2,347 research outputs found

    Overview of contextual tracking approaches in information fusion

    Get PDF
    Proceedings of: Geospatial InfoFusion III. 2-3 May 2013 Baltimore, Maryland, United States.Many information fusion solutions work well in the intended scenarios; but the applications, supporting data, and capabilities change over varying contexts. One example is weather data for electro-optical target trackers of which standards have evolved over decades. The operating conditions of: technology changes, sensor/target variations, and the contextual environment can inhibit performance if not included in the initial systems design. In this paper, we seek to define and categorize different types of contextual information. We describe five contextual information categories that support target tracking: (1) domain knowledge from a user to aid the information fusion process through selection, cueing, and analysis, (2) environment-to-hardware processing for sensor management, (3) known distribution of entities for situation/threat assessment, (4) historical traffic behavior for situation awareness patterns of life (POL), and (5) road information for target tracking and identification. Appropriate characterization and representation of contextual information is needed for future high-level information fusion systems design to take advantage of the large data content available for a priori knowledge target tracking algorithm construction, implementation, and application.Publicad

    Effective image enhancement and fast object detection for improved UAV applications

    Get PDF
    As an emerging field, unmanned aerial vehicles (UAVs) feature from interdisciplinary techniques in science, engineering and industrial sectors. The massive applications span from remote sensing, precision agriculture, marine inspection, coast guarding, environmental monitoring, natural resources monitoring, e.g. forest, land and river, and disaster assessment, to smart city, intelligent transportation and logistics and delivery. With the fast growing demands from a wide range of application sectors, there is always a bottleneck how to improve the efficiency and efficacy of UAV in operation. Often, smart decision making is needed from the captured footages in a real-time manner, yet this is severely affected by the poor image quality, ineffective object detection and recognition models, and lack of robust and light models for supporting the edge computing and real deployment. In this thesis, several innovative works have been focused and developed to tackle some of the above issues. First of all, considering the quality requirements of the UAV images, various approaches and models have been proposed, yet they focus on different aspects and produce inconsistent results. As such, the work in this thesis has been categorised into denoising and dehazing focused, followed by comprehensive evaluation in terms of both qualitative and quantitative assessment. These will provide valuable insights and useful guidance to help the end user and research community. For fast and effective object detection and recognition, deep learning based models, especially the YOLO series, are popularly used. However, taking the YOLOv7 as the baseline, the performance is very much affected by a few factors, such as the low quality of the UAV images and the high-level of demanding of resources, leading to unsatisfactory performance in accuracy and processing speed. As a result, three major improvements, namely transformer, CIoULoss and the GhostBottleneck module, are introduced in this work to improve feature extraction, decision making in detection and recognition, and running efficiency. Comprehensive experiments on both publicly available and self-collected datasets have validated the efficiency and efficacy of the proposed algorithm. In addition, to facilitate the real deployment such as edge computing scenarios, embedded implementation of the key algorithm modules is introduced. These include the creative implementation on the Xavier NX platform, in comparison to the standard workstation settings with the NVIDIA GPUs. As a result, it has demonstrated promising results with improved performance in reduced resources consumption of the CPU/GPU usage and enhanced frame rate of real-time processing to benefit the real-time deployment with the uncompromised edge computing. Through these innovative investigation and development, a better understanding has been established on key challenges associated with UAV and Simultaneous Localisation and Mapping (SLAM) based applications, and possible solutions are presented. Keywords: Unmanned aerial vehicles (UAV); Simultaneous Localisation and Mapping (SLAM); denoising; dehazing; object detection; object recognition; deep learning; YOLOv7; transformer; GhostBottleneck; scene matching; embedded implementation; Xavier NX; edge computing.As an emerging field, unmanned aerial vehicles (UAVs) feature from interdisciplinary techniques in science, engineering and industrial sectors. The massive applications span from remote sensing, precision agriculture, marine inspection, coast guarding, environmental monitoring, natural resources monitoring, e.g. forest, land and river, and disaster assessment, to smart city, intelligent transportation and logistics and delivery. With the fast growing demands from a wide range of application sectors, there is always a bottleneck how to improve the efficiency and efficacy of UAV in operation. Often, smart decision making is needed from the captured footages in a real-time manner, yet this is severely affected by the poor image quality, ineffective object detection and recognition models, and lack of robust and light models for supporting the edge computing and real deployment. In this thesis, several innovative works have been focused and developed to tackle some of the above issues. First of all, considering the quality requirements of the UAV images, various approaches and models have been proposed, yet they focus on different aspects and produce inconsistent results. As such, the work in this thesis has been categorised into denoising and dehazing focused, followed by comprehensive evaluation in terms of both qualitative and quantitative assessment. These will provide valuable insights and useful guidance to help the end user and research community. For fast and effective object detection and recognition, deep learning based models, especially the YOLO series, are popularly used. However, taking the YOLOv7 as the baseline, the performance is very much affected by a few factors, such as the low quality of the UAV images and the high-level of demanding of resources, leading to unsatisfactory performance in accuracy and processing speed. As a result, three major improvements, namely transformer, CIoULoss and the GhostBottleneck module, are introduced in this work to improve feature extraction, decision making in detection and recognition, and running efficiency. Comprehensive experiments on both publicly available and self-collected datasets have validated the efficiency and efficacy of the proposed algorithm. In addition, to facilitate the real deployment such as edge computing scenarios, embedded implementation of the key algorithm modules is introduced. These include the creative implementation on the Xavier NX platform, in comparison to the standard workstation settings with the NVIDIA GPUs. As a result, it has demonstrated promising results with improved performance in reduced resources consumption of the CPU/GPU usage and enhanced frame rate of real-time processing to benefit the real-time deployment with the uncompromised edge computing. Through these innovative investigation and development, a better understanding has been established on key challenges associated with UAV and Simultaneous Localisation and Mapping (SLAM) based applications, and possible solutions are presented. Keywords: Unmanned aerial vehicles (UAV); Simultaneous Localisation and Mapping (SLAM); denoising; dehazing; object detection; object recognition; deep learning; YOLOv7; transformer; GhostBottleneck; scene matching; embedded implementation; Xavier NX; edge computing

