has never received a Grant message for resource q. Since 

reception of a Grant(q) message causes Mi to modify T,-, by lemma 12, when Af,- sends 

Token(TSm, m, q, i, n) from the transition or idle states, it is still waiting for resource q.

’■ Thus, if Mi sends Token(TSm, m, q, i, n) it has established the SLP S(TSi, i, A,), where Ai

[ is the property “Aft has not received a Grant{q) message for requested resource q” and this
k
| property remains true until Pi sends the token to M j.
t?
■ Mi only receives a Wait(q) message in response to a Request{i, q) message it has sent

to DMq. Mi only sends Request(i,q) when it receives Required({qr}) from P,. Further, Pj 

is blocked from the time it sends Required({g}), until Mi receives a Grant(q) from DM q. 

Thus, when Mi sends the token to M j, it has also established the SLP <S(TS,-,i, A,-), where 

Ai is the property “Pj is waiting for resource q.”

Let T S j be Afy’s timestamp when it propagates Token{TSm, m, q, i, p). Mj only propa

gates the token from within the idle or transition states after alarmj(TSj + e) has expired. 

Then Mj only propagates the token if  q G T y. By lemma 12, Ty has not changed since 

Mj set alarmj. Thus, if Afy propagates the token, it has established the SLP S (T S j,j , Ay), 

where Aj is the property “Afy has received a Grant(q) message.” Further, this property 

remains true until Mj propagates the token.

As Pj is blocked whenever Afy is in the transition or idle states, Afy has established the
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equivalent SLP S(T S j,j, Pj holds resource g). Further, this property remains true until Mj 

propagates the token.

Then, since TSi < TSm  and T S j <  TSm, by lemma 3, Pi is waiting for resource q and 

Pj holds resource q at real time instant trm, where trm is the earliest instant for which 

Cm(trm) = TSm. By definition, then, Depends(Pi, P j, trm). I

Note that during the previous argument, we made little mention of data manager pro

cesses. This is because the dependence of Pi on the resource held by Pj can be determined 

only by the fact that Mt- sent a token that M j subsequently propagated. As we showed in 

the previous lemma, the set of resources held (or requested) by a process Pt- in the transition 

or idle states is constant. Thus, if Pi sends a token indicating that it is waiting for resource 

q and Pj subsequently propagates this same token, indicating that it holds resource q, the 

data manager DMq serves only to route the token from Pi to P j, and the state of DM q is 

irrelevant. The interval over which P, was waiting for q and the interval over which Pj held 

q overlap. As only one transaction can hold a resource, if, at some real time instant t, Pj 

holds resource q, then no messages releasing or granting resource q can be in transit at this 

same time instant.

The next lemma shows that no data manager will reflect a token back to the transaction 

manager it received the token from. Thus, in order for some transaction manager Mj to 

receive its own token, it must travel through a cycle of transaction managers.

Lemma 14 Suppose Mj sends token Token(TSm, 7t j,/*) to DMq.Then Mj mill not 

receive Token{TSm, q, j, /*) back from DMq.

PROOF: This is a direct result of protocol DD-Oneres-Dm. By the protocol, Mj always

adds its index to the appropriate field of the token prior to its initiation or propagation.
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DMq then checks this field prior to propagating the token to the transaction manager which 

holds resource q. If Mj holds resource q then the token is discarded. I

Theorem  11 (Safety) I f  Pm aborts then a deadlock exists.

PROOF: If transaction manager Mm aborts transaction Pm, then Mm has received its own

token. If Mm receives its own token then, by the protocol, the token has traversed a set of 

edges Sm, where Sm = {(Afm, Mi), (Mi, M j),..., (Af*, Afm)}. (Note that the token must pass 

through the appropriate data manager process in order to traverse an edge (Afm, Mi).) By 

lemma 14, for each edge (Mi, M j) it must be the case that t ^  j .  Then |«S| > 2. By lemma 

13, if the token traverses edge (Mi, M j) then Pi -*■ Pj at real time instant trm, where trm is 

the earliest real time instant for which Cm(trm) = TSm. Thus, if transaction manager Mm 

receives its own token, there is cycle in the WFG at real time instant trm and the system 

is deadlocked. I

Theorem  12 (Liveness) If some set S  of transactions is deadlocked then a transaction 

process Pm in S  will be aborted by its transaction manager Mm.

P roof: Consider a set S  of deadlocked processes. Each transaction manager Mi of a

transaction Pi in S  will receive a final Wait(q) message that will send Af, into the transition 

and idle states until the deadlock is broken. Let the set of transaction managers of processes 

in S  be denoted Sm-

By the protocol, each Af, in Sm will generate a timestamp T S j, and initiate a token, 

prior to entering the transition state. Now consider the highest valued timestamp generated 

by some Af,- £ Sm. If more than one transaction manager initiates a token with this same
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timestamp, then consider the transaction manager M j with the lowest index. M j will send 

Token(TSj,j, q, j, j)  to DMq, where q is the resource M j last requested.

When DM q receives this token, it can be in either the available or held state. If DM q 

is in the available state, then the resource is available and M j & Sm. If DM q is in the held 

state, then it will send the token to the transaction manager Mi to which DM q last granted 

the resource.

When Mi receives the token, it can be in either the active, transition, idle, or free  

states. FVom our assumption, Token(TSj, j , q, j, j)  is the highest valued token initiated by 

some M j in Sm. By lemma 7, a transaction manager receiving the token in the active state 

would subsequently generate a higher valued token. Thus, the token cannot be received 

by a transaction manager in the active state. If Mi is in the free  state when it receives 

the token, then Mi is not in Thus, Mi must be in the transition or idle states when 

it receives then token. By our assumption, Af,- will have a timestamp less than or equal to 

that on the token. Thus, M, will propagate the token unless it is not waiting for resource 

q. If Mi is not waiting for resource q, then it has sent a release message to D M q which has 

not yet been received. However, if Mi has released the resource, then Mi is not in Sm-i 3- 

contradiction. Thus Aft will propagate the token to the data manager DM q of the resource 

Pi is waiting for.

By an argument similar to the one given above, each data manager of a resource re

quested by some transaction in S, and the corresponding transaction managers, will prop

agate the token. Then, Mj will receive its own token and, since it has the lowest index of 

any transaction manager in Mj will abort its transaction process Pj. I

Theorem  13 At most one transaction process in any deadlock will abort its transaction.
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P r o o f: Consider transaction manager Mm, in a set of deadlocked transactions, whose

clock reads its timestamp value TSm +e last (prior to some process breaking the deadlock.) 

Let trm be the earliest instant for which Cm(trm) = TSm -+- e. By theorem 11 and the 

protocol, at this instant, no token could have circulated completely.

Suppose a process Af* were in the active state at real time instant trm. Clearly, by the 

protocol, M^s clock (7,- would reach TSi +  e at an instant later than trm, contradicting 

our assumption. Then all transaction manager processes must be in the transition or idle 

states.

Consider any transaction manager Mk in the idle state. By clock axiom Cl, Ck(trm) < 

TSm •+* 2e. If Mk is in the idle state then its alarm has expired and, by the protocol, its 

timestamp must be less than TSm. Then Mm will not propagate a token from Mk and no 

token from a transaction manager in the idle state at real time instant trm will detect the 

deadlock.

Now consider any transaction manager in the transition state. By the protocol, no 

transaction manager in the transition state could have initiated a token yet. Thus, any 

token generated by a transaction manager in the transition state must traverse all the 

transaction manager processes which control a process in S. By the protocol, then, only 

the token with the highest valued timestamp TSmax of all theses processes can circulate 

completely. By the protocol, if there is more than one token with timestamp TSmax> then 

only the token initiated by the transaction manager with the lowest index can circulate 

completely. Thus, at most one transaction manager will declare the deadlock and abort its 

transaction. I
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Perform ance A number of solutions have been proposed for the deadlock detection prob

lem. In [14], Mitchell and Merritt proposed a solution for the single resource model, but their 

solution has no apparent extension for the more general AND model. In [7], Chandy, Misra, 

and Haas proposed a token-based solution. Their solution detects the deadlock in nS time, 

where n  is the number of sites in the deadlock cycle and S is the inter-site communication 

delay. However, a  transaction may generate several tokens per blocked request. Further, 

every process in a transaction may detect deadlock, which makes resolution difficult.

3.2.5 D iscussion

This technique can be extended to the more complex distributed deadlock models. Within 

the AND model of distributed deadlock, processes may request multiple resources. A trans

action is blocked until it is granted all the resources it has requested. For example, in the 

WFG shown in figure 3.13, transaction Pq is waiting for two resources held by transactions 

Pz and P4. Since Pq must get all the resources it has requested, the system is deadlocked. 

Thus, as in the One-resource model, if a single cycle exists within the WFG then the sys

tem is deadlocked. Our protocol could be extended to detect deadlocks under this model by 

having processes send tokens to the data manager of every requested resource which is in 

use. The propagation scheme would be similar to the previous protocol with the exception 

that processes would send tokens to the data managers of all resources the process has been 

waiting for since its alarm expired. If a transaction manager receives one of the tokens it 

initiated, then there is a deadlock.

As in the AND model, transactions may make multiple resource requests under the OR 

model. Here, though, transactions need only one of the requested resources in order to
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continue. Tokens would then be initiated, and propagated, to the data managers of all 

requested resources. A deadlock exists if some transaction manager receives all the tokens 

that it initiated.

j Thus, as in the case of distributed termination detection, the approach is flexible. The
|
j token routing can be modified to ensure that complete circulation indicates the desired
|

global predicate.

3.3 Global Snapshots

So far we have looked at special global predicates. We have considered only conjunctive 

predicates over the local process states. In this section, we discuss the problem of detecting 

more general predicates. This includes predicates which cannot (practically) be stated as a 

conjunction of predicates of the local process states, i.e. the predicate art- < yy, where Xi is 

a variable in the state of process Pi and yy is a variable in the state of process Pj.

3.3.1 Problem

Most predicate evaluation algorithms detect general stable predicates by repeatedly execut

ing a snapshot algorithm. A snapshot algorithm coordinates the taking of each local process 

state so that the resulting global state is consistent.

If a predicate is stable then (1) if it is true in a consistent global state, it is still true 

after the algorithm has detected the predicate and (2) if the predicate is true at some 

instant, then a snapshot, either taken at that instant or some later instant, will detect the 

predicate’s truth.

It is important to clarify this definition by describing predicates which are not stable,

1

I
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Figure 3.19: Execution with Time Driven Global State Predicate Changes

and therefore cannot be detected with a distributed snapshot algorithm. The fact that 

the predicate must remain true once it is true in any consistent state eliminates many 

predicates whose truth oscillations are not (always) communication driven. For example, 

consider the simple execution of a two process system shown in figure 3.19. Here we show 

the values of local variable X  in the various process states as they occur in real time within 

each process. The value of the global predicate oscillates as a function of time and, once 

globally true at some real time instant, remains true indefinitely. Thus it is instantaneously 

stable. However, it is true in severed consistent states prior to becoming globally true in an 

instantaneous global state. One might at first consider such predicates to be stable, but 

a global snapshot algorithm could not be applied in this case. The snapshot could falsely 

indicate the predicate’s global truth at some real time instant..
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3.3.2 Previous Work

Chandy and Lamport introduced the first distributed snapshot algorithm [5]. Their algo

rithm was designed for systems with FIFO communication and required 0 (N 2) message
!

passing. Later efforts focused on removing the FIFO communication restriction and in

creasing the efficiency of that first algorithm [60, 62, 42].

