
Applied Bionics and Biomechanics 9 (2012) 409–425
DOI 10.3233/ABB-2011-0030
IOS Press

409

Visual attention mechanism for a social robot

Juan Pedro Banderaa,∗, R. Marfila, Antonio Jesús Palominoa, Ricardo Vázquez-Martı́nb
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Abstract. This paper describes a visual perception system for a social robot. The central part of this system is an artificial
attention mechanism that discriminates the most relevant information from all the visual information perceived by the robot. It
is composed by three stages. At the preattentive stage, the concept of saliency is implemented based on ‘proto-objects’ [37].
From these objects, different saliency maps are generated. Then, the semiattentive stage identifies and tracks significant items
according to the tasks to accomplish. This tracking process allows to implement the ‘inhibition of return’. Finally, the attentive
stage fixes the field of attention to the most relevant object depending on the behaviours to carry out. Three behaviours have been
implemented and tested which allow the robot to detect visual landmarks in an initially unknown environment, and to recognize
and capture the upper-body motion of people interested in interact with it.
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1. Introduction

People exhibit a robust ability to extract the rele-
vant information from perceived scenarios. This ability
allows people to execute many different, complex
behaviours such as to navigate in a huge variety of ini-
tially unknown environments or to interact with other
people and appropriately interpret their behaviours.
Developing computational perception systems that
emulate this ability becomes a critical step in design-
ing robots that are able to cooperate with people as
capable partners, that are able to learn from natural
human instruction, and that are intuitive and engaging
for people to interact with, but that are also able to nav-
igate in initially unknown environments or to grasp an
object. In order to accomplish these tasks it is typically
assumed that the perception system of a robot should
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imitate the ability of natural vision systems to select the
most salient information from the broad visual input.
However, this selective system is commonly developed
as a task-independent process. Therefore, the focus of
attention must be sequentially moved to every detected
relevant region in order to extract from the scene the
information that the robot needs to satisfy a specific
task. The complexity of this gathering process makes
difficult for the robot to solve a certain task while it is
interacting with people. This issue should be addressed
as some of the new applications for robots require them
to cooperate with people as socially interactive part-
ners [19], needing a fast response of the robot to a
huge variety of different stimulus.

This proposal describes a visual perception system
for a social robot. A social robot is an autonomous
agent which is not only able to navigate and solve
other common tasks, but also it is able to communi-
cate and interact with people and other social robots.
This implies that the social robot must simultaneously
perceive a great variety of natural social cues from
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visual and auditory channels, and must reply to these
stimulus at human rates. Specifically, the proposed per-
ception system will be used to extract, from the visual
input data, the information that the robot will need to
accomplish both navigation and human-robot interac-
tion behaviours. Besides it is interesting, to achieve an
intuitive interaction with people, that the robot is able
to perceive the real world in a similar way that people
do. Thus, the socially interactive robot will interpret the
same phenomena that people observe [17]. To accom-
plish both requirements, the central element of our
proposal is an object-based visual attention mecha-
nism which will be able to discriminate, from all the
low-level information provided by the robot’s cameras,
the most relevant data useful to fulfill the currently
executed tasks.

1.1. Related work

In biological vision systems, the attention mech-
anism is the responsible of selecting the relevant
information from the sensed field of view so that the
complete scene can be analyzed using a sequence of
rapid eye saccades [2]. This attention behaviour has
been imitated by artificial vision systems in order to
optimize computational resources. Probably one of
the most influential theoretical models of visual atten-
tion is the spotlight metaphor [18], that has inspired
many concrete computational models [24, 23, 16].
These approaches are related with the feature integra-
tion theory, a biologically plausible theory proposed to
explain human visual search strategies [45]. According
to this model, these attention mechanisms are orga-
nized into two main stages. First, in a preattentive
task-independent stage, a number of parallel channels
compute image features. The extracted features are
integrated into a single saliency map which codes the
saliency of each image region. The most salient regions
are selected from this map. Second, in an attentive task-
dependent stage, the spotlight is moved to each salient
region to analyze it in a sequential process. Analyzed
regions are included in an inhibition map to avoid the
spotlight moving to an already visited region. Thus,
while the second stage must be redefined for differ-
ent systems, the preattentive stage is general for any
application. Although these models have good perfor-
mance in static environments, they cannot in principle
handle dynamic environments due to their impossibil-
ity to take into account the motion and the occlusions of
the objects in the scene. In order to solve this problem,

[27] propose an attention mechanism which incorpo-
rates depth and motion as features for the computation
of saliency.

The previously described methods deploy attention
at the level of space locations (space-based models of
visual attention). The models of space-based attention
scan the scene by shifting attention from one location
to the next to limit the processing to a variable size
of space in the visual field. Therefore, they have some
intrinsic disadvantages. In a normal scene, objects may
overlap or share some common properties. Then, atten-
tion may need to work in several discontinuous spatial
regions at the same time. Only if different visual fea-
tures, which constitute the same object, come from
the same region of space, an attention shift will not
be required [42]. On the contrary, other approaches
deploy attention at the level of objects instead to a
generic region of space. Object-based models of visual
attention provide a more efficient visual search than
space-based attention. Besides, it is less likely to select
an empty location. In the last few years, these models
of visual attention have received an increasing interest
in computational neuroscience and in computer vision.
These models reflect the fact that the perception abili-
ties must be optimized to interact with objects and not
just with disembodied spatial locations. Thus, visual
systems that follow this approach will segment com-
plex scenes into objects which can be subsequently
used for recognition and action. However, recent phsy-
cological research shows that, in natural vision, the
preattentive process divides a visual input into raw or
primitive objects [37] instead of well-defined objects.
Some authors use the notion of proto-objects [38] to
refer to these primitive objects, that are defined as units
of visual information that can be bound into a coherent
and stable object.