    Cislunar Trajectory Generation with Sun-Exclusion Zone Constraints Using a Genetic Algorithm and Direct Method Hybridization

    Get PDF
    Space missions to the Moon have received renewed interest in recent decades. Science missions continue to be sent to the Moon, and several space agencies have aspirations of establishing a human presence on the Moon. With the increased number of artificial objects in cislunar space, the problem of tracking these objects arises. Optical sensors are able to track these objects in deep space. However, optical sensors cannot track objects that are close to the Sun as viewed from the observer. This unobservable region is the Sun-exclusion zone (SEZ). This research attempts to create optimal Moon-Earth transfers which are completely in the SEZ using a genetic algorithm-direct method hybridization. Such transfers demonstrate how much the SEZ can limit optical sensors from maintaining custody of a satellite. Transfers from L1 and L2 Lyapunov orbits to geosynchronous orbit are generated while optimizing fuel and time of flight. Remaining inside of the SEZ is shown to significantly increase the fuel required to make the transfer

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    A Survey on Deep Learning Technique for Video Segmentation

    Full text link
    Video segmentation -- partitioning video frames into multiple segments or objects -- plays a critical role in a broad range of practical applications, from enhancing visual effects in movie, to understanding scenes in autonomous driving, to creating virtual background in video conferencing. Recently, with the renaissance of connectionism in computer vision, there has been an influx of deep learning based approaches for video segmentation that have delivered compelling performance. In this survey, we comprehensively review two basic lines of research -- generic object segmentation (of unknown categories) in videos, and video semantic segmentation -- by introducing their respective task settings, background concepts, perceived need, development history, and main challenges. We also offer a detailed overview of representative literature on both methods and datasets. We further benchmark the reviewed methods on several well-known datasets. Finally, we point out open issues in this field, and suggest opportunities for further research. We also provide a public website to continuously track developments in this fast advancing field: https://github.com/tfzhou/VS-Survey.Comment: Accepted by TPAMI. Website: https://github.com/tfzhou/VS-Surve

    Virtual and Augmented Reality Techniques for Minimally Invasive Cardiac Interventions: Concept, Design, Evaluation and Pre-clinical Implementation

    Get PDF
    While less invasive techniques have been employed for some procedures, most intracardiac interventions are still performed under cardiopulmonary bypass, on the drained, arrested heart. The progress toward off-pump intracardiac interventions has been hampered by the lack of adequate visualization inside the beating heart. This thesis describes the development, assessment, and pre-clinical implementation of a mixed reality environment that integrates pre-operative imaging and modeling with surgical tracking technologies and real-time ultrasound imaging. The intra-operative echo images are augmented with pre-operative representations of the cardiac anatomy and virtual models of the delivery instruments tracked in real time using magnetic tracking technologies. As a result, the otherwise context-less images can now be interpreted within the anatomical context provided by the anatomical models. The virtual models assist the user with the tool-to-target navigation, while real-time ultrasound ensures accurate positioning of the tool on target, providing the surgeon with sufficient information to ``see\u27\u27 and manipulate instruments in absence of direct vision. Several pre-clinical acute evaluation studies have been conducted in vivo on swine models to assess the feasibility of the proposed environment in a clinical context. Following direct access inside the beating heart using the UCI, the proposed mixed reality environment was used to provide the necessary visualization and navigation to position a prosthetic mitral valve on the the native annulus, or to place a repair patch on a created septal defect in vivo in porcine models. Following further development and seamless integration into the clinical workflow, we hope that the proposed mixed reality guidance environment may become a significant milestone toward enabling minimally invasive therapy on the beating heart

    Utilising the grid for augmented reality

    Get PDF

    Exploitation of Geographic Information Systems for Vehicular Destination Prediction

    Get PDF
    Much of the recent successes in the Iraqi theater have been achieved with the aid of technology so advanced that celebrated journalist Bob Woodward recently compared it to the Manhattan Project of WWII. Intelligence, Surveillance, and Reconnaissance (ISR) platforms have emerged as the rising star of Air Force operational capabilities as they are enablers in the quest to track and disrupt terrorist and insurgent forces. This thesis argues that ISR systems have been severely under-exploited. The proposals herein seek to improve the machine-human interface of current ISR systems such that a predictive battle-space awareness may be achieved, leading to shorter kill-chains and better utilization of high demand assets. This thesis shows that, if a vehicle is being tracked by an ISR platform, it is possible to predict where it might go within a Time Horizon. This predictive knowledge is represented graphically to enable quick decisioning. This is accomplished by using Geo-Spatial Information Systems (GIS) obtained from municipal, commercial, or other ISR sources (e.g., hyperspectral) to model an urban grid. It then employs graph-theoretic search algorithms that prune the future state-space of that vehicle\u27s environment, resulting in an envelope that constricts around all possible destinations. This thesis demonstrates an 81 % success rate for predictions carried out during experimentation. It further demonstrates a 97 % improvement over predictions made solely with models based on vehicular motion. This thesis reveals that the predictive envelopes show immense promise in improving ISR asset management, offering more intelligent interdiction of targets, and enabling ground sensor-cueing. Moreover, these predictive capabilities allow an operator to assign assets to make precise perturbations on the battle-space for true event-shaping. Finally, this thesis shows that the proposed methodologies are easily and cost-effectively deployed over existing Air Force architectures using the Software as a Service business model
    • …
    corecore