Lai and Yang [62] introduced an algorithm which removes the FIFO restriction and 

reduced the message complexity of Chandy and Lamport’s algorithm. According to their 

protocol, each process takes a snapshot at its convenience, but adheres to the following 

rules:

•  Every process is initially white and turns red when it takes a snapshot.

• Every messages sent by a red(white) process is colored red(white).

• A white process must take a snapshot before it receives a red message. (Thus, the 

arrival of a red message will cause a white process to take a snapshot.)

If the channel states are required for predicate evaluation, then processes keep a complete 

message history and forward that along with the local state information. The channel states 

are then determined from the set difference.

Mattem proposed modifications to Lai and Yang’s algorithm to eliminate the need for 

keeping and transmitting complete message histories[42]. He assumed that a single process 

initiates the snapshot and collects the local process states. A red process receiving a white 

message forwards the message to the collector process. Each process keeps a deficiency 

counter of the number of messages sent minus the number received. These counters are 

forwarded as part of the local process state to the collector after the local snapshot has

i$
II
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been taken. These counters are used by the collector process to determine the number of 

white application messages which should be received in order to complete the snapshot.

3.3.3 D iscussion

■ In each of our earlier algorithms, we used traversal of a timestamped token to detect the
i

; truth of the global predicate. In snapshot algorithms, every process takes its state and

replies to the snapshot initiator. Thus, every “token” circulates completely. In our algo

rithm, some “snapshots” are aborted when a process determines locally that the global 

predicate will not be true. Thus, our algorithm will either require less message passing or 

will detect the predicate more quickly. If every process initiates a snapshot each time it 

becomes passive, our algorithm will require less message passing. If a single process initiates 

successive snapshots, then our algorithm will, in the worst case, detect the predicate more 

quickly. Further, our algorithm detects a broader class of predicates in that it can detect 

processes which are instantaneously stable.

However, a snapshot algorithm is actually collecting a picture of some consistent global 

state. Thus, it could evaluate predicates such as “x< < yy”, where xt- is the value of variable 

x  in process Pt and y* is the value of variable y in process Pj. Our algorithm could not 

detect such a predicate. Further, it is not clear that a time-based algorithm would provide 

any advantage in detecting such predicates. Clearly, any algorithm will have to collect the 

state of every process over whose state the predicate is made. Thus, a true snapshot could 

not be “aborted”. The use of a global time base to ensure the collected states are consistent 

provides no clear advantage over either Mattern’s or Lai and Yang’s algorithm.

There is one exception, however. One of the benefits of a global time base is that

t
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processor actions can be coordinated without message passing. If a time is chosen in advance 

and known to all processes, then the chosen clock value can be used to initiate taking of the 

local states by each process so that the accumulated global state will be consistent. These

< “scheduled snapshots” are also useful for evaluation of unstable predicates. We then defer
|
: the presentation of algorithms for scheduled snapshots to the next chapter, which covers
i
i evaluation of unstable predicates.

3.4 Conclusions

Each of the protocols presented in this chapter perform well in comparison to those whicht

perform similar functions within a similar system architecture and which are based on 

the use of consistent global states rather than a global time base. Further, unlike their 

consistent state counterparts, they can detect a broader class of predicates, those which are 

instantaneously stable.

It is not immediately clear that taking of a global “snapshot” could be done more 

efficiently by using a global time base, with the exception of scheduled snapshots. However, 

no consistent snapshot algorithm could be designed to detect an instantaneously stable 

predicate whereas we could use the techniques of this chapter to design a spontaneously 

initiated snapshot algorithm for detecting such predicates. We discuss this in more detail 

in the concluding chapter.

The single technique of using a timestamped token is highly configurable for the un

derlying system architecture and performance goals. The use of SLPs and GLPs facilitates 

this approach in realistic systems in which the process clocks are only roughly synchronized. 

Their use simplifies both protocol development and verification.
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Chapter 4

Unstable Predicates

In the previous chapter we examined the use of roughly synchronized clocks in the evaluation 

of stable predicates. We now turn our attention to the evaluation of unstable predicates. 

Unlike stable predicates, no restriction is placed on how the truth of an unstable predicate 

may vary. The predicate’s truth may vary arbitrarily.

Algorithms for unstable predicate detection which assume the existence of a global time 

base can provide a significant advantage over algorithms which evaluate these predicates 

over consistent global states. When predicates are evaluated over a consistent global state, it 

is impossible to develop an algorithm which determines whether or not an arbitrary unstable 

predicate was true at some instant in real time during the computation. No such restriction 

exists in systems with a perfect global time base. For example, consider a system in which 

clocks are perfectly synchronized. In such a system, the global state of the computation 

at any point in time can, with significant overhead, be established using the system clocks, 

assuming that the clocks have sufficient resolution. It is then possible to determine whether 

or not any unstable predicate was true at some point during the computation. If the global

108
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time base is not perfect, it is not possible to detect the truth of an arbitrary unstable 

predicate. However, it is possible to detect the occurrence of certain unstable predicates 

which are not detectable over consistent global states. In this chapter, we will demonstrate 

this and other benefits of assuming a rough global time base in unstable predicate detection.

First, we will describe the problem of unstable predicate detection in detail. Then, in 

section 4.2, we will review unstable predicate evaluation algorithms from the literature. 

In section 4.3, we present algorithms for scheduled evaluation of unstable (and stable) 

predicates. In section 4.4, we present a centralized algorithm for detection of unstable 

predicates whenever they occur during the computation. The algorithms presented evaluate 

only those predicates which remain globally true for a real time interval of 2e(l +Pm ), twice 

the maximum clock skew as read by any process clock. A number of physical systems have 

periods greater than the length of this interval for typical values of drift rate pm and clock 

skew £. The ability to evaluate predicates over the system state would be valuable to these 

systems’ distributed controllers and monitors. The presented algorithms arise naturally 

from the use of SLPs and GLPs. We conclude with a summary, in section 4.5.

4.1 Problem

Unlike a stable predicate which must remain true once it becomes true in some consistent 

global state, an unstable predicate’s truth may vary arbitrarily. Detection of this type 

of predicate in a distributed system is very difficult. These difficulties are linked to the 

fundamental characteristics of distributed systems: lack of a common clock and common 

memory.

The lack of common memory requires that all synchronization be done by passing in-
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Figure 4.1: Varying Timelines for Two Process Execution History
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formation between processes. There is no natural single global view of the system; it must 

be constructed via message passing. Thus, all local state changes which might affect the 

truth of the global predicate must be collected in order to detect the global predicate. For 

example, consider a  system in which system clocks are perfectly synchronized, an unrealistic 

assumption. Let some global state predicate A  be comprised of the conjunction of predicates 

over the local process state of each process; i.e. A — Ao AAi A...AA^_i, where Ai is a local 

predicate over the state of process P,-. Now each process Pt- can monitor the truth of the 

local predicate Ai and timestamp the endpoints of each interval over which the predicate 

is true. Thus, we have all the information required to detect occurrence of the predicate. 

However, these intervals must be accumulated and compared to determine whether or not 

the predicate was true at some time instant. Clearly, an algorithm to accomplish this will 

have significant computational complexity and, if the intervals are accumulated as they 

occur, significant message complexity. This approach would be well-suited to post-mortem 

analysis.

The lack of a common clock further complicates the task. If there is no common time 

base, rough or perfect, either the computation must be frozen, so that the state of each 

process can be determined, or the predicate must be evaluated over consistent global states. 

Currently, there are no other mechanisms for determining whether or not states in separate 

local processes (could have) occurred simultaneously.

If the computation is frozen, then the application may be adversely affected. If the com

putation cannot be frozen to allow synchronization, and the predicate can only be evaluated 

using consistent global states, then two difficulties arise. First, if the predicate is evaluated 

over consistent global states, then some subset of all possible consistent states must be con-
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structed, either during or after the computation. This will be expensive computationally. If 

the process states are accumulated as the occur, the evaluation will have significant message 

complexity as well. The second problem is that development of an algorithm which detects 

whether an arbitrary unstable predicate was ever true during the computation is impossible.
i

Consider the simple code fragments from a two process system given in part A of figure 4.1.
i

Now suppose that a particular execution of these code fragments results in the vector times 

shown in part B of the figure and that we want to determine whether or not the variable 

x  had the value one in every process at some point during the computation. Part C of the 

figure shows one possible time history. Here the execution of the events corresponding to

• the code fragments of part A of the figure are shown in an absolute real time frame. In

this time history, it is clear that the predicate holds at an instant of real time. However, if 

there is no global time base and processes are not frozen to allow synchronization, there is 

no way to determine absolutely whether or not this reflects the actual execution; we know 

only that it could have. If we try to reconstruct the time history using only the information 

from part B of the figure, we can construct time histories in which the predicate holds, and 

ones in which it does not hold. A time history in which the predicate does not hold is shown 

in part D of the figure.

In physical systems, change in the truth of a predicate is often driven by external events, 

not by message exchange. Further, monitoring and control of a system may not require sig

nificant interprocess communication. For example, each monitor process may be responsible 

for a separate component of the system. In the absence of message passing, any event in one 

process is concurrent with all events in any other process. This is the most complex case for 

predicate evaluation over consistent states and will preclude determination of whether or

i
i
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not certain unstable predicates occurred during the computation. However, the ability to 

detect whether or not an unstable predicate was true at some point during the computation, 

not whether it could have occurred, would clearly be useful to distributed systems which

; control and monitor these physical systems. Thus, development of an alternative to the
i
J
; algorithms which use consistent global states would be beneficial.
j
I Although evaluation of unstable predicates using consistent global states will have a high

computational complexity, it does provide a benefit which is not available when structuring 

predicate evaluation over instantaneous global states. That is, it is possible to determine 

whether the predicate could have occurred during a given run. It is important to emphasize

5 both points: first, that we can determine if the predicate could have occurred and second,

that this determination is limited to the execution being monitored. If the predicate is 

detected in a consistent global state, even though it may not have occurred in the current 

execution, it can occur in a subsequent execution in which the time intervals between local 

process events are different. However, the use of consistent states only enumerates the 

possibilities for the current execution path. Other execution paths, which did not occur in 

the current computation, may be possible. The predicate could then be true in a subsequent 

execution, which took a different execution path, and this kind of evaluation might not 

detect it. Thus, it is somewhere between a static analysis, which evaluates all potential 

execution paths, and a perfect global time based execution analysis, which can determine 

whether arbitrary unstable predicates actually held during a given execution.
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0,0,0 [ (0,0.0) (0.0.0) (0.0.0) ]

1.0,0 [ inconsistent ]

0.1,0 [ (0.0.0) (0,1,0) (0.0,0) ]

0.0.1 [ (0,0,0) (0.0.0) (0,0.1) ]

2.0,0 [ inconsistent ]

1.1.0 [ (1,1,0) (0,1,0) (0,0,0) ]

0,2,0 [ (0.0.0) (0.2,0) (0,0,0) ]

0.1.1 [ (0,0.0) (0.1.0) (0,0,1) ]

0.0.2 [inconsistent ]

1.0,1 [inconsistent ]

Figure 4.2: Consistent Global State Lattice
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4.2 Previous Work

Most of the distributed systems literature on unstable predicates is devoted to algorithms 

which evaluate these predicates over consistent global states. Cooper and Marzullo intro-

: duced three modalities for evaluation of a predicate A  within a given execution: possibly(A),
(
! definitely {A), and currently (A) [9]. They also gave algorithms for classification. Briefly,

possibly(A) and definitely (A) are detected by first constructing all executions which are 

consistent with the observed execution. Possibly(A) then holds if A  is true in some global 

state within any execution consistent with the observed execution. Definitely(A) holds if 

A held in some global state within every execution consistent with the observed execution. 

