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Abstract   Facial expressions are facial movements reflecting the internal emotional states 

of a character or in response to social communications. Realistic facial animation should 

consider at least two factors: believable facial expression visual effect and valid facial 

movements. However, most research tends to separate these two issues. In this paper, we 

present a framework for generating facial animations considering both visual effect of 

facial expression and the dynamic factor. A facial expression mapping approach based on 

local geometry encoding is proposed, which encodes deformation in the 1-ring vector. This 

method is capable of mapping subtle facial movements without considering those shape 

and topological constraints. Facial expression mapping is achieved through three steps - 

correspondence establishment, deviation transfer and movement mapping. Deviation is 

transferred to the conformal face space through minimizing the error function formed by 

the source neutral and the deformed face model related by those transformation matrices in 

1-ring neighborhood. The transformation matrix in 1-ring neighborhood is independent of 

the face shape and mesh topology. Facial dynamics is then integrated with facial 

expressions for generating valid facial expressions. The dynamic factor was solved based 

on psychophysical methods. An application of the framework using various faces with 

different shapes and topological representations has been tested. 
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1  Introduction    

 
Facial animation has been the interest in computer graphics and animation communities [1], 

[2]. A great deal of effort has been taken for generating realistic facial animation. Since the 

performance-driven animation method was introduced by Williams [11], it has been widely 

investigated [3], [4], [5], [6], [8], [9], [10], especially with the development of advances in 3D 

scanning and motion capture technologies [12], [37]. Readers are referred to the book by 

Parke and Waters [7] for an excellent survey about facial animation. 

Due to the complexity of facial muscles and subtle movements involved in conveying 

emotional information, it is nontrivial to model realistic facial expression using muscle 

simulation or modeling methods [17], [42], [46]. Thus, how to efficiently reuse existing facial 

expression data to animate various new face models but avoid time-consuming and tedious 

manual intervention has been a challenging topic. To obtain various realistic facial 

expressions representing true muscle movements, we can simply make use of advanced 

scanning equipment, but it is impossible to capture all needed facial expressions for each 

subject we want. Another problem is about the quality of the facial animation. Since human 

beings are very sensitive to even subtle facial movements, it is critical to generate valid 

dynamic parameters for animation. 

    In this paper, we present a framework for generating facial animations considering both 

visual effect of facial expression and the dynamic factor. A facial expression mapping 

method has been proposed, which transfer facial expressions from a source model to the 

target 3D face through encoding deformation information in local geometric shape. Through 

recording FACS AU from real human beings and mapping to different face models, we 

demonstrate that the proposed method can easily generate facial animation reflecting true 

muscle movements given any 3D characters. 

The proposed method is a semi-automatic with the aid of a few feature points manually 

labeled by the user. Fig. 1 demonstrates the template face model and manually labeled. It is 

capable of mapping facial expressions while keeping the characteristics of the target face 

even the target face shape is quite different from the source human face shape. Another 

advantage of the proposed method is that it is independent of the source and target mesh 

topology and easy to be implemented.  We have tested the feasibility and validity of the 

proposed method on different face models with various sizes, shapes and mesh topologies. 

 

                                                 
 

                                    Fig. 1 Illustration of 3D mesh template and markers 
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Fig. 2  Flowchart of facial expression mapping and animation for the expression of “happiness”.  Five AUs – 

AU12-6, AU12, AU12-25, AU13 and AU14 are mapped to the conformed target model from the source face 

through deviation transfer to generate the happiness facial expression. Animation parameter curves are then 

applied to those two AUs for generating animation. 

The remainder of the paper is organized as follows. We first review related work in Section 
2. We then describe the correspondence establishment method in Section 3. And Section 4 
details the deviation transfer method. Section 5 presents the movement and texture mapping 
procedure. Section 6 describes the animation application framework combing the facial 
expression transfer method. In Section 7, experiment results and are presented. Finally, the 
paper is concluded in Section 7 with a short description of future work. 

 
2 Related work  

 

Since the pioneer work conducted by Parke [28], research on facial animation has been 

widely studied. Enormous research has been conducted on improving fidelity of facial 

expression as well as on reducing time-consuming and tedious intervention from users.    