Nevertheless, space-based and object-based
approaches are not mutually exclusive, and several
researchers have proposed attentional models that
integrate both approaches. Thus, [42] combine
object-based and feature-based theories in the model
of visual attention. In its current form, this model is
able to replicate human viewing behaviour. However,
it needs input images to be manually segmented.
That is, it uses information that is not available in
a preattentive stage, before objects are recognized
[38]. Another approach following the space- and
object-based integration is the one proposed by [11],
which employs a Bayesian model to describe the
visual attention mechanism.
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In the last years, efforts in artificial attention field are
oriented to enhance the attention capabilities of the dif-
ferent models. For example, [3] describe a framework
to integrate visual attention with a spatial memory
derived from a 3D simulator. This model allows to
connect the perception system with a virtual reality
environment. Other approaches choose to expand the
visual field of their systems. In this way, a spherical
visual attention model based on a omnidirectional sen-
sor is proposed in [12]. Finally, some models build their
saliency maps taking into account not only visual infor-
mation but also using another senses (e.g. [40] integrate
visual and acoustic cues to improve the exploration
behaviour of a humanoid robot).

1.2. Overview of the proposed perception system

This paper presents an object-based model of visual
attention for a social robot which moves in a dynamic
scenario. Its main contribution is the integration into
the same system of different components related to
visual attention. These components allow the sys-
tem to achieve bottom-up (data-driven) and top-down
(model-driven) processing. The bottom-up component
determines and selects salient ‘proto-objects’ by inte-
grating different features into the same hierarchical
structure. These ‘proto-objects’ [38, 39] are image
entities which do not necessarily correspond with a
recognizable object, although they posses some of the
characteristics of objects. Thus, it can be considered
that they are the result of the initial segmentation of
the image input into candidate objects or segmented
perceptual units [38]. On the other hand, the top-down
component moves the focus of attention to a certain

object depending on its saliency value and on the task
to acomplish. Finally, in a dynamic scenario, the loca-
tions and shapes of the objects may change due to
motion and minor illumination differences between
consecutive acquired images. In order to deal with
these scenes, a tracking approach for ‘inhibition of
return’ is employed [32]. The ‘proto-objects’ selec-
tion and the tracking process will be conducted using
the same hierarchical structure: the Bounded Irregular
Pyramid (BIP) [28, 31].

Figure 1 shows an overview of the proposed atten-
tion mechanism. Following our previous works [32],
it is composed by three main modules. The first one
implements a concept of saliency based on ‘proto-
objects’. The selection of these ‘proto-objects’ is
conducted from an image segmentation process which
results are closely related to the ones obtained by
humans, as studies using the Berkeley Segmentation
Dataset and Benchmark (BSDB) have demonstrated
[33, 30]. From these objects, different saliency maps
are generated. These maps are the input of the semi-
attentive stage. This semiattentive stage deals with
dynamic scenarios and considers the current task in
the selection of the ‘proto-objects’. Thus, the selec-
tion of a set of sensed data as focus of attention will
not only depend on its saliency value but also on the
tasks to reach. This semiattentive stage also imple-
ments the ‘inhibition of return’, i.e. the process which
avoids attention being immediately directed to a previ-
ously attended ‘proto-object’. This local inhibition is
achieved by tracking the set of relevant ‘proto-objects’.
The attentive stage fixes the field of attention to the
most salient ‘proto-object’ depending on the current
behaviour.

Fig. 1. Overview of the proposed attention mechanism.



412 J.P. Bandera et al. / Visual attention mechanism for a social robot

In order to provide to a social robot with the nec-
essary abilities to autonomously navigate and interact
with people in a dynamic scenario, three behaviours
have been included in the proposed attention mech-
anism: a human face detection and recognition
behaviour, a human gesture recognition behaviour and
a visual natural landmark detection behaviour. These
behaviours are the responsible to recognize a person
who is interested in establishing an interaction, and
to provide visual natural landmarks for mobile robot
navigation. Switching between these behaviours lays
in higher level decision layers that are beyond the scope
of this paper.

The remainder of the paper is organized as follows:
Section 2 presents a description of the computation of
the ‘proto-objects’ and their associated saliency values.
The scheme used to implement the inhibition of return
is described in Section 3. Section 4 presents the atten-
tive stage. In this paper, three different behaviours have
been implemented. These behaviours are focused on
recognizing a detected person and capturing its upper-
body motion, and on extracting distinguished visual
natural landmarks. Section 5 deals with some relevant
experimental results. Finally, conclusions and future
works are presented in Section 6.

2. Preattentive stage: Saliency maps
computation

The proposed visual attention model employs a con-
cept of salience based on ‘proto-objects’. These objects
are defined as the union of a set of blobs of uniform
color and disparity of the image which will be par-
tially or totally bounded by the edges obtained using a
Canny detector. The proposed method used to obtain
these entities has two main stages. In the first stage the
input image pixels are grouped into blobs of uniform
color in a pre-segmentation process. These blobs pre-
serve the image geometric structure as each significant
feature contains at least one blob. In the second stage or
perceptual grouping stage, these blobs are grouped into
a smaller set of ‘proto-objects’, taking into account not
only the internal visual features of the blobs but also
the external relationships among them.

A ‘preattentive object’ catches the attention if it dif-
fers from its immediate surrounding. In contrast with
other previous works [5, 38] which only compute one
saliency map in the preattentive stage, the proposed
approach computes two different saliency maps asso-
ciated to the set of ‘proto-objects’ previously extracted.

The idea is to be able to select different salient ‘proto-
objects’ depending on the current behaviour or task.
Hence, there are two different saliency maps. In the
first one, the color and luminosity contrasts between
the ‘preattentive object’ and all the regions in its sur-
rounding and its distance to the robot are evaluated.
The most relevant ‘proto-objects’ in this map are the
most contrasted and closest ones. The second one eval-
uates if the preattentive object is skin colored. The aim
is that the closest skin colored ones will be the most
salient ‘proto-objects’. This second saliency map will
allow a social robot to select from the scene the regions
where a human face, and thus a potential interaction
partner, can be probably located.

2.1. Implementation

2.1.1. ‘Preattentive object’ detection
As it has been aforementioned, the proposed

approach firstly segments the image into perceptu-
ally uniform blobs, and then it groups these blobs
taking into account a more complex criterion. The
final set of regions constitute the set of ‘proto-objects’.
Both stages are performed using the Bounded Irreg-
ular Pyramid (BIP), an irregular pyramid which has
demonstrated to be able to perform fast segmentation
of color images [31].