Currently(A) is detected by external control and monitoring of the program’s execution 

by the detection algorithm. Currently(A) then holds if A  held at any time instant within 

the controlled execution.

The set of all executions consistent with the observed execution is obtained through 

construction of a global state lattice. Each point in the lattice represents a single consistent 

global state, a state which could have occurred during the execution. The lattice is built by 

connecting a given consistent global state, the state of origin, with every other global state 

that is consistent and that is obtained from the state of origin by execution of a single event 

within a single process. Thus one, higher level, state is reachable from another, lower level, 

state by execution a single event system-wide. Each level n in the lattice then contains all 

consistent global states reachable by execution of a sequence of n events within the system.

Figure 4.2 shows a simple execution, the corresponding time vectors, and partial con

struction of a lattice for the execution. Lattice point [p, q, r] represents execution of p, q, and 

r  events in processes Pi, Pj, and Pk respectively. Any path through the lattice represents

f
I
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a possible execution. Possibly(A) holds if the predicate holds at any point in the lattice. 

Definitely(A) then holds if all paths through the lattice pass through a point in which A 

is true. For example, Definitely(A) holds if A  is true within all states at a given level, 

because all execution paths must pass through some state within a given level. Note that 

detection of definitely(A) only implies that predicate A occurred. It does not imply that 

if predicate A  occurs during a given execution then definitely(A) will hold. If a predi

cate were true at lattice point [0,1,1] then it occurred at an instant of real time according 

to the time history shown in figure 4.2. However, definitely(A) would not be asserted. 

Possibly(A) would be asserted, indicating that A  may or may not have occurred. Here, we 

have assumed knowledge of the time history. Without a global time base, we would not 

have this knowledge.

Their method for detecting currently(A) requires blocking the monitored program. Pro

cess execution which might affect the truth of A is serialized by the monitor process. Each 

process must request a state change, which could affect the truth of A, from the monitor 

process. A process with an impending state change request is blocked until the request 

is granted. These requests are enqueued by the monitor process, which then allows their 

execution sequentially. When Pi’s state request change is granted, P, changes its state and 

sends the modified state to the monitor process. The monitor process then checks the truth 

of the predicate, prior to allowing the next requested state change. If A is ever detected, 

then currently(A) holds.

Garg and Waldecker proposed an algorithm for run-time detection of weak conjunctive 

predicates [65]. These are conjunctive predicates over the local process states for which 

there exists a global state, consistent with the execution, in which the predicate holds. It is
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Figure 4.3: Examples of Icmvectors

similar to Cooper and Marzullo’s possibly (A), except the predicate A  must be a conjunctive 

predicate over the local process states. They propose a centralized scheme. Detection is 

based upon the use of Icmvectors. An Icmvector is similar to a virtual time vector [43] 

except the vectors are updated only upon the sending and receiving of a message. They are 

not updated when the local state changes. For process Pj, Icmvector [x], i j, is the message 

id of the most recent message from Pi which has a causal relationship to Pj; Icmvector[j\ is 

the next message id that Pj will use. Figure 4.3 gives an example.

Each process Pi sends its Icmvector to the central checker process whenever the local 

predicate is true and Pi has sent a message since the last time it sent the Icmvector to 

the checker process. The channels between the checker process and each local process 

are assumed to be FIFO. The central checker process maintains a queue for each process’ 

Icmvectors. It then looks through the Icmvector queues to find a set of consistent values.
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Lcmvectors u and v are from concurrent states if

118

->(u <  v), where u < v if and only if (Vi : u[i] <  t>[i]) A (3j : u[t] < v[i]).

When a set of concurrent states is found, the predicate has been detected. They also 

describe how the algorithm can be decentralized by breaking down the predicate detection 

to hierarchical groups of processes.

Later they proposed a scheme for detection of strong conjunctive predicates [66]. A 

strong conjunctive predicate is true if and only if the system will always reach a global state 

in which a conjunctive predicate over the local process states is true. It is similar to Cooper 

and Marzullo’s definitely (A), except the evaluation is restricted to conjunctive predicates 

over the local process states. They again use lcmvectors. Here Icmvector intervals are sent 

each time the predicate transitions from true to false and a message has been received since 

the last time the Icmvector interval was sent. For any process Pi, the interval contains the 

Icmvector value lcmvector[i].lo when the local predicate transitioned from false to true and 

the Icmvector value lcmvector[i] .hi when the local predicate transitioned from true to false. 

Once again, the channels between the checker process and the other system processes are 

assumed to be FIFO. The checker process maintains queues for the incoming data, in this 

case Icmvector intervals, from each process. It then searches these queues for overlapping 

Icmvector intervals, those in which lcmvector[i].lo —> lcmvector\j].hi, for every Pi, Pj in the 

system. If states s and t have vectors u and v, respectively, then s t if and only if u < v, 

as defined earlier.

In this paper, they also discuss detection of strong linked predicates. Informally, a
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strong linked predicate is a conjunctive predicate over the local process states in which each 

component has a specified causal order in relation to the other components. It is of the 

form LP = Ao(sqo) A Ai(s^i) A ... A AmCs^m), where A^s^n) is a predicate over the local 

process state of Pq, Sgn is a state observed within Pq during the execution and in which An
s

5 holds, and there exists Sqo, sqi , ..., Sgm such that s«jo —► sqi ... —> Sqm in all executions
j
i consistent with the observed execution.i

In order to detect the linked predicate, it is broken down into a sequence of local pred

icates which must be true in order for the linked predicate to be true. Each local predicate 

has an associated index, indicating its order of occurrence within the linked predicate. Each
j
. process keeps, in ascending order, a list of those components of the linked predicate, along

with the associated index, which must be true locally in order for the linked predicate to
i

be true. A local counter variable Ci, with initial value I, reflects P,’s most recent knowl

edge of which predicate in the list is being evaluated, as reflected by the predicate’s index. 

Every process adds its value for Ci to every message it sends. When a process Pi receives a 

message, it sets its value for Ci to the maximum of its current local value and the received 

value. If the value of Ci matches the index value at the top of Pi's local predicate list, 

and the local predicate becomes true, it increases its value for Ci, and deletes the head of 

its local list. If any process’ value for Ci becomes m + 1, where m is the number of local 

predicates in the linked predicate, then the linked predicate is detected.

In the following sections, we present protocols for detecting unstable predicates which are 

based on the use of SLPs. The first approach is scheduled evaluation, similar to scheduling 

the taking of a global snapshot. This facilitates detection of predicates on attainment of 

some system state at an instant of real time. In section 4.4 we present a protocol for
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runtime detection of certain unstable predicates. The protocol structure is similar to that 

of the protocols presented by Garg and Waldecker [65, 66] in that a central checker process 

monitors FIFO queues of local predicate values. Unlike the approaches outlined above, 

these protocols detect, with certainty, whether or not certain unstable predicates occurred 

during the computation.

4.3 Scheduled Evaluation

One of the advantages of a global time base is the ability to synchronize process actions 

without message passing. In this section, we present two algorithms which exploit this 

advantage for global state predicate evaluation. These algorithms schedule predicate eval

uation at an agreed upon clock value and are based upon the use of SLPs.

Scheduling the evaluation provides another advantage. We can readily evaluate predi

cates which are based on attainment of a certain global state at a specified clock value. For 

example, we can evaluate predicates such as “Were all valves closed at two o’clock?”. In 

order to meaningfully evaluate such a predicate, the system clocks must be accurate, as well 

as precise. If we are evaluating attainment of a global system state at a specified real time 

instant, then we assume that some process clock reads absolute real time when it reaches 

the specified real time instant. For example, if we are evaluating a predicate A(t), where A 

is a predicate whose attainment at real time instant t is being detected, then C,(t) =  t for 

some Ci in the system.

The evaluation is restricted to predicates whose truth remains constant for at least a 

real time interval of 2e(l + p m )- We will show that this is the minimum interval over which 

a predicate must be globally true in order to ensure that all processes can assert SLPs with
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flicker indicates whether Ai’s value has changed during the e interval, initially false
a indicates value of Ai at the start of the SLP interval
statei pi’s state, initially computation

statej Event Action
computation

t*II(5 flicker <— false 
o <—false 
if (Ai) then 

a «— true 
statei <— transition

transition (o =true) A ->Ai flicker <—true
(a =false) A A i flicker <—true
Ci(t) > T  + e if (-'flicker) A (o =true) 

assert A i  
if (- flicker) A (a =false) 

assert -A , 
if flicker

assert unknown 
statei «— computation

Figure 4.4: Protocol (Sched-Conj): Scheduled Conjunctive Predicate Evaluation 

equal timestamps.

We present two algorithms. The first considers conjunctive predicates over the process 

states. The second incorporates more general stable predicates, including predicates over 

the channel states.

4.3.1 Conjunctive Process State Predicates

If process clocks are perfectly synchronized, the state of all system processes at some real 

time instant can be obtained by having each process take its local state at some agreed-upon 

clock value. SLPs facilitate this approach in systems with rough clock synchronization. If 

each process can assert S(Ti, t, A*) with identical SLP timestamps then, by theorem 2, every 

local predicate Aj, t in SYS, must have been true at the same real time instant. If the value 

of any local predicate changes during the e interval over which it is being monitored, then 

nothing definitive is asserted about the simultaneous truth of the local predicates.
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In this section we present an algorithm for evaluation of a global state predicate A  of 

the form A = (Ao A Ai A... A A n - i), where Ai is a predicate over the state of process Pi. 

By the algorithm, the local states are not collected prior to evaluation of the global state 

predicate. This excludes evaluation of a number of predicates over the channel states. It 

also excludes predicates in which process states must be compared in order to determine the 

truth of the global predicate. For example, the predicate “xt- > yy”, where xt- is a variable in 

the state of process Pi and yy is a variable in the state of process Pj, could not be evaluated 

with this algorithm. We look at evaluation of more general predicates in the next section.

A lgorithm  The algorithm, which we presented in an earlier work [29], is shown in figure 

4.4. Each process starts in state computation. When the process clock reaches T, the value 

of the local predicate is recorded and the transition state is entered. In the transition state, 

processes monitor the truth of the local predicate for an interval of e. If the predicate’s 

truth changes during this interval, then the variable flicker is set to true. When the local 

process clock reaches T  4- e, processes either assert the local predicate’s truth value or, if 

flicker is true, they assert unknown. If one or more processes assert unknown, nothing 

certain can be said about the value of the global predicate. No specific method is specified 

for accumulating the local process assertions. This may be done in a number of obvious 

ways depending on the network topology.

Discussion We now present several results which are useful in evaluating the performance 

of this protocol. The first two results bound the real time interval that can elapse between 

the instants that two process clocks read the same value T. In order to bound this interval, 

we must assume a tight bound on the clock skew e. Thus, we assume that |C f(t) — Cy(t)| <  e,
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rather than requiring that |Ct-(£) — Cj(t)| <  e.

The following lenuna shows that a clock interval of 7 , on any single process clock, 

corresponds to a real time interval of at most 7(1  +  p m )-

Lemma 15 Suppose that 0 < Ci{tf) — C,-(£s) <  7 , then t f  — ts < 7(1 4- p m )-

Proof: By clock axiom C3,

(1 ~ P M ) ( t f  - t s )  < 7  <  (1+PAf ) ( t f - t s ) .

Then,

1 — P m  <  1 <  1 +  P m

7  ~  t f  - t s  ~  7

and by clock axiom C2,

7 1 +  PM ^   ̂r * ^  7 1 -  P M*  -------- > t f  — ts>    *
1 — p m  1 +  pm 1 +  p m  1 — P m

Finally, neglecting p ^  terms, we get

7(1 +  P m ) > t f - t s >  7(1 -  p m )-

The next theorem bounds the interval that can elapse between the real time instants 

when any two process clocks read the same value T.