Facial expressions are actually driven by facial muscles beneath the skin. Physically-based 

methods try to simulate facial muscles and skin to animate face models [15], [16], [21], [44]. 

Those methods require high computation and nontrivial skills to control the parameters 

simulating muscle forces. 

Geometry-based methods tend to animate face models using geometric information 

involving using feature points or controlling geometric parameters [5]. Zhang et al. [26] 

developed a geometry-driven method for facial expression synthesis using feature points and 

face region subdivision, which was capable to infer missing feature motions to generate 

expression detail. Pighin et al. [25] proposed an image-based method for generating photo-

realistic 3D facial expressions from 2D images. It adopted a scattered data interpolation 

function, Radial Basis Function (RBF), to interpolate facial vertices. Facial expression of the 

source face is mapped to the target face model through transferring those obtained 

combinational coefficients. Pei et al. proposed a system transferring speech movement from 

video to 3D faces based on the assumed 2D and 3D viseme mapping [50]. Parke et al. [45] 

presented a parametric method for generating facial expressions using parameter vector as 

representation of the motion of a set of vertices. However, it is still time-consuming for 

reusing those two methods in application where various new faces are to be animated.    
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Noh et al [8] introduced a method for reusing animation data for motion retargeting. 

Movements of the source face are represented by motion vectors which were then transferred 

to the target face model. That method only works well for cloning facial expressions for 

highly resemble face shapes. Summer et al. [27] proposed a method for deformation transfer 

from the source mesh model to the target mesh based on triangle transformation. This method 

has limitations if the source and target meshes have different mesh topology or less shape 

resemblance. Darren et al [40] described a method for performance driven facial animation by 

re-mapping animation parameters between multiple types of facial models, which was able to 

map facial expressions through extracting meaningful facial actions parameters from video 

performance. Curio et al [5] presented a system for 3D motion retargeting combining a laser 

scanner and motion capture system. Their system produced a set of vectors of morph weights 

using optimization system applied on motion capture markers.  Asthana et al [19]. proposed a 

real-time facial performance transfer method through modeling parametric correspondence 

for 2D images. 

There has been some effort on mapping facial performance from the source face model to 

the target model in which the motion data is from motion capture systems or 3D scanners 

[14], [41], [43]. These methods either transfer the source deformation or transfer the blending 

weightings of the key source shapes to the target model.  

FACS as one of the most popular theories and techniques for describing facial activities 

was created originally for the purpose of psychological research, but it began to draw 

attention by computer graphics community and entertainment industry in recent years [22]. 

FACS defines 46 units of primitive facial movements and poses called Action Unit (AU). 

Through using blendshape method to combine relevant AUs, various facial expressions can 

be obtained. Another method is Facial animation parameter (FAP), which is an extension of 

FACS. FAP defines 68 feature points for facial expression synthesis in the MPEG-4 standard 

[23], which are closely related to muscle actions.  Chin et al [48] proposed an intensity-based 

facial expression cloning method for low-polygon-based application. Facial expression 

intensities are explicitly measured and represented by a set of parameters, which are then 

mapped to the target face using three mapping functions. Our method does not explicitly 

measure facial expression intensity but use local geometric information to represent the 

expression.  

Most methods mentioned above have restriction on mapping facial motions between faces 

with less resemblance.  Moreover, the issue of validity of the facial animation has not been 

usually taken into account. In this paper, we proposed a framework for generating facial 

animation considering both issues above. 

 

 
3 Static facial expression mapping 

 
As human beings are very sensitive to even subtle changes on facial expressions, any fake 

movements on faces would cause an Uncanny Valley effect. To overcome this problem from 

the source root, various techniques can be used to capture facial movements from real human 

beings [30, 50]. After recording the facial movements, the next questions are how to adapt 

these movements to different identities; how to adapt the limited facial movements to various 

facial expressions. We solve the first question by developing a facial expression method. 