The Bounded Irregular Pyramid (BIP) [28, 31] is a
mixture of regular and irregular pyramids: a 2 × 2/4
regular structure is used in the homogeneous regions
of the input image and a simple graph structure in the
non-homogeneous ones. The mixture of both structures
generates an irregular configuration which is described
as a graph hierarchy in which each level Gl = (Nl, El)
consists of a set of nodes, Nl, linked by a set of intra-
level edges El. Each graph Gl+1 is built from Gl by
computing the nodes of Nl+1 from Gl and establishing
the inter-level edges El,l+1. Therefore, each node ni

of Gl+1 has associated a set of nodes of Gl, which is
called the reduction window of ni. This includes all
nodes linked to ni by an inter-level edge. The node ni

is called parent of the nodes in its reduction window,
which are called children. The successive levels of the
hierarchy are built using a regular decimation process
and an union-find strategy [31]. Therefore, there are
two types of nodes: nodes belonging to the 2 × 2/4
structure, named regular nodes, and virtual nodes or
nodes belonging to the irregular structure. In any case,
two nodes ni ∈ Nl and nj ∈ Nl which are neighbors at
level l are linked by an intra-level edge eij ∈ El.
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The proposed approach uses a BIP structure to
accomplish the detection of the ‘proto-objects’ and the
subsequent computation of the saliency maps. In this
hierarchy, the first levels perform the pre-segmentation
stage using a distance based on color to group pixels
into perceptually homogeneous blobs. In order to intro-
duce low-level information within the BIP, all the nodes
of the structure have three parameters associated: sat-
uration S, hue H and value V of the HSV color space.
All the parameters of a node n at level l are equal to
the average of parameters of the nodes in its reduction
window, i.e. the nodes of the level l-1 which are linked
to n. The BIP structure is built based on the concept
of similarity between nodes. Two nodes ni and nj are
similar if the distance between their HSV values is less
than a threshold T .

The graph G0 = (N0, E0) is a 8-connected graph
where the nodes are the pixels of the original
image. The parameters of the nodes in G0 = (N0, E0)
are equal to the parameters of their corresponding
image pixels. The process to build the graph Gl+1 =
(Nl+1, El+1) from Gl = (Nl, El) is briefly described
below (see [31] for further details):

1) Regular decimation process. If four regular
neighbor nodes of the level l have similar color,
they are grouped together, generating a regular
node in l + 1.

2) Parent search and intra-level twining. Once the
regular structure is generated, there are some reg-
ular orphan nodes (regular nodes without parent).
From each of these nodes (i, j, l), a search is made
for the most similar node with parent in its neigh-
borhood �(i,j,l). If this neighbor node is found, the
node (i, j, l) is linked to the parent of this neigh-
bor node. On the contrary, if for this node a parent
is not found, then a search is made for the most
similar neighbor node without parent to link to it.

If this node is found, then both nodes are linked,
generating a virtual node at level l + 1.

3) Virtual parent search and virtual node linking.
Each virtual orphan node ni searches for the most
similar node with parent in its neighborhood �ni .
If for ni a parent is found, then it is linked to it. On
the other hand, if a parent is not found, the virtual
orphan node ni looks for the most similar orphan
node in its neighborhood to generate a new virtual
node at level l + 1. The only restriction to this
step is that a virtual node cannot be linked to a
regular parent. This procedure allows to preserve
the regular nature of the regular part of the BIP.

The hierarchy stops growing when it is no longer pos-
sible to link together any more nodes because they are
not similar. In order to perform the pre-segmentation,
the orphan nodes are used as roots. The described
method has been tested and compared with other
similar pyramid approaches for color image segmen-
tation [28]. This comparative study concludes that the
BIP runs faster than other irregular approaches when
benchmarking is performed in a standard sequential
computer. Besides, the BIP obtains similar results than
the main irregular structures. Figure 2b shows the
pre-segmentation images associated to the images in
Fig. 2a. It can be noted as the input images are correctly
segmented into blobs of uniform colour.

After the local similarity pre-segmentation stage,
grouping blobs aims at simplifying the content of the
obtained partition in order to obtain the set of final
‘proto-objects’. This process is also performed using
the BIP structure: the roots of the pre-segmented blobs
are considered as virtual nodes which constitute the
first level of the perceptual grouping multi-resolution
output. Successive levels can be built using the virtual
parent search and virtual node linking scheme pre-
viously described. This perceptual grouping process

(a) (b) (c) (d)

Fig. 2. a) Original image; b) pre-segmented blobs; c) obtained regions after the perceptual grouping; and d) color contrast saliency map.
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is explained in detail in [30]. The main aspect is the
use of a similarity distance that complements a color
contrast measure with internal regions properties and
with attributes of the boundary shared by both regions.
Therefore, this distance has three main components:
the color contrast between image blobs, the edges of the
original image computed using the Canny detector and
the disparity of the image blobs obtained from stereo
information. Then, the distance between two nodes ni

and nj is defined as

ϒ(ni, nj) =
√

w1 ·
(

d(ni, nj) · bi

� ·(cij) + (� ·(bij − cij))

)2

+ w2 · (disp(ni) − disp(nj))2 (1)

where d(ni, nj) is the color distance between ni and nj

and disp(x) is the mean disparity associated to the base
image region represented by node x. bi is the perimeter
of ni, bij is the number of pixels in the common bound-
ary between ni and nj and cij is the set of pixels in this
common boundary which corresponds to pixels of the
boundary detected by the Canny detector. � and � are
two constant values used to control the influence of
the Canny edges in the grouping process. We set these
parameters to 0.1 and 1.0, respectively. In the same
way w1 and w2 are two constant values which weight
the terms associated with the color and the disparity.
In our case they are set to 0.5 and 1.0, respectively.

A threshold value Tperc is used to discriminate
between similar and not similar blobs. The grouping
process is iterated until the number of nodes remains
constant between two successive levels.

After the pre-segmentation and perceptual grouping
stages, the nodes of the BIP with no parent will be the
roots of the ‘preattentive objects’. It must be appreci-
ated that these ‘proto-objects’ can be represented as
hierarchical structures, where the object root consti-
tutes the higher level of the representation and the
nodes of the input image linked to this root conform
its lower level.

Figure 2c shows the set of ‘proto-objects’ associ-
ated to the images in Fig. 2a. It can be noted that,
although the number of obtained regions have not
been significantly reduced with respect to the num-
ber of blobs of the preattentive stage, they provide an
image segmentation which is more coherent with the
human-based image decomposition. This fact has been
proven by evaluating the proposed perceptual grouping
approach using the Berkeley Segmentation Dataset and
Benchmark [33]. Obtained results improve the ones
obtained in our previous work [30], and equal the better

proposals to date [26], due to the inclusion of the Canny
edges in the process. It must be noted that, because
of the used images, the disparity value has not been
included in this evaluation.