Theorem  14 Let ts be the earliest real time instant at which any process clock reads T. 

Let t f  be the latest instant at which any process clock reads T. Then {If — ts) < e(l + P m )-
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P r o o f : Let Ci(ts) =  T , and let Cj{tf) =  T. By clock axiom Cl, Ci(tf) < T  +  e. By clock

axiom C2, 0 < Ci(tf) —  Ci(ts) <  e. By lemma 15 then, t f  —  ts <e{ 14- p m )- I

Suppose then that we want use the previous algorithm to detect a conjunctive global 

predicate at real time instant t by scheduling the evaluation a clock time T (so that T  =  t). 

By theorem 2, from chapter 2, we know that at some instant when the intervals overlap, 

a process clock reads T. By theorem 14, we then know that if we detect the predicate, it 

occurred within a real time interval of at last e(l 4- p m ) of real time instant t.

The following two lemmas bound the interval over which a global predicate must remain 

true to ensure that all process will be able to assert SLPs with equal timestamps. In order 

to bound this interval, we again require a tight bound on the clock skew e, and thus assume 

that |Ci(t) — Cj(t)\ < e, rather than requiring that \Ci{t) — Cj(t)\ < e.

The first theorem shows that if a conjunctive predicate over the local process states 

remains true for a real time interval of duration 2e(l -+- pm ) then all processes will be able 

to assert SLPs with equal timestamps.

Theorem  15 Suppose the conjunctive global predicate (Ao A A i  A ... A A /v-i) is true for a 

real time interval of duration T. Then all processes can assert S(TS, *, A*) for some T S  if 

1  > 2e(l +  pm)-

P r o o f :  Let ts be the first instant that (A o  A A\ A ... A A j v - i )  is true. Let T S  be

the maximum clock value at this time, and let Ci(ts) =  TS. Then, by clock axiom Cl, 

T S  > Cj(ts) > T S  — e for every j  in SYS. Let tl be the latest instant that some process 

clock reads TS. By lemma 14, tl — ts < e(l -+- p m )-  Thus, all process clocks will read T S  

within a real time interval of e(l +  Pm ) of the first instant at which the predicate becomes
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true.

Let tf  be the latest instant that some process clock reads TS+e. By lemma 14, t f — tl < 

e(l 4- pm)- Thus, if the predicate is true for a real time interval of duration 2e(l 4- pm) then

j  all process clocks will read the values T S  and T S  4- e during this interval and, by definition,
t

| can assert S(TS, i, At). I
I

The next theorem shows that if the conjunctive predicate Ai A Aj is not true for at least 

2e(l 4- pm ) then valid clock functions Ct- and Cj exist for which Pi and Pj cannot assert
i

! SLPs with equal timestamps. In other words, if the conjunctive predicate is not true for an

interval of duration 2e(l 4- Pm )-, then we cannot be sure that both processes will be able to 

assert SLPs with equal timestamps.

Theorem  16 Suppose that the conjunctive predicate A — (Ai A Aj) is true for a real time 

interval of duration I ,  and that A is false outside this interval. Further suppose that Ci and 

Cj obey the clock axioms with the exception that |C,(<) — Cj(t)\ < e rather than \Ci(t) — 

Cj(t)\ < e. Then i f l <  2e(l 4- Pm)-, there exists Ci and Cj for which there does not exist a 

clock value T S  such that S (T S ,i,A i)  A S(TS,j, Aj)  holds.

P r o o f : Let ts be the first instant that A  is true. Let T S  be the maximum value of Ci(ts)

and Cj(ts), and let Ci(ts) =  TS. Let tm = ts 4- e(l 4- Pm)- Then, we can use an argument 

sim ilar to that given for lemma 15 to show that Ci(tm) — T S  4-e does not violate the clock 

axioms.

Then, by our assumption, we can let Cj(tm) =  T. Further, by clock axiom C 3, Cj can 

read T S  4- e as late as tm  4- c(l 4- pm )-

In order for both processes to assert SLPs with equal timestamps, A  must then be true

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



CHAPTER 4. UNSTABLE PREDICATES

over the interval [ts, tm + e( 1 +  Pm )\- However,

126

t m  +- e(l -f- P m )  ~ t s  = 2e(l 4- p M )- 

Then, since X  < 2e(l + p m ) ,  both processes cannot assert SLPs with the same timestamp.

I
Thus, the previous protocol, and the protocols given throughout the remainder of this 

chapter, are limited to global predicates which remain true for at least 2e(l +  Pm)-

Clearly, this protocol is efficient in terms of message complexity. Only a single message 

from each process is required to obtain the truth of the global predicate. The protocol 

might at first seem optimal in terms of message complexity, however, if message delay is 

bounded, we can develop a protocol that is more efficient. If message delay is bounded, 

we can modify the protocol so that processes only send a message if the local predicate is 

false at some point during the SLP interval. In this case, processes can wait the maximum  

message transmission delay S after the SLP interval. If no messages indicating that some 

local predicate Ai was false on the SLP interval, then we know that all the local predicates 

were true. In this case, the predicate is detected with no  message passing.

By using SLPs, we have eliminated concerns with granularity and roughness in clock 

synchronization in construction of the algorithm. The approach is clear and, from theorem 

2, its correctness is apparent.

4.3.2 G enera l P red ica tes

We have already shown, by theorem 2 in chapter 2, that if two or more processes assert 

SLPs with equal timestamps, then the intervals will overlap at some real time instant.
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P. P.
1 j

C=T+e

C>T
m2.

C.=T

m lC=T

Figure 4.5: Real Time e Interval Overlap

We also know that some process clock will read T  at an instant when the intervals overlap. 

However, we don’t know the order in which these intervals occurred in real time. This makes 

it impossible to attain an instantaneous channel state without restricting communication. 

For example, consider the execution given in figure 4.5. Both Pi and Pj could have equal 

clock values at the instant they send their respective messages. Similarly, they could have 

equal clock values when they receive their respective messages. However, message ml is not 

in the channels during any instant at which the intervals overlap; whereas, message m2 is 

in the channels during every instant at which the intervals overlap. Thus, given a message 

containing the sender’s clock value at the instant the messages was sent, as well as the 

receiver’s clock value at the instant the message was received, we have no way to determine 

whether or not the message was in the channels at the instant the intervals overlapped. In 

order to get an instantaneous channel state, we prohibit message activity during the SLP 

interval; that is, no messages are sent during the interval, and any received messages are
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buffered for action after the SLP interval.

Here we are attempting to establish an instantaneous global state, not a consistent 

state. Global snapshots, which establish a consistent state, can also be scheduled. Neiger 

j and Toueg outline such a protocol [49]. Their algorithm requires only that sent messages be
tt
I timestamped with the sender’s clock value at the time of the send and that received messages
i
j be buffered until the receiver’s clock reaches the message timestamp value. Bach process

then records its state at an agreed upon clock value T. (Note that if the m inimum  message 

passing delay were known to be greater than e, then no message could be received before 

the receiver’s clock read the timestamp value, and timestamps would not be required.) By 

establishing an instantaneous state, we can absolutely detect occurrence of certain unstable 

predicates, as well as detect predicates which are instantaneously stable.

As state changes can occur which do not necessarily negate the global predicate’s truth, 

each process records all state changes. The collector process then ascertains whether or not 

the global predicate was true continuously over the SLP interval. We record the channel 

states, via message deficits, at the beginning of the SLP interval. Received messages are 

buffered for action after the SLP interval has elapsed.

A lgorithm  The algorithm is shown in figure 4.6. Here again, each process starts in state 

computation. Processes track the local message deficit while in this state. When the clock 

reaches the agreed upon value T, the local message deficit and process state are recorded. 

Then the transition state is entered, during which the the local state is monitored for an 

interval of e. Any change which might affect the truth of the global predicate is recorded. 

If a message is received, then it is buffered for processing after the SLP interval. When 

the e interval has elapsed, each process sends its local state, including all changes, and the

i
!
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state j Pj's state, initially computation
Imsgsj Pj’s message deficit, initially 0
msgj message sent by Pj
seqj number of times P j’s process state has changed daring the e interval; initially

0
Vj (seqj ) value of Pj's process state; seqj corresponds to the number of times the local

process state has changed during the e interval 
f j  messages received during the SLP interval

statej Event Action
computation C j{ t)= T Vj(seqj) *- Pj's process state 

statej *— transition
send msgj lmsgsp'~
receive msg. Imsgs'j

transition process state change seqf+
Vj(seqj) *- Pj's process state

receive msg. r ,  «- U msg.
Cj(t) > T  + e send (Vj,lmsgsj) to collector

Figure 4.6: Protocol (Sched-Gen): Scheduled Predicate Evaluation

message deficit to the collector process. The message deficits here sure solely recorded as part 

of the process’ state. (We assume that a single process collects the local process states and 

channel states. However, the algorithm could easily be modified to be fully distributed and 

symmetric.) The collector process then looks at the collection of states statej (kj), j  6  SYS, 

where kj is the number of relevant changes in the state of Pj during the SLP interval. If 

there is some collection of states, one from each process, in which the predicate is not true, 

then nothing certain can be asserted about the global predicate’s truth. However, if the 

predicate is true for all states from each process, then the global state predicate was true 

at some real time instant.

4.3.3 Discussion

Like the previous protocol, this one clearly requires less message passing than traditional 

snapshot algorithms. Further, it can evaluate instantaneously stable predicates. However,
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statei Pi’s state, initially unsatisfied
tim en(7 ) Pi’s timer, signals Pi at C,(t) =  7 ; tim en(0) resets the timer

state event action
unsatisfied A t T S n -C i( t)  

timeri(TSi -4- e) 
statei «— transition

transition ~<Ai timeri (0 )
statei «— unsatisfied

timeri expires sendm(rS«,0 , i) to Po 
statei *— satisfied

satisfied T F n - C i{ t ) - e  
send m(TSi,TFi,i) to Po 
statei *— unsatisfied

Figure 4.7: Protocol (Unstable-App): Global Predicate Detection - 
Application Process

if there are a large number of relevant state changes during the e interval, then the amount 

of state information stored and transmitted, as well as the processing required to determine 

whether the predicate was true in every state, will be large. Further, message activity must 

be restricted during the SLP interval.

This algorithm could be used to detect general stable predicates by repeated application 

at scheduled intervals. The times at which the SLPs are evaluated could either be agreed 

upon in advance or could be distributed by the collector process if message delivery time is 

bounded and that bound is known.

4.4 Centralized Evaluation

Although scheduled evaluation is useful for detecting certain time-based predicates, it is 

difficult to extend this approach so that we can detect unstable predicates which can become 

true at any point during a run. For example, in detecting stable predicates, it is sufficient 

to schedule evaluations periodically, either dynamically or statically. If a stable predicate 

becomes true, it remains true indefinitely. Thus, the scheduled intervals cannot skip over
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the interval in which the predicate is true. This is not the case for unstable predicates.

In order to detect unstable predicates whose truth changes dynamically, a scheme like 

Garg and Waldecker’s protocol for detecting weak unstable predicates is more practical.

j We give such an algorithm below. It is based on the use of SLPs. A version based on the
i

1
j use of GLPs is presented in appendix A, to contrast the use of GLPs versus SLPs.
j

The algorithm is centralized. One process, Po, called the monitor process, is not part of 

the computation. Its purpose is to collect information from the application processes and 

evaluate the global state predicate. In addition to being delivered reliably, we assume that 

messages sent on the channel between any process Pi and Po are delivered in FIFO order. 

