684 research outputs found

    Gesture Based Control of Semi-Autonomous Vehicles

    Get PDF
    The objective of this investigation is to explore the use of hand gestures to control semi-autonomous vehicles, such as quadcopters, using realistic, physics based simulations. This involves identifying natural gestures to control basic functions of a vehicle, such as maneuvering and onboard equipment operation, and building simulations using the Unity game engine to investigate preferred use of those gestures. In addition to creating a realistic operating experience, human factors associated with limitations on physical hand motion and information management are also considered in the simulation development process. Testing with external participants using a recreational quadcopter simulation built in Unity was conducted to assess the suitability of the simulation and preferences between a joystick approach and the gesture-based approach. Initial feedback indicated that the simulation represented the actual vehicle performance well and that the joystick is preferred over the gesture-based approach. Improvements in the gesture-based control are documented as additional features in the simulation, such as basic maneuver training and additional vehicle positioning information, are added to assist the user to better learn the gesture-based interface and implementation of active control concepts to interpret and apply vehicle forces and torques. Tests were also conducted with an actual ground vehicle to investigate if knowledge and skill from the simulated environment transfers to a real-life scenario. To assess this, an immersive virtual reality (VR) simulation was built in Unity as a training environment to learn how to control a remote control car using gestures. This was then followed by a control of the actual ground vehicle. Observations and participant feedback indicated that range of hand movement and hand positions transferred well to the actual demonstration. This illustrated that the VR simulation environment provides a suitable learning experience, and an environment from which to assess human performance; thus, also validating the observations from earlier tests. Overall results indicate that the gesture-based approach holds promise given the emergence of new technology, but additional work needs to be pursued. This includes algorithms to process gesture data to provide more stable and precise vehicle commands and training environments to familiarize users with this new interface concept

    Traditional vs Gesture Based UAV Control

    Get PDF
    Abstract. The purpose of this investigation was to assess user preferences for controlling an autonomous system. A comparison using a virtual environment (VE) was made between a joystick based, game controller and a gesture-based system using the leap motion controller. Command functions included basic flight maneuvers and switching between the operator and drone view. Comparisons were made between the control approaches using a representative quadcopter drone. The VE was designed to minimize the cognitive loading and focus on the flight control. It is a physics-based flight simulator built in Unity3D. Participants first spend time familiarizing themselves with the basic controls and vehicle response to command inputs. They then engaged in search missions. Data was gathered on time spent performing tasks, and post test interviews were conducted to uncover user preferences. Results indicate that while th

    Exploring Alternative Control Modalities for Unmanned Aerial Vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs), commonly known as drones, are defined by the International Civil Aviation Organization (ICAO) as an aircraft without a human pilot on board. They are currently utilized primarily in the defense and security sectors but are moving towards the general market in surprisingly powerful and inexpensive forms. While drones are presently restricted to non-commercial recreational use in the USA, it is expected that they will soon be widely adopted for both commercial and consumer use. Potentially, UAVs can revolutionize various business sectors including private security, agricultural practices, product transport and maybe even aerial advertising. Business Insider foresees that 12% of the expected $98 billion cumulative global spending on aerial drones through the following decade will be for business purposes.[28] At the moment, most drones are controlled by some sort of classic joystick or multitouch remote controller. While drone manufactures have improved the overall controllability of their products, most drones shipped today are still quite challenging for inexperienced users to pilot. In order to help mitigate the controllability challenges and flatten the learning curve, gesture controls can be utilized to improve piloting UAVs. The purpose of this study was to develop and evaluate an improved and more intuitive method of flying UAVs by supporting the use of hand gestures, and other non-traditional control modalities. The goal was to employ and test an end-to-end UAV system that provides an easy-to-use control interface for novice drone users. The expectation was that by implementing gesture-based navigation, the novice user will have an overall enjoyable and safe experience quickly learning how to navigate a drone with ease, and avoid losing or damaging the vehicle while they are on the initial learning curve. During the course of this study we have learned that while this approach does offer lots of promise, there are a number of technical challenges that make this problem much more challenging than anticipated. This thesis details our approach to the problem, analyzes the user data we collected, and summarizes the lessons learned

    An Exploration Of Unmanned Aerial Vehicle Direct Manipulation Through 3d Spatial Interaction

    Get PDF
    We present an exploration that surveys the strengths and weaknesses of various 3D spatial interaction techniques, in the context of directly manipulating an Unmanned Aerial Vehicle (UAV). Particularly, a study of touch- and device- free interfaces in this domain is provided. 3D spatial interaction can be achieved using hand-held motion control devices such as the Nintendo Wiimote, but computer vision systems offer a different and perhaps more natural method. In general, 3D user interfaces (3DUI) enable a user to interact with a system on a more robust and potentially more meaningful scale. We discuss the design and development of various 3D interaction techniques using commercially available computer vision systems, and provide an exploration of the effects that these techniques have on an overall user experience in the UAV domain. Specific qualities of the user experience are targeted, including the perceived intuition, ease of use, comfort, and others. We present a complete user study for upper-body gestures, and preliminary reactions towards 3DUI using hand-and-finger gestures are also discussed. The results provide evidence that supports the use of 3DUI in this domain, as well as the use of certain styles of techniques over others

    Gesture-Controlled Quadcopter System

    Get PDF
    According to the statistic given by the National Law Enforcement Officers Memorial Fund, 514 police officers casualties have been attributed to gunfire in the last decade(2008-2017). It is the leading cause of death among police officers and accounts for more than a third of the total 1511 police casualties in the past decade. In this project, we want to provide a safer solution to police officers that are surveying a building for one or multiple potential dangerous personnel. We are working to design and build a gesture-controlled quadcopter that can scout ahead of the officer and provide information about the area so the officers can avoid a dangerous situation. This gestured-controlled quadcopter system will be compact and lightweight, offering greater mobility and ease-of-use over joystick-based systems. We hope that our system’s simple, intuitive design will allow a user to learn how to pilot it in less than an hour. These goals are targeted to create a system that is useful for any police officer, regardless of their technical skills
    • …
    corecore