2.1.2. Saliency maps computation
In order to compute the skin color saliency map, two

features of the ‘proto-objects’ are taken into account:
its possibility to be skin colored and its disparity. In

order to determine if a ‘preattentive object’ is skin
colored, the skin chrominance model proposed by
[43] has been used. Once the chrominance model has
been established, the steps to detect the skin colored
’preattentive objects’ are the following: first, the per-
ceptually segmented RGB image is transformed into
a TSL image. Second, the Mahalanobis distance from
the color of each ‘preattentive object’ to the mean vec-
tor of the skin chrominance model is computed. If this
distance is less than a threshold Ts then the ‘preatten-
tive object’ is marked with a value of 255 in the skin
color feature map (SKF ). In any other case, it is set to 0.
The disparity Di of each ‘proto-object’ Ri is obtained
by averaging the disparity values associated with each
pixel of the ‘proto-object’.

The final skin color saliency value (SKSi) of each
‘proto-object’ is obtained as a single summation of
both skin color and disparity features:

SKSi = SKFi + Di

2
(2)

An example of this map is shown in Fig. 3.
We compute the color contrast saliency value of each

‘proto-object’ using color contrast and intensity con-

(a) (b)

Fig. 3. a) Original image; b) skin color saliency map SKS.
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trast measures as well as the disparity associated to
it. As each of these ‘proto-objects’ corresponds to a
root of the BIP structure previously generated, it con-
tains all the necessary information about the concerned
image region, such as its average chromatic phasor and
intensity and the set of its neighbors.

Then, we compute the color contrast of a ‘preatten-
tive object’ Ri as the mean color gradient MCGi along
its boundary to the neighbor blobs:

MCGi = Si

bi

∑
j∈Ni

bij ∗ d(〈Ci〉, 〈Cj〉) (3)

being bi the perimeter of Ri, Ni the set of regions
which are neighbors of Ri, bij the length of the perime-
ter of the region Ri in contact with the region Rj ,
d(〈Ci〉, 〈Cj〉) the color distance between the color
mean values 〈C〉 of the regions Ri and Rj and Si the
mean saturation value of the region Ri.

The use of Si in the MCG avoids that color regions
with low saturation (grey regions) obtain a higher value
of color contrast than pure color regions. The problem
is that white, black and pure grey regions are totally
suppressed. To take into account these regions, the
luminosity contrast is computed. The luminosity con-
trast of a region Ri is the mean luminosity gradient
MIGi along its boundary to the neighbor regions:

MLGi = 1

bi

∑
j∈Ni

bij ∗ d(〈Ii〉, 〈Ij〉) (4)

being 〈Ii〉 the mean luminosity value of the region
Ri.

Then the final color contrast value of Ri is computed
as:

MGi =
√

MCG2
i + MLG2

i (5)

Finally the color contrast saliency map which
combines color contrast and disparity information is
computed as follows:

MGSi = MGi + Di

2
(6)

Figure 2d shows the color contrast saliency map
MGSi obtained from the image in Fig. 2a.

3. Semiattentive stage: Inhibition of return

Human visual psychophysics studies have demon-
strated that a local inhibition is activated in the saliency

map to avoid attention being immediately directed to
a previously attended region. In the context of arti-
ficial models of visual attention, this ‘inhibition of
return’ has been usually implemented using a 2D inhi-
bition map, that contains suppression factors for one or
more focuses of attention that were recently attended
[22, 20]. However, this 2D inhibition map is not able
to handle motion of inhibited objects nor motion of the
vision system itself. Dynamic scenes require totally
different processes to be handled in comparison to
static scenes, because the locations and shapes of the
objects may change due to motion and minor illumi-
nation differences between consecutive frames. In this
situation, establishing a correspondence from regions
of the previous frame to those of the next frame
becomes a significant issue.

In order to allow tracking an object while it changes
its location, the model proposed by [4] relates the
inhibitions to features of activity clusters. However,
the scope of dynamic inhibition becomes very limited
as it is related to activity clusters rather than objects
themselves [2]. Thus, it is a better option to attach
the inhibition to moving objects [44]. For instance,
the recent proposal of [2] utilizes a queue of inhib-
ited region features to maintain inhibition in dynamic
scenes.

The proposed system implements an object-based
‘inhibition of return’ [32]. A list of the last attended
’preattentive objects’ is maintained at the semiatten-
tive stage of the visual attention model. This list stores
information about the color and last position of the
‘preattentive object’. It also stores the last hierarchical
representation associated to each ‘preattentive object’.
When the vision system moves, the proposed approach
keeps track of the ‘proto-objects’ that it has already
visited.

3.1. Implementation

The employed tracking algorithm is also based on
the Bounded Irregular Pyramid (BIP)and it is detailed
explained in [29]. This tracking algorithm allows a fast
tracking of non-rigid objects, while it does not need
a previous learning of different object views. This is
possible due to the use of weighted templates which
follow up the viewpoint and appearance changes of
the objects to track. The templates and the targets
are represented using BIPs. Thus, the generation of
the whole set of ‘proto-objects’ and the tracking of
the attended ones to inhibit them are performed into
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the same hierarchical framework. This will allow to
reduce the computation time associated to the whole
model of visual attention.

4. Attentive stage

The attentive stage is the responsible of executing
the different behaviours that the social robot exhibits.
The system presented in this paper implements three
example behaviours for the attentive stage, that allow
a social robot to autonomously navigate and interact
with people in a dynamic scenario. These behaviours
deal with face recognition, human motion capture and
environmental landmarks detection.

It is important to consider that the process of select-
ing the most adequate behaviour for each situation lays
in higher decision levels, that are not addressed in this
paper. Instead, it presents a framework where different
behaviours are executed in order to depict the potential
of the proposed architecture. In any case, for the three
behaviours used in this paper in the attentive stage,
a tentative simple switching mechanism is proposed.
This mechanism executes the natural landmark detec-
tion behaviour until a skin colour ‘proto-object’ with a
high value of saliency is detected. This event makes the
robot stop identifying visual landmarks and focus on
searching for a human face. If no faces are present, then
the visual landmark detection behaviour is launched
again. However, if a face is found, the face recognition
and the human motion capture behaviours are executed
consecutively in order to identify the human and his/her
motion.