Values received by Po are assumed to be buffered in FIFO order until they are used in the 

detection algorithm. We further assume that message delivery time is bounded within some 

known interval 5, as read by any C,-, i in SYS.

Since we are considering only conjunctive predicates which are globally true for a real 

time interval of at least 2e(l +  p m ),  each local predicate must also be true for the same 

duration. Suppose each process Pi then monitors the truth of its local predicate and asserts 

S(TSi,i,A i) whenever C(T, i, A,), TSi < T <  TSi +  e holds. Then, by theorem 15, the 

processes will assert a set of SLPs with equal timestamps. By lemma 2, if all processes 

assert SLPs with equal timestamps then there is an instant in time at which the predicate 

is globally true. Thus, to determine when the predicate is true, we only need find a set of 

equal SLP timestamps.

Algorithm  Algorithms for the application and monitor processes are given in figures 4.7 

and 4.8, respectively. Each application process sends a message to the monitor process 

whenever the value of the local predicate changes. These messages contain the minimum

i
i
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CTime
Ti
BufferEmpty(i)
AgeTimestamp(T)
STime(r;)
ETime(n)
GetValidIntervaI(i,T)

Overlap(n,r)

value which is current candidate for T<utect, initially 0

interval endpoints (T S i ,T F i ) most recently read from P i’s buffer
returns a boolean indicating whether or not the buffer associated with p.- is empty
blocks until the local clock value is T  +  S  +  e
n ’s interval start time,TSi
r ;’s interval end time,T F ,
reads interval values from Pi’s buffer and returns a potentially valid interval; 
returns the first interval in the queue for which T F i  >  T  or (T F i  =  0) A 
(TSi >max(TFi : T F i  < T,0)); the function blocks until such an interval is 
available; if the start time for this interval appears in both a closed and open 
interval then the closed interval values are used
returns true if any value on the interval n  is equal to T, false otherwise; if n  
denotes an open interval, then only the value for STime(rt) is used.

1 for i  *— 1 to IV — 1  do
2  Ti «—GetValidlnterval(i, 0 )
3 end for

4 CTime «— m in{STime(ri): 1 < i < N  — 1 }
5 noverlaps «— 0
6  found  false
7 while not{found) do
8  for t *— 1  to N  — 1

9 if OverIap(ri, CTime) V ((ETime(ri) =  0) A (STime(Ti) <  CTime) A (BufferEmpty(i))) then
10 noverlaps++
11 else
12 if ((ETime(ti) =  0) A (->BufferEmpty(i) A (STim e(n) < CTime))V

((ETime(ri) ^  0) A (ETime(ri) <  Ctime)) then
13 GetValidInterval(i, CTime)
14 if Overlap(ri, CTime) V ((ETime(ri) =  0) A (STime(ri) <  CTime)) then
15 noverlaps +  +
16 endif
17 end for

18 if (noverlaps =  N  — 1) then
19 ASSERT A
2 0  found  «—true
2 1  else
22 noverlaps «— 0
23 CTim e *— min{ST»me(ri) : STime(ri) > CTime, 1 <  i  < N  — 1}
24 AgeTimestamp(C7time)
25 endif
26 endwhile

Figure 4.8: Protocol ( Unstable-Mon): Global Predicate Detection - Monitor Process
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and maximum SLP timestamps of every SLP interval over which the local predicate At 

holds. Let T Si be the minimum clock value at which A* can be asserted by P*. Let TFi 

be the maximum clock value from the same interval. Then C{T,, i , A*) for TSi <  T < TFi 

holds. When the value of the local predicate changes from false to true, and then remains 

■ true for e, as read by Ci, the application process will send a message to the monitor process

containing the interval values {TSi, 0). The monitor then knows that Ai changed from false 

to true at Pt- and that P*’s initial SLP timestamp was T5,-. An interval ending timestamp 

of zero indicates that TSi is the only SLP timestamp that can be asserted for the current 

interval. When A,- changes from true to false, Pz sends the interval values {TSi, TFi) to Pq, 

where TFi is equal to the value of C,-(t), the local clock value when the predicate’s value 

changed, minus e; i.e., TFi = Ci{t) — e. If TFi is zero, then we refer to the interval as 

“open”. Otherwise, the interval is said to be “closed”.

The algorithm for Po is given in figure 4.8. By the algorithm for the application pro

cesses, each Pi generates an interval rt- of SLP timestamps {TSi,TFi) for which C{T, i, A), 

TSi < T  < TFi +  e> holds. By theorem 15, if the global predicate is true for a real time 

interval of at least 2e(l +  p\f) then all processes will assert SLPs with equal timestamp 

values. Then the monitor Po will receive a set of intervals r3at, one from each process, in 

which the interval rt- from each process Pi contains the same SLP timestamp value. Let Esat 

contain the starting timestamps TSi from the earliest such set of intervals rsat, as indicated 

by the interval start times. Let Tdetect be the maximum of Each timestamp in Esat 

is part of some interval of SLP timestamps. Clearly, Tdetect must then be the starting time 

TSi of the interval rt- from which it was taken. Otherwise, there would be some smaller 

valued set of intervals rsat, contradicting our definition.

\\
i
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The monitor process then collects a set of SLP timestamp intervals, one from each Pj. 

From this set, it selects one starting timestamp TSi as a candidate for T^tect- This value 

is kept in. variable CTime.

The monitor compares each of the intervals r,-, in turn, to CTime. If some interval
e\
| contains a timestamp equal to CTime, a counter is incremented. If the interval is closed
E

j and is too early to contain a timestamp equal to CTime, the interval is discarded. The

monitor then waits until it receives a potentially valid interval to replace the one which was 

discarded. A potentially valid interval is the first interval in the queue for which

• TFi > CTime, or
i

• TFi =  0 and TSi >max(TFt : TFi < CTime).

Thus, an interval is potentially valid if it contains a timestamp equal to CTime or some 

later valued Tfetect candidate. This new interval value is then compared to CTime. If the 

interval contains a timestamp equal to CTime, the counter is incremented.

If the current value of CTime is T</etecti then the counter will have been incremented 

for each process and the predicate will be detected. If the counter was not incremented for 

each process, then CTime was not Tfetect, a. new candidate will be chosen from the set of 

global timestamp intervals, and the process will continue.

Correctness Our obligation in showing that the protocol is correct is twofold. First, we 

must establish that if the monitor process declares that the global predicate was satisfied 

then there was an instant in time t  at which £(Ct-(£), i, A») for every i in SFS(safety). Then 

we must show that if the global state predicate was true over a real time interval of at least 

2 e(l + pm) then the monitor process will declare it (liveness).

s

I
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Theorem  17 (Safety) I f  P q asserts A, then there exists some real time instant t  for which 

C{Ci(t),i, Ai) for every i in SYS.

PROOF: Clearly, by the algorithm, Po will assert A  if and only if noverlaps is incremented 

‘I within line 10 or line 15 on every iteration of the for loop (figure 4.8).

j Suppose that noverlaps is incremented in line 10. Then either O verlap^, CTime) is

true or the predicate ((ETim efc) =  0) A (5Time(rt) < CTime) A B uffer Empty(i)) is true.

By definition, Overlap(ji, CTime) is only true if rt- contains a timestamp equal to 

CTime. If PT*me(rt ) is equal to zero then rt- is an open interval. The value for CTime 

remains constant within the for loop. Further, each new value for CTime is aged prior to 

I its use. Thus any timestamp which would close this open interval at a time which is less

than CTime would have been received prior to this iteration (and would be at the head 

of the appropriate queue, since channels are FIFO). Thus, if B uff erEmpty(i) is true and 

STime{ri) is less than or equal to CTime, then C(CTime, i, Ai) holds.

Suppose then that noverlaps is incremented within line 15. Then Overlap(rt-, CTime) 

is true or the predicate ((ETime(ri) =  0) A (STime(r,-) < CTime)) is true.

Again, if O verlap^, CTime) is true then C(CTime,i, Ai) holds, by definition. If 

ETime{ri) is equal to zero then r,- is am open interval. By the protocol, r,- was returned by a 

call to GetValidlnterval. Since STime(ri), the initial SLP timestamp of the rt- interval, is 

less than or equal to CTime and since CTime was aged prior to its use, if a closed interval, 

with this sarnie staurt time STimeiji) and which ended prior to CTime existed, it would al

ready have been received and rt- would have been discarded by the call to GetValidlnterval. 

Thus C(CTime,i,Ai) holds.

i
i
1
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Thus, noverlaps is incremented for each process, and Po asserts A , only if there exists 

a set of global timestamps, one from each process, with equal values. Finally, by lemma 2, 

there exists t  such that C(Ci(t), i, Ai) for all * in SYS. I

The following results are useful in establishing liveness. The first one shows that the 

value for CTime will continue to increase until CTime is greater than or equal to Tdetect-

Lem ma 16 Let CTim e(j) be the value of CTime at the start of iteration j  of the while 

loop in the algorithm of figure 4-8- IfCTime(j) < Tdetect then at the end of execution of the 

while loop there exists an interval Ti of SLP timestamps such that STime(ri) > CTime(j).

PROOF: If CTime{j) is less than Tdetect then some process never produced an interval of

SLP timestamps which contains CTime. Let this process be Pq.

Execution of the while loop does not begin until there is an interval rt- at the head of 

the queue for each process Pi, for all i in SYS. An interval r,- can only be removed from the 

queue by a call to GetValidlnterval, which then blocks until another interval is available. 

Thus, during any iteration of the while loop, outside the call the GetValidlnterval, there 

is an interval Ti at the head of the queue for process Pj.

Let Tq be the interval at the head of the queue for Pq at the start of iteration j  of the 

while loop. Then Tq must be earlier or later than an interval which would overlap CTime(j). 

Suppose it is earlier; then it must have ended prior to CTime(j). Since each CTime value 

is aged prior to its use, the closed interval values for Tq must have already been received. 

Thus, GetValidlnterval will be called. By definition, it will return an interval Tm„- with 

STirne^Tmer) > CTime, since no valid interval from Pq with an earlier start time exists. 

Thus, STimeijocer) will be available for selection as the next value of CTime.

R ep ro d u ced  with p erm issio n  o f  th e  cop yrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



CHAPTER 4. UNSTABLE PREDICATES 137

If rq is later than any interval which would overlap CTime(j), then it can be selected 

as the next value of CTime.

In either case, an interval start time which is greater than CTimefj) will be available 

for selection as the next value of CTime. I

The next result shows that Tdetect will never lie between two successive values of CTime. 

Lemma 17 I f closed interval n  is discarded then T{ 0  £ sot-

PROOF: The proof is by induction. Let Sy be the start times of the intervals r,- at the

head of the queues at the beginning of iteration j  of the while loop, i.e. Sy = {STime(ri) : i 

in SYS, i ^  0}. By the protocol for the application processes given in figure 4.7, So 

contains the timestamp of the first SLP interval generated by each process. CTime{0) is 

the m inim um  of this set. The second value in each queue will be the closed interval values 

that correspond to the open interval values in So- An interval can only be discarded through 

a call to GetValidlnterval. By definition, any call to this function during the first iteration 

will return the second value in the queue, since all end times in the second interval are 

greater than or equal to CTtme(O). Thus, no closed interval will be discarded.

Now suppose that no closed interval value in Esat has been discarded during the first 

m iterations. Consider iteration m +1. Let CTimefjn +  1) =  STime{rq). All earlier closed 

intervals generated by Pq have been discarded. By our assumption, none of these intervals 

contained Tdetect- Then CTime{m + 1) < Tdetect and rq is the earliest interval from Pq which 

could contain T d e t e c t -

By definition, GetValidlnterval will only discard closed intervals which have ending 

interval SLP timestamps which are less than CTime(m  4- 1). Such an interval does not
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overlap rq. Then, since Tq is the earliest interval from Pq which could contain Tdetecti none 

of the discarded intervals are in Esot.

