198 research outputs found

    Building Brains for Bodies

    Get PDF
    We describe a project to capitalize on newly available levels of computational resources in order to understand human cognition. We will build an integrated physical system including vision, sound input and output, and dextrous manipulation, all controlled by a continuously operating large scale parallel MIMD computer. The resulting system will learn to "think'' by building on its bodily experiences to accomplish progressively more abstract tasks. Past experience suggests that in attempting to build such an integrated system we will have to fundamentally change the way artificial intelligence, cognitive science, linguistics, and philosophy think about the organization of intelligence. We expect to be able to better reconcile the theories that will be developed with current work in neuroscience

    Visual Attention Mechanism for a Social Robot

    Get PDF
    This paper describes a visual perception system for a social robot. The central part of this system is an artificial attention mechanism that discriminates the most relevant information from all the visual information perceived by the robot. It is composed by three stages. At the preattentive stage, the concept of saliency is implemented based on ‘proto-objects’ [37]. From these objects, different saliency maps are generated. Then, the semiattentive stage identifies and tracks significant items according to the tasks to accomplish. This tracking process allows to implement the ‘inhibition of return’. Finally, the attentive stage fixes the field of attention to the most relevant object depending on the behaviours to carry out. Three behaviours have been implemented and tested which allow the robot to detect visual landmarks in an initially unknown environment, and to recognize and capture the upper-body motion of people interested in interact with it

    Social interaction in collaborative engineering environments

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 1999.Includes bibliographical references (leaves 128-131).by Joon Suk Hor.M.Eng

    Survey: Robot Programming by Demonstration

    Get PDF
    Robot PbD started about 30 years ago, growing importantly during the past decade. The rationale for moving from purely preprogrammed robots to very flexible user-based interfaces for training the robot to perform a task is three-fold. First and foremost, PbD, also referred to as {\em imitation learning} is a powerful mechanism for reducing the complexity of search spaces for learning. When observing either good or bad examples, one can reduce the search for a possible solution, by either starting the search from the observed good solution (local optima), or conversely, by eliminating from the search space what is known as a bad solution. Imitation learning is, thus, a powerful tool for enhancing and accelerating learning in both animals and artifacts. Second, imitation learning offers an implicit means of training a machine, such that explicit and tedious programming of a task by a human user can be minimized or eliminated (Figure \ref{fig:what-how}). Imitation learning is thus a ``natural'' means of interacting with a machine that would be accessible to lay people. And third, studying and modeling the coupling of perception and action, which is at the core of imitation learning, helps us to understand the mechanisms by which the self-organization of perception and action could arise during development. The reciprocal interaction of perception and action could explain how competence in motor control can be grounded in rich structure of perceptual variables, and vice versa, how the processes of perception can develop as means to create successful actions. PbD promises were thus multiple. On the one hand, one hoped that it would make the learning faster, in contrast to tedious reinforcement learning methods or trials-and-error learning. On the other hand, one expected that the methods, being user-friendly, would enhance the application of robots in human daily environments. Recent progresses in the field, which we review in this chapter, show that the field has make a leap forward the past decade toward these goals and that these promises may be fulfilled very soon

    A Posture Sequence Learning System for an Anthropomorphic Robotic Hand

    Get PDF
    The paper presents a cognitive architecture for posture learning of an anthropomorphic robotic hand. Our approach is aimed to allow the robotic system to perform complex perceptual operations, to interact with a human user and to integrate the perceptions by a cognitive representation of the scene and the observed actions. The anthropomorphic robotic hand imitates the gestures acquired by the vision system in order to learn meaningful movements, to build its knowledge by different conceptual spaces and to perform complex interaction with the human operator

    Communicative humanoids : a computational model of psychosocial dialogue skills

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1996.Includes bibliographical references (p. [223]-238).Kristinn Rúnar Thórisson.Ph.D

    Towards a framework for socially interactive robots

    Get PDF
    250 p.En las últimas décadas, la investigación en el campo de la robótica social ha crecido considerablemente. El desarrollo de diferentes tipos de robots y sus roles dentro de la sociedad se están expandiendo poco a poco. Los robots dotados de habilidades sociales pretenden ser utilizados para diferentes aplicaciones; por ejemplo, como profesores interactivos y asistentes educativos, para apoyar el manejo de la diabetes en niños, para ayudar a personas mayores con necesidades especiales, como actores interactivos en el teatro o incluso como asistentes en hoteles y centros comerciales.El equipo de investigación RSAIT ha estado trabajando en varias áreas de la robótica, en particular,en arquitecturas de control, exploración y navegación de robots, aprendizaje automático y visión por computador. El trabajo presentado en este trabajo de investigación tiene como objetivo añadir una nueva capa al desarrollo anterior, la capa de interacción humano-robot que se centra en las capacidades sociales que un robot debe mostrar al interactuar con personas, como expresar y percibir emociones, mostrar un alto nivel de diálogo, aprender modelos de otros agentes, establecer y mantener relaciones sociales, usar medios naturales de comunicación (mirada, gestos, etc.),mostrar personalidad y carácter distintivos y aprender competencias sociales.En esta tesis doctoral, tratamos de aportar nuestro grano de arena a las preguntas básicas que surgen cuando pensamos en robots sociales: (1) ¿Cómo nos comunicamos (u operamos) los humanos con los robots sociales?; y (2) ¿Cómo actúan los robots sociales con nosotros? En esa línea, el trabajo se ha desarrollado en dos fases: en la primera, nos hemos centrado en explorar desde un punto de vista práctico varias formas que los humanos utilizan para comunicarse con los robots de una maneranatural. En la segunda además, hemos investigado cómo los robots sociales deben actuar con el usuario.Con respecto a la primera fase, hemos desarrollado tres interfaces de usuario naturales que pretenden hacer que la interacción con los robots sociales sea más natural. Para probar tales interfaces se han desarrollado dos aplicaciones de diferente uso: robots guía y un sistema de controlde robot humanoides con fines de entretenimiento. Trabajar en esas aplicaciones nos ha permitido dotar a nuestros robots con algunas habilidades básicas, como la navegación, la comunicación entre robots y el reconocimiento de voz y las capacidades de comprensión.Por otro lado, en la segunda fase nos hemos centrado en la identificación y el desarrollo de los módulos básicos de comportamiento que este tipo de robots necesitan para ser socialmente creíbles y confiables mientras actúan como agentes sociales. Se ha desarrollado una arquitectura(framework) para robots socialmente interactivos que permite a los robots expresar diferentes tipos de emociones y mostrar un lenguaje corporal natural similar al humano según la tarea a realizar y lascondiciones ambientales.La validación de los diferentes estados de desarrollo de nuestros robots sociales se ha realizado mediante representaciones públicas. La exposición de nuestros robots al público en esas actuaciones se ha convertido en una herramienta esencial para medir cualitativamente la aceptación social de los prototipos que estamos desarrollando. De la misma manera que los robots necesitan un cuerpo físico para interactuar con el entorno y convertirse en inteligentes, los robots sociales necesitan participar socialmente en tareas reales para las que han sido desarrollados, para así poder mejorar su sociabilida
    • …
    corecore