4.1. Face recognition

A social robot that works in real environments
should be able to discriminate between the people in its
surroundings, so that interaction can benefit from pre-
vious knowledge about these potential partners [13].
The first step towards allowing a robot to establish
individualized communication channels is to provide
it with the ability to recognize people. In the proposed
system system, the face recognition behaviour imple-
ments this ability. In this behaviour only the skin colour
saliency map is taken into account. It firstly visits all
skin color ‘proto-objects’ from the skin colour saliency
map in order to locate a human face. Once the faces
have been located in the image they are recognized.

4.1.1. Implementation
In the proposed system, a method based on the use

of Principal Component Analysis (PCA) and eigen
objects is used for face recognition. This extracts
low-dimensional subspaces which helps to simplify
tasks such as classification [9]. The Karhunen Loeve
Transform (KLT) and PCA are the eigenvector based
techniques used for dimensionality reduction and fea-
ture extraction in automatic face recognition [9]. These
techniques are used to create an eigenspace for the set
of people to be recognized, in a previous training phase.

Once the eigenspace has been computed, each
detected face can be represented by a set of decom-
position coefficients obtained using the eigen objects
associated to each person in the database. Then, these
coefficients are used to compute the projections of the
input face over each stored face. Projections are com-
pared with the original input face, and the best match
is set as the recognized person if their similarity is over
a certain threshold. More details about the particular
implementation of this face recognition process can be
found in [9].

4.2. Human motion capture

In the current implementation of a simple switch-
ing among behaviours, this behaviour is executed only
if the face recognition behaviour has been previously
performed. Thus, although the Human Motion Cap-
ture (HMC) behaviour is not affected by the results of
the face recognition behaviour (the human motion is
captured regardless the human has been recognized or
not), it assumes at least one human face is in the field
of view of the cameras. The flow diagram of the HMC
behaviour is shown in Fig. 4. Among the set of recog-
nized faces by the face recognition behaviour, the most
salient is selected and its 3D position is used to extract
the upper-body pose of the perceived human. There
are different options to perform this task from stereo
images [36]. The proposed system uses a model-based
approach, that requires to extract the silhouette from
disparity maps, and to locate the 3D position of the
hands. Once these data are obtained, silhouette infor-
mation is used to estimate torso rotation and bending
angles. The 3D position of the hands with respect to
the face, on the other hand, is used to pose human
arms. The use of this model-based method avoids
local minima, a common problem of optimization and
probabilistic methods [36]. Once an estimation of the
human pose is obtained, this pose is translated to the
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Fig. 4. Flow diagram of the HMC behaviour.

robot motion space using a retargeting module. The
output of this module is the robot pose that imitates
perceived human pose.

The HMC behaviour deals with partial occlusions
and noisy data. It finishes when the face object is def-
initely lost.

4.2.1. Implementation
The HMC algorithm proposed in this paper is the

integration of various contributions that have been
already presented in previous work. Thus, the torso
pose estimator is detailed in [15], and the method to
pose arms, based on inverse kinematics, is described
in [6]. As this HMC system is proposed to be used
in a social robot, additional computation is required to
translate, or retarget, the captured human motion to the
robot motion space. This process is deeply described
in [8]. The rest of this Section provides a brief descrip-
tion of all these algorithms, focusing on the elements
that have been added or modified to ease integration.

Using the closest human face obtained from the
set of faces recognized by the face recognition
behaviour, the silhouette of this human is extracted
using the following procedure [25]: the disparity map

is thresholded taking into account that the maximum
distance between the detected head and one hand
of the same person is determined by the length of a
stretched arm. We consider this length L(arm) not to
be greater than one meter. Then, depth values d(i, j)
that does not meet Eq. (7) are discarded:

Ud − L(arm) < d(i, j) < Ud + L(arm) (7)

being Ud the mean depth value of the face. Once this
filtered disparity map is obtained, the silhouette of
the person can be extracted from it using connected
components. This silhouette is provided to the pose
generator (Fig. 4) to extract torso bending and rotation
angles. Then, following previous proposals [13], the
two largest skin colour, non-face objects tracked
inside the silhouette are labeled as the human hands,
as depicted in Fig. 5d. In order to distinguish left
and right hands, it is considered in the initial frames
of the HMC behaviour that the human stands still in
front of the robot, with the left hand located in the left
part of the body, and the right hand located in the right
part of the body.

The pose generator depicted in Fig. 4 uses a
kinematic human model to translate the 3D positions
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(a) (b) (c) (d)

Fig. 5. HMC attentive stage: a) Left image of the input stereo pair; b) disparity map; c) detected faces; and d) obtained silhouette showing skin
color objects associated to human head and hands.

of detected human items to a global correct pose.
This translation is based on a fast analytic inverse
kinematics algorithm running over a model that avoids
incorrect poses. As we have restricted ourselves to
capture upper-body motion, the geometric model
contains parts that represent hips, head, torso, arms
and forearms of the human to be tracked [6], Model
proportions have been set to average human values,
and model dimensions are scaled to fit the performer’s
height. The following steps are applied in order to
obtain the final set of joint angles for frame k,

−→
θ(k) =

(
−−→
θt(k),

−−→
θl(k),

−−→
θr(k)) = (θ0(k), θ1(k), . . . , θ10(k)),

where
−−→
θt(k) corresponds to the three joint angles

located in the torso and
−−→
θl(k),

−−→
θr(k) are the sets of joint

angles located in the left an right arms, respectively:

• The first step is to locate the image region in which
the torso of the human performer is most probably
located. This process relies on the use of anthro-
pometric tables [14] to estimate this region from
human height, face position and waist position. In
the proposed system the human begins interaction
standing still in front of the robot. Thus, human
height can be computed as H = (1/0.92) · hface,
where hface is the height of the face detected in the
first frames [14]. Other relations extracted from
anthropometric tables and used in this paper are
detailed in [15]. As the person is not supposed to
walk around while gesturing the robot, the waist
position is set in these first frames. Waist posi-
tion is then considered a fixed value during the
rest of the interaction process. The face position
is known for each frame.