Theorem 18 (Liveness) I f there exists real time instants £i and £2 such that Cf(£2) — 

Ct-(£i) >  2e(l + pm )  and C[Ci(t),i, A{),ti < £ <  £2, for all i in SYS, then P q will assert A.

Proof: If there exists real time instants £i and £2 such that Cifo) — C^(£i) > 2e(l 4- pm )

and C{Ci{t),i,Ai),t\ < £ < £2, for all t in SYS, then by lemma 15, there exists a set of 

equal SLP timestamps, one from each process.

By lemma 16 and the protocol, CTime takes on monotonically increasing values at each 

iteration of the while loop. By lemma 17, no closed interval which contains Tdetect is ever 

discarded. Then eventually CTime will equal Tdetect-

Now suppose that for iteration j, CTime is equal to Tdetect- Consider the interval r, 

of SLP timestamps at the head of the queue for any process Pt, i in SYS, at the start of 

iteration j. By lemma 17 no valid interval has been discarded. Since CTime{j) is equal to 

Tdetect> STime{ji) is then less than or equal to CTime(j). This interval r,- can either be 

open or closed.

Suppose that it is open. If the buffer is empty, then noverlaps will be incremented. If the 

buffer is not empty, then GetValidlnterval will be called. By definition, GetValidlnterval 

will return the interval for t* that contains Tdetect and noverlaps will be incremented.

Suppose then that the initial value of r,- is closed. Then, since no valid interval has been 

discarded and every process has generated an interval containing CTime, either

• STime{ri) < CTime and ETime{ri) < CTime, or

• STime{ri) < CTime and £Time(rt) > CTime.
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If STime(ri) < CTime and ETime{ri) < CTime, then by the test in line 12, a call will 

be made to GetValidlnterval. By definition, this call will return the earliest overlapping 

interval and noverlaps will be incremented. If STime(ri) <  CTime and ETime(Ti) > 

CTime, then noverlaps will be incremented by the test in line 9.

■ The variable noverlaps will then be incremented for each Pi when CTime is equal to

Tdetect- Since CTime must eventually equal Tdetect if the predicate remains true for a real 

time interval of 2e(l +  pm), the predicate will be detected. I

Example We will now trace execution of the protocol for the execution time history 

shown in figure 4.9. The figure shows execution for a three process system. The axis for 

process Pi shows the value of local predicate A,, as well as certain values for local clock Ct , 

as a function of absolute real time. If a local clock value is not given for some value of real 

time, the clock value is assumed to be the same as the value of real time. We assume that 

the value of the maximum clock skew e for this system is three. For simplicity, we further 

assume that message delivery is instantaneous, that the monitor process clock skew from 

real time is zero, and that program execution time is negligible.

We monitor the execution using table 4.10. Each entry in the table gives program 

variable values for an arbitrary step of the protocol’s execution. If no value is given for 

some variable, the value is assumed to be the same as that for the previous step. Each 

entry was chosen to correspond with some event of interest from the execution. The table 

entries, or the events, occur sequentially in real time, each event being at the same real 

time instant, or later, than the previous event. Entries correspond with two types of events: 

reaching a certain value of absolute real time, or reaching a certain statement within the 

program. Thus, between any two events, either some interval of real time has elapsed, or

i
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the program counter has advanced. The variable ptr reflects the current point of execution 

within the program code. Its value indicates the next program statement to be executed. 

A ptr table entry of f indicates that the value of ptr has not changed since the previous 

event.

Steps one through nine in the table trace execution of the initialization code, lines one 

through six. The first step indicates initial values, prior to execution of line one. Step two 

corresponds to receipt of the open interval values for the first interval values received from 

process P3. Note that ptr has value three. Here a call to GetValidlnterval has been made, 

at line two, and execution is stalled waiting for a valid interval from process Pi- Steps three 

through five correspond with receipt of interval values from processes P3, P2, and finally 

Pi- Note that the value of ptr has not changed. Steps six through eight correspond with 

execution of the initial for loop, filling in values for t\, T2, and T3. Step nine corresponds 

with completion of execution of lines four thought seven, filling in initial values for CTime 

and noverlaps.

Steps 10 through 33 corresponds to the execution of the while loop, until the pred

icate is finally detected. Execution of steps 10 through 17 are straightforward. These 

steps correspond to two iterations of the while loop. During these iterations, no calls to 

GetValidlnterval, at line 13, are required, and thus no intervals are discarded. At step 17, 

CTime has taken the value of STime(ri), the value it will have for the next iteration of 

the while loop.

Between steps 17 and 18, one pass is made through the for loop which begins at line eight. 

Here, noverlaps is incremented because CTime is equal to STime(ri). Step 19 corresponds 

to completion the next pass through the for loop. Here, noverlaps is incremented because
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STime{ri) is less than CTime, E T im efa)  is zero, and the buffer for P2  is empty. Since the 

value CTime was aged prior to its use, we know that if the open interval T2 had been closed 

prior to CTime, then the closed interval values would already have been received and the 

buffer for P2  would not be empty. The third pass through the for loop occurs between steps 

19 and 23. Between steps 19 and 20, a call to GetValidlnterval, at line 13, is made, as 

T3 is a closed interval which ended prior to CTime. While execution is suspended, pending 

receipt of a valid interval value for P3, interval values are received from Pi and P2 , step 20, 

and then P2  again, step 21. Finally, a valid interval value is received for P3, step 22. Note 

that the local clock values corresponding to the real time interval [48,50], in which A3 was 

true, were never sent because the predicate did not remain true for e as read by C3 . During 

this real time interval, the conjunctive predicate was globally true. This is consistent with 

our assumption that if the predicate is not true for 2e, as read by any P,, the protocol may 

not detect it.

Step 24 corresponds to the aging of the next value for CTime  prior to its use. When 

line 24 is reached, the value of C q is 63 and the value of CTime  is 62. Thus, P q must wait 

until its clock reaches 65 before it can proceed with the next interation of the while loop.

Between steps 24 and 25, the first pass through the for loop of line eight is made. A 

call to GetValidlnterval was made at line 13 and the value (53,70) was returned from the 

buffer for P\. The value for noverlaps was incremented at line 15. Between steps 25 and 26, 

a call to GetValidlnterval was made in order to get a valid interval for P2. While execution 

was suspended by this call, a closed interval value for P\ was received. Step 27 corresponds 

with receipt of a valid interval value for P2. Note that noverlaps is not incremented since 

the start time for this interval is greater than CTime. Between steps 28 and 30, the final
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two passes are made through the for loop, noverlaps is incremented twice, at line 10, and 

a new value for CTime is chosen.

Steps 31 through 33 correspond to the final pass through the while loop, during which 

the predicate is detected. Note that the predicate did not remain true for 2e(l -+- p), yet 

it was still detected. Again, if the protocol detects the predicate, it was true at some real 

time instant, and if the predicate remains globally true for a real time interval of 2e(l -I- p), 

then the protocol will detect it.

Discussion Unlike protocols which evaluate predicates over consistent global states, this 

protocol doesn’t require that vector time be kept. Thus, no control information must be 

added to the application messages. Although we have required that message delivery time 

be bounded, the algorithm could be structured so that the evaluation only takes place 

based on closed interval values. This would obviate the need for the monitor process to age 

timestamps prior to their use.

The protocol requires that the predicate being evaluated remain globally true for at 

least a real time interval of 2e(l 4- p m )- Recall that typical values of p m  are on the order 

of 10~6 and that protocols which guarantee synchronization can provide maximum clock 

skews on the order of tens of milliseconds. Many physical systems have periods greater than 

this interval. Using this approach, we are then able to detect predicates which could not 

(easily) be detected by traditional methods.
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i

4.5 Conclusions

We have presented several algorithms for detection of global predicates on the state of 

distributed systems with roughly synchronized clocks. Structuring these algorithms on the

j assumption of a rough global time base provided several advantages.
)
j First, by scheduling the evaluation at an agreed upon clock value, we could develop an

algorithm that is message optimal, in that the only message required were those with which 

the process states were accumulated. Further, we could evaluate predicates that were based 

on attainment of a specified system state at a given real time instant, plus or minus a real 

time interval of e(l + pm )~ None of the algorithms required that vector time be kept. Thus, 

there is no increase in application message size as the number of system processes increases.

Evaluation in each of these algorithms is limited to predicates which remain globally 

true for at least a  real time interval of 2e(l+pAf). However, we are able to detect occurrence 

of predicates which are not detectable by traditional methods.
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Chapter 5

Conclusions

We have divided this chapter into two sections. Our results are summarized in the first 

section. We conclude by outlining directions for futher research in the final section.

5.1 Summary

Ail potentially instantaneous global states, for a given execution sequence, can be deter

mined from a causal ordering of the events comprising the execution. Evaluating global 

predicates over these potentially instantaneous states, or consistent global states, allows 

detection of predicates which did not occur in the current execution, but may occur in 

subsequent executions. This type of analysis is particularly useful for program debugging 

and verification. Causal ordering is based on the global ordering of local events imposed 

by message passing and can then be efficiently constructed without assuming the existence 

of either shared memory or a global time base, the dominant characteristics of distributed 

systems.

The vast majority of global state predicate evaluation protocols structure the evaluation

146
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over consistent global states. This is partially attributable to the assumption, for whatever 

reason, that no global time base is available within a distributed system. However, numerous 

fault-tolerant clock synchronization protocols have been presented in the literature [21, 

38, 13, 37, 61, 57, 53, 35, 64]. Thus, the assumption that a global time base cannot be 

efficiently constructed seems overly restrictive in certain cases. Further, these protocols 

provide maximum clock skews at least on the order of message passing delays [55].

Protocols based on the use of consistent global states can sometimes be used to determine 

the state of the system at some real time instant. For example, the evaluation protocol of 

Cooper and Marzullo reconstructs all paths that an execution could have taken, based on 

an observed execution sequence [9]. If their protocol detects that some predicate definitely 

occurred during the computation, then, at some real time instant, the predicate was true. 

However, their protocol does not allow detection of whether or not an arbitrary predicate 

occurred during the execution. In other words, if their protocol detects that the predicate 

definitely occurred, then it occurred at some real time instant. However, the predicate could 

occur at some real time instant, and their protocol may not detect it. Garg and Waldecker 

developed a s im ilar protocol, designed for runtime evaluation, rather than postmortem 

evaluation [66].

The fundamental problem with detecting predicates over consistent global states is that 

causal ordering only partially orders the events of an execution. In order to develop a 

necessary and sufficient test for occurrence of an arbitrary predicate, a total ordering of 

events within an absolute time frame is required. One must be able to reconstruct the 

instantaneous global states that actually comprised the execution.

The ability to construct an instantaneous global state is especially important to dis-
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tributed monitoring and control systems. These distributed systems control and monitor 

physical systems, and thus must determine the state of the system being controlled within 

an absolute real time frame. For example, a monitoring system may want to determine the

; state of the system being monitored at a certain point in real time; i.e. “What was the
*
t tank water level at two o’clock?”. Such systems also may need to determine if, or when,
5

] some predicate occurred. An example might be detecting a predicate such as “Are all valves

closed?”, so that some alarm function can be executed.

