1,857 research outputs found

    On the Fattorini Criterion for Approximate Controllability and Stabilizability of Parabolic Systems

    Get PDF
    In this paper, we consider the well-known Fattorini's criterion for approximate controllability of infinite dimensional linear systems of type y′=Ay+Buy'=A y+Bu. We precise the result proved by H. O. Fattorini in \cite{Fattorini1966} for bounded input BB, in the case where BB can be unbounded or in the case of finite-dimensional controls. More precisely, we prove that if Fattorini's criterion is satisfied and if the set of geometric multiplicities of AA is bounded then approximate controllability can be achieved with finite dimensional controls. An important consequence of this result consists in using the Fattorini's criterion to obtain the feedback stabilizability of linear and nonlinear parabolic systems with feedback controls in a finite dimensional space. In particular, for systems described by partial differential equations, such a criterion reduces to a unique continuation theorem for a stationary system. We illustrate such a method by tackling some coupled Navier-Stokes type equations (MHD system and micropolar fluid system) and we sketch a systematic procedure relying on Fattorini's criterion for checking stabilizability of such nonlinear systems. In that case, the unique continuation theorems rely on local Carleman inequalities for stationary Stokes type systems

    Carleman estimates for the Zaremba Boundary Condition and Stabilization of Waves

    Full text link
    In this paper, we shall prove a Carleman estimate for the so-called Zaremba problem. Using some techniques of interpolation and spectral estimates, we deduce a result of stabilization for the wave equation by means of a linear Neumann feedback on the boundary. This extends previous results from the literature: indeed, our logarithmic decay result is obtained while the part where the feedback is applied contacts the boundary zone driven by an homogeneous Dirichlet condition. We also derive a controllability result for the heat equation with the Zaremba boundary condition.Comment: 37 pages, 3 figures. Final version to be published in Amer. J. Mat

    Finite dimensional backstepping controller design

    Full text link
    We introduce a finite dimensional version of backstepping controller design for stabilizing solutions of PDEs from boundary. Our controller uses only a finite number of Fourier modes of the state of solution, as opposed to the classical backstepping controller which uses all (infinitely many) modes. We apply our method to the reaction-diffusion equation, which serves only as a canonical example but the method is applicable also to other PDEs whose solutions can be decomposed into a slow finite-dimensional part and a fast tail, where the former dominates the evolution in large time. One of the main goals is to estimate the sufficient number of modes needed to stabilize the plant at a prescribed rate. In addition, we find the minimal number of modes that guarantee the stabilization at a certain (unprescribed) decay rate. Theoretical findings are supported with numerical solutions.Comment: 28 pages, 2 figure

    Challenges in Optimal Control of Nonlinear PDE-Systems

    Get PDF
    The workshop focussed on various aspects of optimal control problems for systems of nonlinear partial differential equations. In particular, discussions around keynote presentations in the areas of optimal control of nonlinear/non-smooth systems, optimal control of systems involving nonlocal operators, shape and topology optimization, feedback control and stabilization, sparse control, and associated numerical analysis as well as design and analysis of solution algorithms were promoted. Moreover, also aspects of control of fluid structure interaction problems as well as problems arising in the optimal control of quantum systems were considered
    • …
    corecore