The anthropometric tables are used to provide
a search region for the shoulders, the neck and
the torso axis. The used anthropometric tables are

valid for most adult people, being male or female
[14]. However, the system would need different
tables to perceive, for example, small children
movements. Another option to adapt anthropo-
metric values to different people is to execute a
certain initialization phase in which standard val-
ues are adapted to the particular performer [1].
However, unsupervised initialization may be very
difficult to achieve in real uncontrolled environ-
ments, in which noisy data and occlusions are
present. On the other hand, manually performed
initialization is not adequate for a system to be
integrated in autonomous social robots.

• Once torso region has been delimited, the points
that conform the medium axis are estimated using
the following procedure: (i) For each row in
the torso search region, the silhouette pixels are
grouped into connected segments; (ii) the longest
segment in the row is selected as the torso seg-
ment; (iii) the medium point in the torso segment
is marked as a point of the medium axis; and (iv)
once all the previous medium points have been
extracted, the central limit theorem is applied to
model the distribution of these points as a gaussian
and filter outliers [15].

This procedure reduces the influence of arms
or other non-torso objects appearing in the torso
search region. Once these points have been
extracted, the projection of the torso medium axis
is computed as the result of performing a 2D lin-
ear interpolation over all of them. Then, the depth
information associated to the points in this line is
used to compute the 3D position of torso medium
axis.

The medium axis allows to bend the torso.
Torso rotations, on the other hand, are achieved by
computing the depth difference between the two
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shoulders for each frame. The shoulders 3D posi-
tions are estimated using anthropometric data and
geometric relations [15]. Then, disparity values in
the vicinity of these points are averaged to obtain
the disparity of each shoulder. These estimated
shoulder disparities are finally used to infer a 3D
position for each shoulder, and the depth differ-
ences between these positions are used to rotate
the torso [15].

Once torso bending and rotation angles have
been computed, they are identified as the three

components of
−−→
θt(k). The torso of the used model

adopts these angles before the next steps of the
HMC behaviour, that pose the arms from the 3D
positions of the hand objects, are executed.

• In order to reduce the effects of disparity noise
and outliers in the estimation of hand positions,
a Gaussian filter is applied to the 3D posi-

tions of tracked left and right hands,
−−→
Pl(k) =

(Pl
x(k), Pl

y(k), Pl
z(k)) and

−−−→
Pr(k) = (Pr

x(k), Pr
y(k),

Pr
z (k)).

• A constrained inverse kinematics (IK) algorithm
is used to compute a set of joint angles for each
arm of the kinematic model. This method obtains
an arm pose that will put the hand of the model in
the required position, as Eq. (8) depicts.

−−−→
Ql(k) = f (

−−→
Pl(k))

−−−→
Qr(k) = f (

−−−→
Pr(k))

−−→
θl(k) = IK(

−−−→
Ql(k))

−−→
θr(k) = IK(

−−−→
Qr(k))

(8)

where f () is the gaussian filter and IK() the ana-
lytic IK algorithm. The resulting pose

−→
θ(k) is

analyzed in order to determine if it corresponds
to a valid and natural body configuration. The
system considers two limitations: (i) a valid pose
must respect joint limits; and (ii) a valid pose can-
not produce a collision between different body
items. If the system detects an incorrect position
for any of the arms, it looks for alternative poses
for this arm (i.e. different arm configurations).
These alternatives will try to preserve hand posi-
tions, but will move the elbow to search for the
most similar valid arm pose. The joint angles cor-
responding to the final valid pose are returned.
See previous work for further details about this
method [6].

The analytic nature of this method allows to obtain
the joint angles of the perceived human at a high frame

rate. These obtained angles
−→
θ(k) will be the output of

the HMC behaviour, and can be used to make a 3D
avatar imitate the human pose. In the system described
in this paper, however, an additional step is required, as
depicted in Fig. 4, that translates the movements from
the human motion space to the robot motion space.
These spaces may be different, due to the physical
differences between the human and the robot. Thus,
one-to-one mapping is not adequate. Instead, the retar-
geting module depicted in Fig. 4 performs a combined
retargeting procedure, in which two different strategies
are used. The first of these strategies tries to preserve
the relative positions of the end effectors with respect
to the head, and is used for location movements, e.g.
pointing. The other strategy tries to preserve the tra-
jectories of the joint angles, and is used for configured
movements, e.g. waving a hand to mean ‘hello’ [41].
As it has been mentioned above, the result of the retar-
geting module is a combination of both strategies, in
which the weight of each factor depends on the ampli-
tude of performed motion. A deeper explanation of this
combined retargeting strategy can be found in [8].

Finally, it must be pointed out that the behaviour
is reinitialised when a tracking problem arises at the
semi-attentive stage and object records associated to
face or hands contain invalid values. As long as the
face is not lost, the behaviour can recover from these
situations, as lost hands can be looked for again inside
the silhouette in further frames. However, if the face is
lost, it will be necessary to look for a new face, which
could correspond to a different human. This mismatch-
ing problem can be avoided if the face recognition
behaviour is conducted to associate each face record
with a label. This strategy ensures that tracking does
not continue until the right person is found.

4.3. Scene exploration behaviour

Reliable navigation is an essential component of a
social robot. In order to perform this task correctly,
the robot will typically need to represent the informa-
tion perceived by external sensors into a navigation
map. One popular choice is to build this map with
distinguished natural landmarks that the robot can
acquire from the environment without human supervi-
sion. Recognizable landmarks are essential since they
will be used as reference marks to identify locations in
the environment. In the past, a variety of approaches
for feature-based mobile robot localization and naviga-
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tion has been developed. A significant number of these
approaches use range sensors to detect distinguished
landmarks. However, although these approaches can
robustly address the landmark detection problem, they
become less robust to achieve the landmark descrip-
tion one. An alternative to the active ranging devices
are vision systems. These systems are passive and
of high resolution, and they provide a huge amount
of information (color, texture or shape) which allow
disambiguating landmarks for subsequent data associ-
ation purposes. In this paper, we only address the visual
landmark detection problem. Thus, perceived ‘proto-
objects’ of data-dependent shape which satisfy certain
constraints will serve as natural landmarks.