And for the second question, we adopt the FACS method. The recorded movements are 

represented by 44 FACS AUs. In this section, we will describe an approach on how to map 

the recorded facial expression to different identities with various face shapes and topologies. 
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3.1 Correspondence establishment 

 
Due to variable number of vertices and mesh types across different individuals, we need to 

establish correspondence between the source face and the target face model. Since it is a 

nonlinear problem to fit a template mesh to a target model data with different vertex number 

and topologies, the optimization could be trapped in local minima leading to fake mesh 

fitting. Recently, Sun et al [32] proposed a method for establishing vertex correspondences 

using a tracking-model-based approach and coarse-to-fine adaptation, which was used for 

analyzing dynamic 3D face model sequences. To avoid the local minima problem, we also 

adopt a coarse-to-fine strategy. A low resolution template model is fitted to the target model 

in the first place. Then, a higher resolution template, which is achieved through subdivision, 

is applied for final fitting. Then, the fitted intermediate face model is used to map the 

movements to the target model by projecting the target face model onto the deformed 

template mesh, so each projection point can be located according to the triangle it falls in on 

the deformed template mesh. The flowchart of the facial expression mapping and animation is 

illustrated in Fig. 2. 

Mesh registration transforms the template mesh model to align with the target face model. 

The registration process consists of two stages, i.e., rigid registration and nonrigid 

registration. 

In the rigid registration stage, the rigid transformation T is computed, which consists of 

rigid translation, rotation and scale. This is achieved by using the iterative scaling closest 

point algorithm (SICP) [51]. Since this is a rough alignment, the computation is only applied 

to landmarks. The template mesh model is then transformed to align with the target model. 

Apart from rough alignment, the rigid registration speeds up the whole registration procedure. 

In the nonregistration stage, the transformed template face model is iteratively deformed. 

Nonrigid transformation is computed for across all vertices on both models. In iteration, the 

template mesh searches and deforms to approximate the closest vertices on the target model 

through minimizing a total energy consisting of three energy terms. 

The first energy term 
cE represents resemble-point energy which moves each vertex of the 

template mesh to the most resemble vertex on the target mesh. We define the resemble points 

based on geometric features of the mesh model, which is represented by Gaussian curvature 

at each vertex. In the case of the point cloud model, Gaussian curvature is calculated using 

the method [24]. 

   

where is is the most resemble  point on the temple mesh to the vertex it on the target mode.  

The smoothness term 
sE is used to keep the original topological relationship in one-ring 

neighborhood. 
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where jv  is one-ring neighbouring vertices of vertex iv on the deformed template mesh. 

Vertex
ov is the template vertices before deformed.   

To assist the registration procedure, we manually label 44 landmarks pairs on both 

template mesh and the target mesh. Those landmarks are deformation constraints in iteration.  
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(a)                                     (b)                                    (c) 
Fig. 3. An example of registration result. (a) Geometry of original face models; (b) conformed mesh models; 

(c) overlap of conformed face models on original models illustrating the error of registration. 

The third item is the landmark constraint mE . Thus the deformation procedure can be defined 

as follows: 
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    To accelerate the registration and improve the fitting, we employ a coarse-to-fine strategy. 

A coarse template face model with 1200 vertices is used first for the registration. And then a 

dense mesh of the same template model with 4735 vertices is applied after the convergence of 

the registration of the coarse model. One result of registration example is demonstrated in 

Fig. 3. 

 

3.2 Deformation transfer 

 

Sorkine et al. [38] proposed a method for Laplacian surface editing, which is invariant to 

rotation and scaling. The sensitivity to linear transformation of Laplacian coordinate is 

overcome by applying a transformation 
iT for each vertex iv . 

   

Fig. 4. Illustration of 1-ring vector 

 

 

  (3) 



7  
 

As a consequence, )(VTi
 is a function ofV  , so the reconstructed shape is obtained by 

minimizing the following error function:  

                


2

1

2 ||~||||)~()
~

(||
~

ii

n

i

iii uvvLVTVE                     (4) 

Inspired by the Laplacian coordinate method, we propose an approach based on local 

geometry encoding, which is based on the relationship of 1-ring vectors between the original 

shape and the deformed shape. Laplacian coordinate encodes vertex iv in 1-ring neighbours to 

one vector i , while we try to explicitly use these 1-ring neighbours.  Before we detail the 

proposed method, let us first have a brief review of Laplacian coordinates.  

