152 research outputs found

    Complexity Analysis of MMSE Detector Architectures for MIMO OFDM Systems

    Get PDF
    In this paper, a field programmable gate array (FPGA) implementation of a linear minimum mean square error (LMMSE) detector is considered for MIMO-OFDM systems. Two square root free algorithms based on QR decomposition (QRD) are introduced for the implementation of LMMSE detector. Both algorithms are based on QRD via Givens rotations, namely coordinate rotation digital computer (CORDIC) and squared Givens rotation (SGR) algorithms. Linear and triangular shaped array architectures are considered to exploit the parallelism in the computations. An FPGA hardware implementation is presented and computational complexity of each implementation is evaluated and compared.ElekrobitNokiaTexas InstrumentsNational Technology Agency of FinlandTeke

    Improving Fixed-Point Implementation of QR Decomposition by Rounding-to-Nearest

    Get PDF
    QR decomposition is a key operation in many current communication systems. This paper shows how to reduce the area of a fixed-point QR decomposition implementation based on Givens rotations by using a new number representation system. This new representation allows performing round-tonearest at the same cost of truncation. Consequently, the rounding errors of the results are halved, which allows it to reduce the word-length by one bit. This reduction positively impacts on the area, delay and power consumption of the design.Ministry of Education and Science of Spain and Junta of Andalucía under contracts TIN2013-42253-P and TIC-1692, respectively, and Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Parallel QR decomposition in LTE-A systems

    Full text link
    The QR Decomposition (QRD) of communication channel matrices is a fundamental prerequisite to several detection schemes in Multiple-Input Multiple-Output (MIMO) communication systems. Herein, the main feature of the QRD is to transform the non-causal system into a causal system, where consequently efficient detection algorithms based on the Successive Interference Cancellation (SIC) or Sphere Decoder (SD) become possible. Also, QRD can be used as a light but efficient antenna selection scheme. In this paper, we address the study of the QRD methods and compare their efficiency in terms of computational complexity and error rate performance. Moreover, a particular attention is paid to the parallelism of the QRD algorithms since it reduces the latency of the matrix factorization.Comment: The eleventh IEEE International Workshop on Signal Processing Advances for Wireless Communications, 5 pages, 4 figures, 4 algorithms, 1 tabl

    A CORDIC based QR Decomposition Technique for MIMO Detection

    Get PDF
    CORDIC based improved real and complex QR Decomposition (QRD) for channel pre-processing operations in (Multiple-Input Multiple-Output) MIMO detectors are presented in this paper. The proposed design utilizes pipelining and parallel processing techniques and reduces the latency and hardware complexity of the module respectively. Computational complexity analysis report shows the superiority of our module by 16% compared to literature. The implementation results reveal that the proposed QRD takes shorter latency compared to literature. The power consumption of 2x2 real channel matrix and 2x2 complex channel matrix was found to be 12mW and 44mW respectively on the state-of-the-art Xilinx Virtex 5 FPGA

    Polynomial matrix QR decomposition and iterative decoding of frequency selective MIMO channels

    Get PDF
    For a frequency flat multi-input multi-output (MIMO) system the QR decomposition can be applied to reduce the MIMO channel equalization problem to a set of decision feedback based single channel problems. Using a novel technique for polynomial matrix QR decomposition (PMQRD) based on Givens rotations, we show the PMQRD can do likewise for a frequency selective MIMO system. Two types of transmitter design, based on Horizontal and Vertical Bell Laboratories Layered Space Time (H-BLAST, V-BLAST) encoding have been implemented. Receiver processing utilizes Turbo equalization to exploit multipath delay spread and to facilitate multi-stream data feedback. Average bit error rate simulations show a considerable improvement over a benchmark orthogonal frequency division multiplexing (OFDM) technique. The proposed scheme thereby has potential applicability in MIMO communication applications, particularly for a TDMA system with frequency selective channels

    Hardware implementation of multiple-input multiple-output transceiver for wireless communication

    Get PDF
    This dissertation proposes an efficient hardware implementation scheme for iterative multi-input multi-output orthogonal frequency-division multiplexing (MIMO-OFDM) transceiver. The transmitter incorporates linear precoder designed with instantaneous channel state information (CSI). The receiver implements MMSE-IC (minimum mean square error interference cancelation) detector, channel estimator, low-density parity-check (LDPC) decoder and other supporting modules. The proposed implementation uses QR decomposition (QRD) of complex-valued matrices with four co-ordinate rotation digital computer (CORDIC) cores and back substitution to achieve the best tradeoff between resource and throughput. The MIMO system is used in field test and the results indicate that the instantaneous CSI varies very fast in practices and the performance of linear precoder designed with instantaneous CSI is limited. Instead, statistic CSI had to be used. This dissertation also proposes a higher-rank principle Kronecker model (PKM). That exploits the statistic CSI to simulate the fading channels. The PKM is constructed by decomposing the channel correlation matrices with the higher-order singular value decomposition (HOSVD) method. The proposed PKM-HOSVD model is validated by extensive field experiments conducted for 4-by-4 MIMO systems in both indoor and outdoor environments. The results confirm that the statistic CSI varies slowly and the PKM-HOSVD will be helpful in the design of linear precoders. --Abstract, page iv

    High-Throughput FPGA Implementation of QR Decomposition

    Get PDF
    Munoz, S.D.; Hormigo, J. "High-Throughput FPGA Implementation of QR Decomposition" IEEE Transactions on in Circuits and Systems II: Express Briefs,vol.62, no.9, pp.861-865, Sept. 2015 doi: 10.1109/TCSII.2015.2435753This brief presents a hardware design to achieve high-throughput QR decomposition, using Givens Rotation Method. It utilizes a new two-dimensional systolic array architecture with pipelined processing elements, which are based on the COordinate Rotation DIgital Computer (CORDIC) algorithm. CORDIC computes vector rotations through shifts and additions. This approach allows a continuous computation of QR factorizations with simple hardware. A fixed-point FPGA architecture for 4 x 4 matrices has been optimized by balancing the number of CORDIC iterations with the final error. As a result, compared to other previous proposals for FPGA, our design achieves at least 50% more throughput, and much less resource utilization.Ministry of Education and Science of Spain and Junta of Andalucia under contracts TIN2013-42253-P and P07-TIC-02630, respectively
    • …
    corecore