Evaluation of these kinds of predicates over consistent states is difficult. A predicate 

such as “Did all valves close?” cannot be evaluated using consistent global states, assuming 

the valves may open and close arbitrarily. Detection of such a predicate would require the 

ability to construct all global states that occurred during the computation. Without some 

global time base, it is also impossible to evaluate a predicate on the state of the systems 

at a specific value of real time. For example, for a predicate such as “Were all tanks hill at 

two o’clock?”, all tank monitoring processes must have roughly the same idea of when it is 

two o’clock.

Detection of these kinds of predicates arises naturally within systems in which a rough 

global time base can be assumed. In section 4.3 of chapter 4, we gave a protocol for 

scheduled predicate evaluation. This protocol allows detection of predicates at a certain 

instant in real time, assuming that some process clock is accurate. Thus, a predicate such 

as “Were all tanks full at two o’clock?” is readily detected. In section 4.4 of chapter 4, we 

developed a protocol to detect conjunctive predicates over the local process states. This 

facilitates detection of a specific predicate whenever it occurs during the computation. With 

this protocol, it is possible to detect a predicate such as “Did all valves close?”.
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The global time base is cough, thus our detection techniques are limited to predicates 

which remain true for a sufficiently long interval, an interval of duration 2e(l-t-pAf)- However, 

the magnitude of this interval is on the order of tens of milliseconds, well below the period 

of many physical systems.

j In addition to facilitating more efficient detection of certain unstable predicates, the

| practical assumption of a rough global time base allows development of simple and efficient

protocols for stable predicate evaluation. As we showed in section 3.1.3 of chapter 3, as

suming a global time base we can develop a protocol which always detects termination with 

a single pass through the system processes, without requiring the addition of control infor

mation to basic application messages. Protocols based on the use of consistent global states 

typically either detect the termination with two passes through the system processes, with

out requiring control information on application messages, or they detect the termination 

in a single pass, and require control information on application messages [19, 11, 63, 31, 40].

Protocol development within a rough global time base can be complex because we tend 

to think of processor actions as occurring in a single time frame. It can be confusing to deal 

with several processors acting independently within unique and different time bases. The 

SLP and GLP formalizations ease development of protocols for predicate evaluation within 

a rough global time base. By globalizing the timestamp on a local property according to the 

protocol we presented in section 2.5.2 of chapter 2, a processor can make a time-stamped 

statement about its local state at a time which is valid by any process clock. Thus, the 

timestamps on such assertions can all be referenced to a single process’ clock, and we are 

once again dealing with the more easily understood single time frame.

By using SLPs, we can more efficiently detect the simultaneous truth of local properties.

(
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This leads to the intuitive task of detecting equal timestamps on assertions about the truth 

of local predicates. For example, we readily developed an unstable predicate detection 

protocol by having each process assert the truth of some local property via SLPs. The 

| monitor process then looks for equal timestamps on the local assertions. A similar approach

| could be taken in a system with a perfect global time base. We can then focus on ways to

| more efficiently determine when processes make assertions with equal timestamps, without
ii

the distraction of dealing with roughness within the global time base.
j
[ Thus, by basing predicate evaluation on the assumption of a rough global time base, we

can detect unstable predicates which are not readily detected over consistent global states 

? and we can develop simple and efficient stable predicate evaluation protocols. The use of
t
[ SLPs and GLPs facilitated protocol development within this rough time base.
i

5.2 Directions for Further Research

The efficiency and simplicity of the stable predicate evaluation protocols we have developed 

prompt further investigation into more complex cases of both distributed termination de

tection and distributed deadlock detection. Specifically, our results indicate that we might 

be able to develop simple and efficient protocols for termination detection within dynamic 

systems. Dynamic systems are systems in which the set of system processes is not fixed; 

processes are allowed to join and leave the system. The techniques used in our earlier pro

tocols should apply equally well to dynamic termination detection and may lead to simpler, 

more efficient solutions.

Another area within stable predicate evaluation that we plan to investigate in more 

depth is distributed deadlock detection. We have developed a protocol for detecting dead-

i
!t
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J

lock under the most simple model of distributed deadlock. This protocol is efficient and 

facilitates deadlock resolution, in that a unique process detects the deadlock and aborts its 

transaction. This protocol should be extensible to more complex deadlock models. By our

; earlier protocol, processes are in one of two states, one in which they are active and one in

; which they are waiting for a resource. While in this second state, the set of resources held,
|
j and requested, by a process remain constant. Circulation of a token then indicates that all

processes are simultaneously in this second state.

That the approach is extensible to more complex models is exemplified by its application 

to the OR model of deadlock. Under the OR model of deadlock, processes post a request 

for some set of resources, and can proceed upon receiving any single resource from the set.

; It would seem, then, that our protocol could be extended only by modifying the token

routing. Within a protocol for deadlock detection under the OR model, processes would 

post their request for some set of resources, and enter the “second” state upon receipt 

of a Hold message. Upon receipt of any Grant message, processes re-enter the “first” 

state. Tokens would be sent to the data managers of all requested resources and complete 

circulation of any single token would indicate deadlock. Here again, in this second state, the 

set of all resources held and request by a process are constant. Complete token circulation 

then indicates that all processes are simultaneously in this second state. The token routing 

ensures the correct dependency chain.

We have not encountered a frilly distributed and symmetric protocol for unstable pred

icate evaluation within the literature. Our scheduled evaluation protocol is distributed and 

symmetric, but cannot detect predicates whenever they become true. We plan to investi

gate whether or not the assumption of a global time base might facilitate development of
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such a protocol.

A platform which is particularly attractive for the application of our techniques is local 

networks of workstations. These distributed systems are receiving a lot of attention as 

economical alternatives to traditional parallel processors. The fact that these systems are
i
i

local make them good candidates for tight clock synchronization, in that the uncertainty
1
( in message delivery times introduced by multiple hops between source and destination is

eliminated. The ways in which the assumption of a global time base might make the tasks 

performed by these systems more efficient bears further investigation.

Finally, the argument that the assumption of a rough global time base is a practical one is 

not completely convincing without an implementation to bear out the arguments. We then 

plan to implement both clock synchronization and some of our protocols to demonstrate 

the protocols’ practicality and efficiency. Here again, we will focus on local networks of 

workstations.

Thus, we plan deeper research in areas we touched upon within the dissertation, specif

ically, dynamic termination detection, general distributed deadlock detection, and dis

tributed unstable predicate detection. Further, we plan to investigate other areas of applica

tion of our techniques, starting with the tasks commonly performed within local networks 

of workstations for parallel processing. Finally, we plan to implement our protocols to 

demonstrate that the approach is practical.

ii
i
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Appendix A

Unstable Predicate Evaluation 

Using GLPs

We present a centralized protocol for the detection of conjunctive predicates, over the local 

process states, as they occur. Unlike the protocol presented in section 4.4 of chapter 4, the 

evaluation is based upon the use of GLPs. This protocol has been published previously [29].

Other than basing the evaluation on the use of GLPs, the protocol is identical to the 

earlier protocol. The evaluation is unscheduled; the protocol detects the predicate when it 

first becomes true. The algorithm is not symmetric. One process, P q , called the monitor 

process, is not part of the computation. Its purpose is to collect information from the other 

application processes and evaluate the global state predicate. We assume that message 

passing is reliable, and that messages sent on the channel between P q and any other P i 

are delivered in FIFO order. Values received by Po are assumed to buffered in FIFO order 

until they are used. We further assume that message delivery time is bounded within some 

known interval S, as read by any C,-, i € SYS.

153
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sta ta  Pi’s state, initially unsatisfied
alarrm(T) Pi’s alarm, signals P, at Ci(t) = T; alarrm(0) cancels the alarm
clocki Pi’s current clock reading

state event action
unsatisfied At TSi 4— clocki +  e 

alarrmlTSi +  e) 
statei 4— transition

transition -‘Ai alarmi{0)
statei 4- unsatisfied

atarrm expires send m(TSi, 0, i) to P0 
statei 4— satisfied

satisfied - ‘Ai TFi 4— clocki — e 
send m (TSi,TF i,i) to Pa 
statei 4- unsatisfied

Figure A.l: Protocol (UnstableGLP-App): Modification to Protocol Unstable-App

Since we are considering only predicates which are globally true for an interval of at least 

2e, as read by any C*, each local predicate must also be true for at least 2 e. Suppose each 

Pi then monitors the truth of its local predicate and asserts the local predicate Ai whenever 

C(Ti, i, At), TSi — e < T i<  TSi -he. Then, by the clock axiom, there must be a set of global 

timestamps within e of each other. As we will show later, if the timestamps are within e, 

then there is an instant in time at which the predicate is globally true. Thus, to determine 

when the predicate is true, we only need find a set of global timestamps within e of each 

other.

Protocol

Algorithms for the application and monitor processes are given in figures A.l and A.2. 

Bach application process sends a message to the monitor process whenever the value of the 

local predicate changes. These messages contain the starting and ending global timestamps 

of the interval over which the local predicate A,- holds. Let TSi be the m inim um  global 

timestamp for which A,- can be asserted by Pt. Let TFi be the m axim um  timestamp from

!
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CTime
Ti
Buffer Empty(i)
AgeTimestamp(T)
STime(rj)
ETime(r;)
GetVaIidInterval(i,T)

Overlap(n,T)

for t *— 1 to N  — 1 do
n  <—GetValidInterval(i, 0) 

end for

CTime « —  min{STime(ri) :  1  <  »  <  N  —  1} 
noverlaps <— 0  

found *—false 
while not(/ound) do 

for i «— 1  to N  — 1
if OverIap(ri, CTime) V ((ETime(ri) =  0) A (STime(n) <  CTime +  e) A (BufferEmpty(i)) then 

noverlaps++
else

if ((ETime(n) =  0) A (->BufferEmpty(*)) V (ETime(rj) < C tim e—e)) then 
GetValidInterval(i, CTime)
if Overlap(rj, CTime) V ((ETime(ri) =  0 ) A (STime(r<) <  CTim e  +  e ))  then 

noverlaps + +
endif 

end for

if (noverlaps =  N  — 1 ) then 
ASSERT A  
found  «—true

else
noverlaps «— 0
CTime *~mxn{STime(n) : STime{n) > CTime, 1 < i < N  — 1}
AgeTimestamp(Ctime)

endif
endwhile

Figure A.2: Protocol (UnstableGLP-Mon): Modification to Protocol Unstable-Mon

I

value which is current candidate for Tdetect
interval endpoints ( T S i ,  T F i)  most recently read from P i’s buffer
returns a boolean indicating whether or not the buffer associated with Pi is empty
blocks until the local clock value is T  +  S  +  2e
n ’s  interval start time,TSi
tj’s interval end time,TFi
reads interval values from Pi’s buffer; returns a potentially valid interval; an 
interval is potentially valid if T F i  > T  — e or T F i  =  0 A T S i  >max ( T F , : T F i  < 
T  — e, 0); the function blocks until such an interval is available; if the start time 
for this earliest interval appears in both a closed and open interval then the closed 
interval values are used
returns true if any value on the interval n  is within e of T ,  false otherwise; if n  
denotes an open interval, then only the value for STime(n) is used.
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the same interval. When the value of the local predicate changes from false to true, and 

then remains true for 2e, the application process will send a message to the monitor process 

containing (TSt-,0). Thus, the monitor knows that Ai has become true for P, and that its 

| initial global timestamp was TSi. When Ai changes from true to false at Ci(t) — TFi ■+■ e,
ri
j Pi sends (TSi, TFi) to Pq. If TFi = 0 , then we refer to the interval as “open”. Otherwise,

\ the interval is said to be “closed”.