As it was aforementioned, the preattentive stage
provides a contrast-based saliency map. The visual
landmark detection behaviour selects, among the set of
most salient ‘proto-objects’ of this map, those which
satisfy certain conditions. The key idea is to use as land-
marks rectangular shaped objects or quasi-rectangular
shaped objects without holes. In this way, we try to
avoid the selection of segmentation artifacts, assum-
ing that a rectangular object has less probability to be
a segmentation error than a sparse region with a com-
plex shape. Selected objects cannot be located at the
image border in order to avoid errors due to partial
occlusions. On the other hand, in order to assure that
the objects are almost planar, regions which present
abrupt depth changes inside them are also discarded.
Besides, it is assumed that large regions could be more
likely associated to non-planar surfaces. Finally, The
selected objects must also exhibit a relatively high con-
trast with respect to its surroundings. Figure 7 shows
several set of extracted landmarks.

A detailed implementation of this landmark detec-
tion method can be found in [47].

5. Experimental results

The proposed visual perception system was tested
using a stereo head mounted on a mobile robot. This
robot, named NOMADA, is a new 1.60 meters tall
robot that is currently being developed in our research
group [8]. The robot will be provided with two arms
that has four degrees of freedom (DOF), plus 1 DOF in
the waist and 3 DOF in the head. It has wheels for holo-
nomic movements and is equipped with different types
of sensors, an embedded PC for autonomous naviga-
tion and a stereo vision system. The current mounted

Table 1
Tracking errors averaged over 5300 frames

Marker Left shoulder Left elbow Left hand
Mean error (cm) 5.50 11.78 11.47
Standard deviation (cm) 3.25 7.03 6.43

Marker Right shoulder Right elbow Right hand
Mean error (cm) 6.23 12.50 11.33
Standard deviation (cm) 4.53 6.51 7.59

Marker Left head Abdomen Right head
Mean error (cm) 6.78 7.76 6.47
Standard deviation (cm) 4.20 1.05 5.25

stereo head is the STH-MDCS from Videre Design,
a compact, low-power color digital stereo head with
an IEEE 1394 digital interface. It consists of two 1.3
megapixel, progressive scan CMOS imagers mounted
in a rigid body, and a 1394 peripheral interface mod-
ule, joined in an integral unit. Images are restricted
to 640 × 480 or 320 × 240 pixels. The embedded PC,
that processes these images using the Linux operating
system, is a Core 2 Duo at 2.4 Ghz, equipped with 1
Gb of DDR2 memory at 800 Mhz, and 4 Mb of cache
memory.

5.1. Face recognition and human motion capture

Before running these behaviours over the robotic
platform, a quantitative evaluation of the HMC
behaviour was performed by comparing its results
against ground truth obtained using a Codamotion
CX1 motion capture system based on active markers.1

This comparison is achieved for different perform-
ers by using the same setup detailed in [7]. Table 1
shows errors associated to different body parts. It can
be appreciated that the elbows are affected by higher
errors as their pose is not perceived, but estimated.
Hand movements also accumulate a higher deviation
error. This error is partially produced by the hands
moving usually faster than other upper-body parts, and
thus being more sensitive to tracking errors. But the
main cause of these errors is the proximity to image
borders. Hand movements tend to spread near these
borders, where experimental results show that posi-
tion errors are more significative. Thus, although the
calibration software provided by Videre design2 allows
taking into account the radial and tangential distortions
of the lens, obtained results show that these distortions
still affect to the correct estimation of the 3D position

1 http://www.codamotion.com/
2 http://www.videredesign.com/
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Fig. 6. Frames captured from sequences used to test the face recognition and HMC behaviours.

of perceived points. Consequently hand positions, that
tend to approach image borders, accumulate a higher
error.

The previous quantitative evaluation shows that
results of the face recognition behaviour are similar
to those obtained by [9], thus as it is concluded in that
paper and our experiments confirm, faces can be rec-
ognized on-line, once a fast learning process has been
performed. On the other hand, results also show that,
although fine details such as finger movements will not
be captured, the proposed HMC behaviour is adequate
to obtain upper-body gestures, and retarget them to the
robot motion space. Figure 6 shows results obtained
when both face recognition and HMC behaviours are
executed on the previously described robotic system.
As depicted, the face recognition behaviour is able to
detect and recognize human faces in the field of view
of the robot. Then, the HMC behaviour is executed and

capture the upper-body motion of the closer human at
about 15 frames per second.3 This motion is translated
to the robot using the previously described retarget-
ing strategy, that is deeply evaluated in [8]. As Fig. 6
depicts, the performer is not wearing special markers
nor specific clothes. Finally, it can be seen in the last
depicted frame (Fig. 6c) how the recovered 3D posi-
tion for a hand may deviate from desired pose as the
hand approach the image border.

5.2. Scene exploration

The robot was driven through different environ-
ments while capturing real-life stereo images to test the
validity of the landmark detector. Figure 7 shows some

3 Some videos showing the performance of the tracking process
can be found at http://www.grupoisis.uma.es/
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Fig. 7. Visual landmarks detected by the proposed perception system. Landmarks are represented as ellipses, and the correspondence between
landmarks in different frames with the corresponding index.

frames of a trajectory in an indoor environment. The
visual landmark detection behaviour provides land-
marks to a simultaneous localization and mapping
(SLAM) algorithm, which is the responsible of create
and update the navigation map. In the figure, only land-
marks which have been finally included in the map are
shown. It can be seen that some erroneous landmarks
(such as landmark 28 in frame #72) may appear due
to reflections or noise. While it is not possible to filter
these landmarks at this level, they could be removed in
a posterior, higher level layer in which an object recog-
nition algorithm would be used to decide whether a
detected landmark is a meaningful object or not.

To quantitatively check the performance of our
detector and compare our method to other similar
approaches, images, Matlab code to carry out the per-
formance tests, and binaries of other detectors have
been downloaded from http://www.robots.ox.ac.uk/
∼vgg/research/affine. The database is composed by
eight different image sets that represent five changes in
imaging conditions (viewpoint changes, scaling, image
blur, jpeg compression and illumination changes). To

deal with this data set, the disparity information must
not be taken into account at the preattentive stage.