    Suppose the mesh is represented  by a graph G=(V,E), where ],...,,[ 21 nvvvV   is the set 

of vertices and E is the edges. And iv  denotes vertex i in 3  and i   is the Laplacian of iv . 

Laplacian coordinates is assumed as discretization of continuous Laplace-Beltrami operator 

[13]. Laplacian coordinates are defined as the difference between vertex iv  and its 1-ring 

neighbours. 
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where ijw  is the weight on the edge ije with 



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1
iNj

ijw

  

and ijw  can be computed as 

follows:  

                                   






)(iNj

ij

ij

ij
a

a
w                                              (6) 

     Several methods for calculating edge weight have been proposed in recent years. Here is a 

brief introduction to three commonly-used weights: 

                                                    1ija                                                      (7) 
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ji

ij
vv

a





)2/tan()2/tan(                                     (9) 

where equation (7)  are uniform, (8)  the cotangent weight, and equation (9) the mean-value 

weight. Fig. 4 demonstrates these angles used in above equations.  
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 Laplacian operators described above encode geometric information the mesh, so mesh detail 

is preserved in deformation using Laplacian coordinates to some degree. Taubin proposed 

that the length of the Laplacian vector is equal to the product of the average edge length times 

the mean curvature [36]:  

                                      
ii

iNj

jiiji Nkvvw  
 )(

)(

                             (10)

 

where ik  is the mean curvature of the surface at vertex iv and 
iN is the surface normal at iv . 

More specifically, Meyer at al. [35] proposed to approximate the mean curvature normal 

vector using Laplacian coordinates: 
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where
iA  is the 1-ring area of the Voronoi region around vertex iv , and i , i  are the two 

angles sharing the edge ),( jiE  illustrated in Fig. 4. 

      Therefore, mean curvature normal as an approximation of Laplacian coordinates in 1-ring 

neighbourhood has the similar characteristic of capturing the local geometric information 

with Laplacian coordinates, which is demonstrated in Fig. 5.  

   In this paper, we propose to use mean curvature normal as the extra vector of 1-ring vector 

for encoding the local deformation information which is to be introduced as follows. 

    We use 1-ring vector to capture local mesh detial. Let V be 1-ring vector, V=[vi-vi1 vi-

vi2,...vi-vim], where  are 1-ring neighbours of iv . We further take the mean curvature into 

account in 1-ring vector to capture more local surface information in 1-ring neighbourhood. 

Therefore 1-ring vector V=[vi-vi1 vi-vi2,...vi-vim, vn],  where nv  is the mean curvature normal 

vector at vertex iv .  

     We suppose that there exists a transformation matrix
iT , which relates the 1-ring vector V 

of the original shape to the deformed shape. Thus the error function can be formulated as 

follows: 

                      2

1
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Fig. 5 Color coded face of mean curvature normal. 

Where 
iV

~
is the 1-ring vector of iv~  on the deformed shape. Specifically, for vertex iv , this 

relationship can be expressed as below: 

                                           VVT
~

                                                     (13) 

We notice that in (12), for a given shape M and its deformed shape M
~

and 1-ring vector iV
~ we 

can simply work out the transformation T for vertex iv :  

                                            1)'('
~  VVVVT

                                       (14)
 

    Specifically, our goal is to transfer this deviation from the source face to a different neutral 

face model.  The basic idea is that we expect the transformation matrix T to encode the 

deformation information for each 1-ring vector, which is transferable to any face models. 

Then, we can apply transformation matrix T to the target face model to obtain the 

deformation. Ideally, by applying the transformation matrix T to the neutral face model, we 

can obtain its deformed expression model. Thus, the minimization of error function in (12) 

can be reformulated as follows:  

                                2||
~

||minarg t

i

t

ii

T

VVT

i

                                   (15) 

where t

iV and t

iV
~

are the  1-ring vector for the target neutral and unknown deformed face 

model.  