The algorithm for Pq is given in figure A.2. By the algorithm for the application 

‘ processes, each Pi generates global timestamp intervals (TSi,TFi) for which C(T,i,A),

TSi — e < T  < T F i + e. By the clock axiom, if the global predicate is true for at least 2e, 

as read by any process clock, then a set, rsat, of intervals will be generated, one from each 

Pi, which contain timestamps that differ by no more than e. Let Esat contain the starting 

timestamps TSi from earliest set of intervals rsat, as indicated by the starting timestamps. 

Let Tjetect be the maximum of ESa*- Each timestamp in SSQt is part of some global times

tamp interval. Clearly, Tdetect must then be the starting time of the interval from which it 

was taken. Otherwise, there would be some smaller valued set of timestamps which differ 

by at most e, contradicting our definition of £ sat-

The monitor process then collects a set of global timestamp intervals, one from each P: . 

From this set, it selects one starting timestamp as a candidate for Tdetect• This value is kept 

in variable CTime.

The monitor compares each of the intervals, in turn, to CTime. If some process interval 

contains a timestamp within e of CTime, a counter is incremented. If the interval is closed 

and is too early to contain a timestamp within e of CTime, the interval is discarded. The 

monitor then waits until it receives a potentially valid interval to replace the one which was
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discarded. A potentially valid interval is one for which

• TF  > CTime — e, or

• T F  =  0 and T S  >max(TF : TF < CTime — e).

j Thus, an interval is potentially valid if it contains a timestamp within e of CTime or some
;

‘ later valued Tdetect candidate. This new interval value is then compared to CTime. If the

interval contains a timestamp within e of CTime, the counter is incremented.

If the current value of CTime is Tdetect i then the counter will have been incremented 

for each process and the predicate will be detected. If the counter was not incremented for 

each process, then CTime was not Tdetect; a new candidate will be chosen from the set of 

global timestamp intervals, and the process will continue.

Correctness

The following results are useful in establishing the correctness of our protocol. It shows 

that if a predicate remains globally true for at least 2e, as read by any Ct, i E SYS, then 

all processes will generate global timestamps within e of each other.

Lemma 18 If C(Ci(t),i,Ai), ti < t < t2, and C,-^) — Ci{t\) > 2e for every P i,i E SY S , 

then there exists Ti and Tj such that C{Ti,i,Ai), T I  — e < Ti < T I  + e, C (Tj,j,A j), 

T  J  — e < Tj < T J  + e and \T I ~ T J\ < e.

P roo f: Let C,(ii) — T I  — e and let Cj{t\) =  T J  — e. By our assumptions, Ai is true

from [TJ — e, T I  +  e] as read by Ct- and Aj is true over the interval [TJ — e, T J  +  e] as read 

by Cj. By the clock axiom,

T I -  2e < Cj(ti) < TI,

I
I
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a n d

T I  — e < T J  < T I  +  e.

I

Thus if a predicate remains true for at least 2e, there will be a set of global timestamps 

in which no two timestamps differ by more than e.

The next result shows that when process assert GLPs with timestamps that are within 

e of each other, then the asserted local properties were true at some real time instant.

Lemma 19 Suppose that C(Ti,i,Ai), T I  — e < Ti < T I  + e, and C(Tj,j,Aj), T J  — e < 

T j  < T J  e. Further suppose that \T I  — T J  \ < e .  Then there exists a real time instant t 

for which £(C',(t),i, d t) A C(Cj(t),j, Aj).

P r o o f :  If | T I  — T J  |<  e then T I  — e <  T J  <  T I  -F e. By our assumption then, Ai  was

true for Pt at Ct (£) =  T J .  By the clock axiom, T J  — e <  Cj[t) <  T J  4- e. Thus at real time 

instant t, Ai held at Pi and Aj held at Pj. I

The next two results are useful for establishing liveness. The first one shows that the 

value for CTime will continue to increase until CTime is greater than or equal to Tdetect-

Lemma 20 The value of CTime increases monotonically for every iteration of the while 

loop (figure A.2) until CTime > T d e t e c t -

PROOF: L e t  CTime j  b e  t h e  v a lu e  o f  CTime a t  i t e r a t io n  j  o f  t h e  w h i le  lo o p . I f  CTimej

is  le s s  t h a n  Tdetect> t h e n  i t  is  n o t  w ith in  e  o f  a  g lo b a l  t im e s ta m p  fro m  e v e r y  o th e r  p r o c e s s  

a n d  th e r e  m u s t  b e  s o m e  p r o c e s s  Pq w h ic h  p r o d u c e d  n o  in te r v a l t h a t  c o n ta in e d  a  t im e s t a m p  

w ith in  e o f  CTimej.

i
i
I
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Clearly, since GetValidlnterval blocks until a valid interval is available, each Ti always 

contains some set of interval values. For rq this interval must then be earlier or later than 

an interval which would overlap CTimej. Suppose it is earlier; then it must have ended 

prior to CTimej — e. Since each CTime value is aged prior to its use, the closed interval 

values for rq must have already been received. Thus, GetValidlnterval will be called. By 

definition, it will return an interval TwtT with 5Ttme(rOTjer) > CTime 4- e, since no valid 

interval from Pq with an earlier start time exists. Thus, STimeirooer) will be available for 

selection as the next value of CTime.

If the current value for rq is later than any interval which would overlap CTimej, then 

it can be selected as the next value of CTime.

In either case, an interval start time which is greater than CTimej will be available for 

selection as the next value of CTime. By the algorithm, some greater value will always be 

chosen and CTimej+i > CTimej for all CTimej < Tdetect- I

The final result shows that Tdetect will never lie between two successive values of CTime.

Lem ma 21 ->(CTimej-i < Tdetect < CTimej) for all j .

PRO O F: The proof is by induction. Let Ty =  {STime(r,) : 1 < i < TV — 1 }  b e  the

interval start times at the beginning of iteration j  of the while loop. To contains the 

starting time of the first global timestamp interval generated by each process. CTimeo is 

the minimum of this set. Let Pq be the process which generated CTimej. The only way a 

value from To can be modified is through a call to GetValidlnterval. The next interval in 

each process buffer, if there is one, will be the closed interval times for the current (open) 

interval. GetValidlnterval, by definition, will not change the start time of any interval t* 

for which STime(ri) >  CTime — e. Thus, Ti =  To, and only Pq can generate intervals
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for which CTimeo < STime(r) < CTimei- Suppose STime(r) =  Tdetect for one of these 

intervals; then STime{r) must overlap the remaining process intervals. However, each of 

these intervals has a starting time which is greater than STime(r). This contradicts our 

definition of Tdetect- Thus ->(CTimeo < Tdetect < CTime\)

Now suppose that - ‘{CTimej-i <  Tdetect < CTimej), 1 < j  < n. Then either 

CTimen = Tdetect or CTimen < Tdetect- If CTimen =  Tdetect then, as we will show later, 

Pq will assert A; the algorithm will terminate, and the assumption will hold. Suppose then 

that CTimen < Tdetect- We have already shown that CTimej+i > CTimej for all j  such 

that CTimej < Tdetect- Suppose then that CTimen < Tdetect < Ctimen+i- By definition, 

any interval t  for which STime(r) =  Tdetect must overlap intervals for all other processes. 

This includes the interval which has start time CTimen+i, which contradicts our definition 

of Tdetect- Thus, *(CTimen ^  T'detect ^  C t i l t ). I

Our obligation in showing that the protocol is correct is twofold. First, we must establish 

that if the monitor process declares that the global predicate was satisfied, then there was 

an instant in time t at which £(Ci(£),t, Ai) for every t €  SYS (safety). Then we must 

show that if there was a 2e interval over which the predicate was globally true, the monitor 

process will declare it (liveness).

Theorem  19 (Safety) If P q asserts A, then there exists some real time instant t for which 

£(Ci(t),i, A{) for every i € SYS.

PROOF: Clearly, by the algorithm, Pq will assert A  if and only if n o v e r la p s  is incre

mented on every iteration of the for loop (figure A.2.) The variable n o v e r la p s  can only be 

incremented for Pi if
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V]

• Overlap(ri, CTime) is true, or if

• ETime(ri) = 0 and STime(ri) < Ctime 4- e.

By definition, Overlapfc, CTime) is only true if rt- contains a timestamp within e of CTime. 

I If ETime{Ti) =  0, then rt- is an open interval. CTime is aged prior to its use. Thus any

1 timestamp which would close this open interval at a time which is less than CTime — e1

would have been received prior to this iteration. Thus, if B u f ferEmpty(i) is true, then 

C{CTime, i, A). If the buffer is not empty, then a call to GetValidlnterval was made. This 

call, by definition, returns the earliest interval succeeding the latest invalid interval. Thus, 

if STime(ri) < Ctime +  e then the returned interval has a timestamp within e of CTime.

The value of variable CTime only changes when noverlaps is set to zero. All tests to 

increment noverlaps must then use the same value for CTime.

Thus, noverlaps is incremented for each process, and Pq asserts A, only if there exists 

a set of global timestamps, one from each process, which differ by at most e. Finally, by 

lemma 19, there exists t such that £(C7t-(£),t, A), i G SYS. I

Theorem  20 (Liveness) I f there exists real time instants £i and £2 such that £^(£2) — 

Ct (£i) >  2e and £(C ,•(£),*, A,),£x <  £ <  £2 , for all i G SYS, then Pq mil assert A.

P r o o f:  If there exists real time instants £1  and £ 2  such that C jfo) — £7*(£i) >  2e and

£(£?,-(£), *,A,-),£i <  £ <  £2 , for all i G SYS, then, by lemma 18, there exists a set of global 

timestamps, one from each process, which differ by at most e. Clearly, there must then 

be some smallest valued set of such timestamps E3at- Let Tdetect be the maximum of Ssat- 

Each timestamp in Eso* is part of some global timestamp interval. Tdetect must then be 

the start time of the interval from which it was taken. Otherwise, there would be some
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smaller valued set of timestamps which differ by no more than e, which would contradict 

our definition of £ aat-

By lemma 20, CTime takes on monotonically increasing values at each iteration of the 

while loop. Thus, CTime will eventually equal Tdetect unless CTime7-_i <  Tdetect < Ctimej 

for successive iterations j  — I and j .  However, in lemma 21 we showed that this can never 

happen. Thus, eventually CTime — Tdetect-

Now suppose that for some iteration CTime =  Tdetect- We consider an interval discarded 

if it is not the current value for some r,- or is not in a process buffer. By the algorithm, on 

a given iteration j ,  an interval is discarded only if

• it is closed and its end time is less than CTimej — e, or

• if it is open, and the corresponding closed interval is either used as the current value 

for Ti or has an end time less than CTimej — e.

Since the buffers are FIFO and successive values of CTime are monotonically increasing, 

no interval which overlaps Tdetect has been discarded during any preceding iteration. Thus, 

either the closed or open interval values of any interval containing a timestamp in £ sat will 

be the current value for r,-, or it will be in a process buffer.

Now consider a single iteration of the for loop. The initial value of any r,- can be 

either open or closed. Suppose that it is open. If the buffer is empty, then noverlaps will 

be incremented. If the buffer is not empty, then GetValidlnterval will be called. Since 

no valid interval has been discarded, clearly GetValidlnterval will return the overlapping 

interval values, and noverlaps will be incremented.

»
iiI
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i

Suppose then that the initial value of r,- is closed. If it overlaps CTimej, then noverlaps 

will be incremented. If it does not overlap CTimej, then it must have ended earlier then 

CTime — e and GetValidlnterval will be called. Again, since no valid interval has been 

j discarded, GetValidlnterval will return the overlapping interval values, and noverlaps will

I be incremented.
i
i

j The variable noverlaps will then be incremented for each Pi when CTime is equal to

Tdetect• Since CTime must eventually equal Tdetect> the predicate will be detected. I
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