Image sets can be grouped into two different scene
types. Thus, one scene type contains homogeneous
regions which present distinctive boundaries (struc-
tured scenes), and the other contains repeated textures
of different forms (textured scenes). Our approach is
based on structure cues in images. Thus, although it
can work in unstructured environments, it exhibits a
superior performance on structured scenes. To evalu-
ate the detectors, we use the repeatability score [35].
The objective of this test is to measure how many of
the detected regions are found in images under differ-
ent transformations, relative to the lowest total number
of regions detected (where only the part of the image
that is visible in both images is taken into account). In
all cases, the ground truth is provided by mapping the
regions detected on the images in a set to the image
of highest quality of this set (reference image) using
homographies. The measure of repeatability is the rela-
tive amount of overlap between regions detected in the
reference image and in the other image. This region is

http://www.robots.ox.ac.uk/$~$vgg/research/affine
http://www.robots.ox.ac.uk/$~$vgg/research/affine
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Table 2
Repeatability scores (%) for two databases (GRAF and BOAT

sequences) (see Mikolajczyk et al. (2006))

BOAT sequence GRAF sequence

Scale changes Viewpoint angle

Detector 1.1 1.35 1.9 2.35 2.8 20 30 40 50 60

MSER 65 63 55 50 22 78 69 64 60 46
IBR 49 51 41 32 20 61 54 45 39 29
Fast-Hessian 70 68 68 69 41 68 55 27 0 0
Proposed 71 68 65 57 35 73 69 67 63 57

projected onto the reference image using the homogra-
phy relating the images. It must be noted that the output
for our detector is a set of arbitrarily shaped regions.
However, for the purpose of the comparisons using the
Matlab code previously mentioned, the output region
of all detectors are represented by an ellipse. In our
case, ellipses which have the same first and second
moments as the detected regions are used to approx-
imate them. The proposed detector is compared to
the maximally stable extremal region detector (MSER)
[34], the intensity extrema-based region detector (IBR)
[46] and the Fast-Hessian [10]. For all experiments,
the default parameters given by the authors are used
for each detector. The repeatability for two sets of
images are illustrated in Table 2. Similar results are
obtained for the rest of sequences. These results show
that the proposed detector ranks similar to the rest of
approaches when it deals with structured images. In
these images, only few regions are detected and the
thresholds can be set very sharply, resulting in very
stable regions.

6. Conclusions and future work

This paper has presented a visual perception sys-
tem for a social robot which main component is an
attentional mechanism. This attentional mechanism
integrates bottom-up and top-down processings to
select the most relevant information from the broad
visual input depending not only on the sensed features
but also in the currently executed task. This model
employs two task-independent stages: the preatten-
tive and the semiattentive stages, and a task-dependent
stage or attentive stage. The preattentive stage divides
the visual scene into a set of ‘proto-objects’. This
allows the proposed attentional model to direct the
attention on candidate to real objects, similarly to
the behaviour observed in humans. ‘proto-objects’
are stored at the semi-attentive stage as hierarchi-

cal templates. This representation is used by the fast
tracking algorithm that implements the ‘inhibition of
return’ at this stage. The attentive stage controls the
field of attention following several behaviours. Specif-
ically, we have incorporated and tested three different
behaviours. The first two behaviours -face recognition
and upper-body human motion capture- provide the
robot interaction abilities. The third behaviour -scene
exploration- allows to autonomously acquire visual
landmarks for mobile robot simultaneous localization
and mapping.

Finally, in order to facilitate the interaction with peo-
ple, the social robot should be able to navigate and to
notice, at the same time, if there are people in the scene
that are interested in interat with it. To do that, the
different behaviours must be capable to run simultane-
ously, being necessary to implement as future work a
mechanism to control this process. On the other hand,
and also to facilitate the interaction with people, the
information generated by the attention stage should
include semantic information and not only spatial rela-
tions. Future work will be focused on integrating the
robot perception abilities with human-robot interac-
tion processes which will allow the robot to annotate
its internal representations with semantic information
in a supervised way. The importance of the semantic
information has been largely pointed out in the robotic
literature. Thus, it can be used to reason about the func-
tionalities of objects and environments, or to provide
additional input to the navigation and localization mod-
ules. In any case, it is fundamental to allow the robot
to communicate with people using a common set of
terms and concepts [21].
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[26] M. Maire, P. Arbeláez, C. Fowlkes and J. Malik, Using
contours to detect and localize junctions in natural images,
Proceedings of the Int. Conf. on Computer Vision and Pattern
Recognition (CVPR 2008); 2008 June 24–26, Anchorage,
Alaska, 2008.

[27] A. Maki, P. Nordlund and J.O. Eklundh, Attentional scene
segmentation: integrating depth and motion. Computer
Vision and Image Understanding 78(3) (2000), 351–373.

[28] R. Marfil, L. Molina-Tanco, A. Bandera, J.A. Rodrı́guez
and F. Sandoval, Pyramid segmentation algorithms revisited,
Pattern Recognition 39(8) (2006), 1430–1451.

[29] R. Marfil, L. Molina-Tanco, J.A. Rodrı́guez and F. Sandoval,
Real-time object tracking using bounded irregular pyramids,
Pattern Recognition Letters 28 (2007), 985–1001.

[30] R. Marfil, A. Bandera and F. Sandoval, Perception-based
image segmentation using the Bounded Irregular Pyramid,
LNCS 4713 (2007) 244–23.

[31] R. Marfil, L. Molina-Tanco, A. Bandera and F. Sandoval,
The construction of bounded irregular pyramids using a
union-find decimation process. GbRPR 2007, LNCS 4538
(2007), 307–318.

[32] R. Marfil, A. Bandera, J.A. Rodrı́guez and F. Sandoval,
A novel hierarchical framework for object-based visual
attention. Attention in cognitive systems. LNCS 5395 (2008),
27–40.



J.P. Bandera et al. / Visual attention mechanism for a social robot 425

[33] D. Martin, C. Fowlkes, D. Tal and J. Malik, A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecolog-
ical statistics, Proceedings of the Eighth IEEE Int. Conf.
on Computer Vision (ICCV 2001); 2001 July 7–14, IEEE,
Vancouver, Canada, 2001.

[34] J. Matas, O. Chum, M. Urban and T. Pajdla, Robust wide-
baseline stereo from maximally stable extremal regions,
Proceedings of the British Machine Vision Conference, 2002
September 2–5, 2002.

[35] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, A
comparison of affine region detectors, Int. Journal Computer
Vision 65 (2006), 43–72.

[36] T.B. Moeslund, A. Hilton and V. Krüger, A survey of advances
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