    To prevent the edge length of 1-ring neighbourhood from changing in any cases, we apply 

the following edge energy term presented in [31]: 

                                         2||)()(|| jiji vvrvv                      (16) 
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o

jil , and lij are the original and the current length of edge ije  respectively. The above  
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equation can be reformulated as matrix form: 

                                   
2

)(vrHV                                                   (17) 

where H is nx3n sparse matrix. 

    Thus, deformation can be achieved by minimizing the following energy: 

                          22 ||)(||||
~
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     The solution to the minimization problem of the above equation is equivalent to solving a 

system of linear equation, which can be represented as the following form: 

                          2

2
~...~

||
~

||minarg
1

bXA

nvv



                                             

(19) 

where ]'~,...~,~,~,...~,~[
~

2121 mnmmn vvvvvvX   is a vector consisting of xn3  unknown entries 

of the deformed face model: vertex iv~ and mean curvature normal vector miv~ . And b contains 

information from the source deformation and given target neutral face vertices. Each entry of 

b is computed as follows: 

                               VTTTb iiii

1]'[  .                                                (20) 

   The dimension of large and sparse matrix A is [3xn, 3xn], which associates unknown X
~

with b. The linear system can be solved using the normal equation: 

                         bAAAX ')'(
~ 1 .                                                     (21) 

    It should be noted that by solving (18), we obtain both vertex and mean curvature normal 

of the deformed face model. The first n entries of X
~

correspond to vertices of the new 

transformed face model. Since the model is in 3D space, each entry actually consists of 3 

components (x, y, z).  

    It is expensive to solve the linear system directly. It takes more time to solve with a dense 

model. Therefore, it is more efficient to decompose A'A by LU factorization in advance for 

computation. Then component x, y and z are solved separately in (21), whereas we only need 

to decompose A'A once. Fig. 6 demonstrates the examples of facial expression mapping. 
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Fig. 6. Facial expressions are transferred from the source face models (row 1) to the target face model (row 2). 

Column 1 is neutral face model. Expressions from column 2 to 4 are disgusting, sad and surprise. Row 3 and 

row 4 are color map of source and target facial expressions, where cold-color and hot-color indicate minimum 

deviation and maximum deviation for each individual face deformation. Row 5 and 6 illustrate the check board 

mapping faces showing the deformation pattern of facial expression. 

4  Movement and texture mapping 

 
4.1. Movement mapping 

 
After deforming the template mesh to the target face model, the deformed template mesh is 

nicely fitted to the target face. We then parameterize the target face in the space of the source 

model. More precisely, we concern only those vertices falling in the surface of the source 

model, since those vertices are possible to move driven by the conformed template mesh. 

Vertices outside the range of conformed template mesh will not be considered for nonrigid 

deformation in this paper. This is actually not the truth in reality. Since in some cases, when 

human beings make facial expressions, there are movements in the neck area. This happens 

especially when facial expressions involve mouth movements. 

      In this paper, we focus on the front view facial expression and animation only on the face 

area, so the template face model mainly covers the front view. There might be slightly 

unrealistic around the neck area when generating facial animation. We have removed the 

rigid head motions from the source model to reduce the effect in the neck area. Here, two  
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steps are conducted to achieve this movement mapping. 

 Step 1: vertex projection 

     It is used to find those vertices of the target model which falls into each triangle of the 

source face model. To this end, we  project vertices of the target face model onto the 

deformed template mesh along their normal direction. By using normal projection, we can 

avoid missing those vertices on the deformed template which do not exactly lie in the triangle 

of the target mesh due to registration errors. 

 Step 2: barycentric coordinate calculation 

   We calculate the barycentric coordinates of those vertices falling in each triangle. Then we 

can obtain the movement of the vertices falling in triangles based on their barycentri 

coordinates. Suppose projection point pv  corresponding to vertex p of the target model falls 

in triangle t of the deformed template mesh, so the deviation of each vertex p can be obtained 

using its barycentric coordinates. Assume deviation at triangle t ),,( 321 vvv  is 

),,( 321 ddd . Then deviation pd  of point pv  is calculated using the following equation: 

                                    pppp wdvdudd 321   

where ),,( ppp wvu  is barycentric coordinate of pv   with respect to ),,( 321 vvv .  

