28 research outputs found

    A framework for automatic and perceptually valid facial expression generation

    Get PDF
    Facial expressions are facial movements reflecting the internal emotional states of a character or in response to social communications. Realistic facial animation should consider at least two factors: believable visual effect and valid facial movements. However, most research tends to separate these two issues. In this paper, we present a framework for generating 3D facial expressions considering both the visual the dynamics effect. A facial expression mapping approach based on local geometry encoding is proposed, which encodes deformation in the 1-ring vector. This method is capable of mapping subtle facial movements without considering those shape and topological constraints. Facial expression mapping is achieved through three steps: correspondence establishment, deviation transfer and movement mapping. Deviation is transferred to the conformal face space through minimizing the error function. This function is formed by the source neutral and the deformed face model related by those transformation matrices in 1-ring neighborhood. The transformation matrix in 1-ring neighborhood is independent of the face shape and the mesh topology. After the facial expression mapping, dynamic parameters are then integrated with facial expressions for generating valid facial expressions. The dynamic parameters were generated based on psychophysical methods. The efficiency and effectiveness of the proposed methods have been tested using various face models with different shapes and topological representations

    Automatic 3D Facial Expression Analysis in Videos

    Full text link
    We introduce a novel framework for automatic 3D facial expression analysis in videos. Preliminary results demonstrate editing facial expression with facial expression recognition. We first build a 3D expression database to learn the expression space of a human face. The real-time 3D video data were captured by a camera/projector scanning system. From this database, we extract the geometry deformation independent of pose and illumination changes. All possible facial deformations of an individual make a nonlinear manifold embedded in a high dimensional space. To combine the manifolds of different subjects that vary significantly and are usually hard to align, we transfer the facial deformations in all training videos to one standard model. Lipschitz embedding embeds the normalized deformation of the standard model in a low dimensional generalized manifold. We learn a probabilistic expression model on the generalized manifold. To edit a facial expression of a new subject in 3D videos, the system searches over this generalized manifold for optimal replacement with the 'target' expression, which will be blended with the deformation in the previous frames to synthesize images of the new expression with the current head pose. Experimental results show that our method works effectively

    Mean value coordinates–based caricature and expression synthesis

    Get PDF
    We present a novel method for caricature synthesis based on mean value coordinates (MVC). Our method can be applied to any single frontal face image to learn a specified caricature face pair for frontal and 3D caricature synthesis. This technique only requires one or a small number of exemplar pairs and a natural frontal face image training set, while the system can transfer the style of the exemplar pair across individuals. Further exaggeration can be fulfilled in a controllable way. Our method is further applied to facial expression transfer, interpolation, and exaggeration, which are applications of expression editing. Additionally, we have extended our approach to 3D caricature synthesis based on the 3D version of MVC. With experiments we demonstrate that the transferred expressions are credible and the resulting caricatures can be characterized and recognized

    A finite element model of the face including an orthotropic skin model under in vivo tension

    Get PDF
    Computer models of the human face have the potential to be used as powerful tools in surgery simulation and animation development applications. While existing models accurately represent various anatomical features of the face, the representation of the skin and soft tissues is very simplified. A computer model of the face is proposed in which the skin is represented by an orthotropic hyperelastic constitutive model. The in vivo tension inherent in skin is also represented in the model. The model was tested by simulating several facial expressions by activating appropriate orofacial and jaw muscles. Previous experiments calculated the change in orientation of the long axis of elliptical wounds on patients’ faces for wide opening of the mouth and an open-mouth smile (both 30 degrees). These results were compared with the average change of maximum principal stress direction in the skin calculated in the face model for wide opening of the mouth (18o) and an openmouth smile (25 degrees). The displacements of landmarks on the face for four facial expressions were compared with experimental measurements in the literature. The corner of the mouth in the model experienced the largest displacement for each facial expression (11–14 mm). The simulated landmark displacements were within a standard deviation of the measured displacements. Increasing the skin stiffness and skin tension generally resulted in a reduction in landmark displacements upon facial expression

    Facial expression recognition in dynamic sequences: An integrated approach

    Get PDF
    Automatic facial expression analysis aims to analyse human facial expressions and classify them into discrete categories. Methods based on existing work are reliant on extracting information from video sequences and employ either some form of subjective thresholding of dynamic information or attempt to identify the particular individual frames in which the expected behaviour occurs. These methods are inefficient as they require either additional subjective information, tedious manual work or fail to take advantage of the information contained in the dynamic signature from facial movements for the task of expression recognition. In this paper, a novel framework is proposed for automatic facial expression analysis which extracts salient information from video sequences but does not rely on any subjective preprocessing or additional user-supplied information to select frames with peak expressions. The experimental framework demonstrates that the proposed method outperforms static expression recognition systems in terms of recognition rate. The approach does not rely on action units (AUs) and therefore, eliminates errors which are otherwise propagated to the final result due to incorrect initial identification of AUs. The proposed framework explores a parametric space of over 300 dimensions and is tested with six state-of-the-art machine learning techniques. Such robust and extensive experimentation provides an important foundation for the assessment of the performance for future work. A further contribution of the paper is offered in the form of a user study. This was conducted in order to investigate the correlation between human cognitive systems and the proposed framework for the understanding of human emotion classification and the reliability of public databases

    THREE DIMENSIONAL MODELING AND ANIMATION OF FACIAL EXPRESSIONS

    Get PDF
    Facial expression and animation are important aspects of the 3D environment featuring human characters. These animations are frequently used in many kinds of applications and there have been many efforts to increase the realism. Three aspects are still stimulating active research: the detailed subtle facial expressions, the process of rigging a face, and the transfer of an expression from one person to another. This dissertation focuses on the above three aspects. A system for freely designing and creating detailed, dynamic, and animated facial expressions is developed. The presented pattern functions produce detailed and animated facial expressions. The system produces realistic results with fast performance, and allows users to directly manipulate it and see immediate results. Two unique methods for generating real-time, vivid, and animated tears have been developed and implemented. One method is for generating a teardrop that continually changes its shape as the tear drips down the face. The other is for generating a shedding tear, which is a kind of tear that seamlessly connects with the skin as it flows along the surface of the face, but remains an individual object. The methods both broaden CG and increase the realism of facial expressions. A new method to automatically set the bones on facial/head models to speed up the rigging process of a human face is also developed. To accomplish this, vertices that describe the face/head as well as relationships between each part of the face/head are grouped. The average distance between pairs of vertices is used to place the head bones. To set the bones in the face with multi-density, the mean value of the vertices in a group is measured. The time saved with this method is significant. A novel method to produce realistic expressions and animations by transferring an existing expression to a new facial model is developed. The approach is to transform the source model into the target model, which then has the same topology as the source model. The displacement vectors are calculated. Each vertex in the source model is mapped to the target model. The spatial relationships of each mapped vertex are constrained
    corecore