103,470 research outputs found

    Differential entropy and time

    Full text link
    We give a detailed analysis of the Gibbs-type entropy notion and its dynamical behavior in case of time-dependent continuous probability distributions of varied origins: related to classical and quantum systems. The purpose-dependent usage of conditional Kullback-Leibler and Gibbs (Shannon) entropies is explained in case of non-equilibrium Smoluchowski processes. A very different temporal behavior of Gibbs and Kullback entropies is confronted. A specific conceptual niche is addressed, where quantum von Neumann, classical Kullback-Leibler and Gibbs entropies can be consistently introduced as information measures for the same physical system. If the dynamics of probability densities is driven by the Schr\"{o}dinger picture wave-packet evolution, Gibbs-type and related Fisher information functionals appear to quantify nontrivial power transfer processes in the mean. This observation is found to extend to classical dissipative processes and supports the view that the Shannon entropy dynamics provides an insight into physically relevant non-equilibrium phenomena, which are inaccessible in terms of the Kullback-Leibler entropy and typically ignored in the literature.Comment: Final, unabridged version; http://www.mdpi.org/entropy/ Dedicated to Professor Rafael Sorkin on his 60th birthda

    Macroscopic thermodynamics of equilibrium characterized by power-law canonical distributions

    Full text link
    Macroscopic thermodynamics of equilibrium is constructed for systems obeying power-law canonical distributions. With this, the connection between macroscopic thermodynamics and microscopic statistical thermodynamics is generalized. This is complementary to the Gibbs theorem for the celebrated exponential canonical distributions of systems in contact with a heat bath. Thereby, a thermodynamic basis is provided for power-law phenomena ubiquitous in nature.Comment: 12 page

    Free-volume kinetic models of granular matter

    Get PDF
    We show that the main dynamical features of granular media can be understood by means of simple models of fragile-glass forming liquid provided that gravity alone is taken into account. In such lattice-gas models of cohesionless and frictionless particles, the compaction and segregation phenomena appear as purely non-equilibrium effects unrelated to the Boltzmann-Gibbs measure which in this case is trivial. They provide a natural framework in which slow relaxation phenomena in granular and glassy systems can be explained in terms of a common microscopic mechanism given by a free-volume kinetic constraint.Comment: 4 pages, 6 figure
    corecore