Fig. 7 shows examples of the movement mapping result for a face model of point cloud 

data. The point cloud human face has not been preprocessed. It contains noises and even there 

is a small but clearly noticeable crevice on the lower jaw. We have generated six primary 

facial expressions for this point cloud data using the methods introduced above. Since we 

only captured 3D surface from a real human being, there is no opening on the mouth area. 

When mapping facial movements to this point cloud data for some facial expression eg. angry 

and fear etc. involving mouth opening, those points in this area will not dealt. This problem 

could be solved by manual creating an opening in the mouth area and rigging the head with 

teeth etc.  

 

Fig. 7 Illustration of movement mapping result of female face (point cloud). Top row: expression of disgust, 

sad and surprise corresponding to those conformed expression in Fig. 6. Bottom row: three facial expression 

happiness, anger and fear. 

  

 

(22) 
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Fig. 8. Result of facial expression mapping. Columns from left to right are neutral face and six primary facial 

expressions for the source and the target face: happy, anger, surprise, sad, disgust and fear. Top row is the 

source face; conformed target face (row 2); Row 3 is the target model, where the left column is the original 

neutral face model and the rest are six facial expression model mapped from the source facial expression. Row 

4 is textures. Row 5 is the conformed target faces with textures and bottom row is the textured target model. 

The bust model contains 47516 vertices and 95028 faces. The height of the bust model is 100 mm, which 

makes the face about 30mm, whereas the length of the source neutral face model in the first two rows is about 

85 mm. 
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Fig. 9. Example AUs of the target old man face model transferred from the recorded AUs of certified FACS 

actors.  Top row is the neutral face.  Row 2 from left to right: AU4, AU6L, AU9, and AU10LOpen; Row 3: 
AU11L, AU11R, AU12 and AU12L. Row 4: AU12R, AU14, AU14L and AU14R. 

                                

Fig. 10. Illustration of recorded AU examples.  Top row: AU2, AU4, AU5, AU12; Bottom row: AU20, AU15, 

AU25 and AU43.  

4.2 Texture mapping 

Our face model consists of both geometric structure and texture information. The texture is 

mapped to the target face model through two steps:  

 Map the texture to the conformed face model 

     During the process of reconstruction of 3D face data, the 3D coordinates of each pixel of 

the face image are obtained from epipolar geometry information of stereo vision [20, 34].  
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The 3D coordinates corresponding to the template mesh are sampled.  An UV is then 

constructed by projecting those 3D sampled points back to 2D image space based on the 

obtained camera parameters.   

 Generate texture on the target face model 

     Barycentric coordinates of projection vertices of the target model have already been 

calculated using the method in section 5.1. Each projection vertices has a corresponding pixel 

on the 2D image, which can be sampled using its barycentric coordinate: 

 

                            pppp wIvIuII 321 
                                  (23) 

where ),,( 321 III is the RGB value of the pixel corresponding to triangle ),,( 321 vvv . We 

compare the texture sampled using barycentric coordinates with the one using bilinear 

interpolation. 
 

 
5 Animation generation 

 

In this paper, we propose to integrate dynamic parameters for generating valid facial 

animation. We consider these data as “valid” since they were generated by using 

psychophysical methods. We want to make sure that the messages that the synthesized facial 

animation intended to deliver can be precisely perceived the same by the viewers. To this end, 

we used the reverse correlation method from observer response to determine the dynamic 

parameters.  We generated random facial animation stimuli using the 3D Morphable Model 

method based on Facial Expression Coding System (FACS) [29]. We tend to automatically 

generate facial animation for the target face model reflecting the true muscle movements, 

which were recorded from real human beings. 

5.1 Create FACS database 

We used FACS AUs as the key shapes for expression generation. Advanced technologies 

make it possible to reconstruct or capture 3D shapes [30, 33]. We have created a database of 

FACS Action Unit (AU) by recording AUs from certified actors using a 4D stereo imaging 

system [30].  

 

 

Fig. 11. Interpolation Curve for dynamic happy facial animation 
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Fig. 10 demonstrates some example images of those recorded AUs. Those certified actors 

must learn not only to identify FACS codes in static face images, but also be able to produce 

the FACS codes themselves in terms of FACS. Each actor in our database was capable of 

performing most AUs (between 20 and 30). We instructed actors to perform only those FACS 

AUs that they were confident about to produce in isolation from others. Those recorded AUs 

are among the most often used in generating facial expressions. During the recording, we 

instructed actors to produce each AU with smoothly progress starting from a neutral face 

through to full AU activation, and then moving back to the neutral. To assist post-processing 

the recorded data, we asked each actor to wear a black cap to hide the hair and a small white 

head-mounted board marked with nine black dots.  

    After data post-processing we obtained a sequence of 3D face models for each AU with the 

same mesh topology. We extracted the deviation of each AU at peak frame based on the 

neutral frame. Then we obtained a set of AU deviations, which are transferred to the 

conformed model of the target face using the proposed deviation transfer method. Therefore, 

a set of AU models based on the target model are generated. Some example AUs of the old 

man model are shown in Fig. 9.  

 

5.2 Dynamic parameters 

To animate the FACS 3D Morphable Model, we generated random unimodal temporal morph 

functions per FACS AU. Those morph functions is formed by 6 parameters including “Onset 

Latency”, “Offset Latency”, “Acceleration”, “Deceleration”, “Peak Latency” and “Peak 

Amp”. They served as the source dynamic parameters for the stimuli, which was presented as 

30 time frames facial animation video with 24 frames per second. Basically, we generated 

2400 random facial animations used this method. We then instructed 8 novel western 

Caucasian observers to categorize these facial animation in terms of 7 Alternative Forced-

Choice into 6 primary facial expression of emotion based on FACS. These facial expression 

categories included  “Happiness”, ”Surprise”, ”Fear”, ”Disgust”, ”Anger” and ”Sadness”. We 

also provided a response option “Other” for those observers for the cases that they thought no 

categories the observed facial expression belonging to. Observers rated the perceived 

emotional intensity of each stimulus using a 5 rating scale. When performing a linear 

regression between the intensity ratings for the emotion and each of the 6 random temporal 

parameters for those AUs, we were able to obtain the temporal curve for each facial 

expression in the FACS space. Since not all of those involved AUs activated and stopped at 

the same time, each individual AU has a separate temporal curve. Fig. 11 illustrates a set of 

parameter curves for generating animation of happiness expression. Readers are referred to 

the paper by Yu etc. [47] for the detailed experiment setup for generating the dynamic 

parameters.  

 General speaking, after obtaining static facial expressions for the given face and dynamic 

parameters, facial animation can be achieved using two methods: the direct animation 

sequences mapping or the indirect blendshape method. For the direct method, the mapping 

algorithm is applied to every frame of source face model to get the sequence of the sequence 

of the target face model. For the indirect method, we first obtain the set of blendshapes of the  
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Table 1 Various model information. 

 

conformed model of the target face model by mapping the set of source blendshapes to the 

conformed face model. Then intermediate facial expression model of the conformed model is 

formed by combining those blendshapes of the conformed target model. Finally, the new 

facial expression is generated by movement mapping from intermediate expression model. 

We have generated animation of six facial expressions for each face of Mount Rushmore 

data. The Mount Rushmore data figure and animation video can be found in the 

supplementary material related to this paper. The animation is created in 30 frames per 

second. To illustrate the facial animation effect, only one face is animated in each frame.  

 

6 Experiments 

 

We have tested the proposed method on various types of models including triangular mesh, 

quadrilateral mesh model, point cloud model, dense mesh model and sparse mesh model. 

Table 1 presents the detail of some example models shown in this paper. Fig. 12 shows 

some results of face model old man, ogre and female elf with decreasing vertex numbers. 

Each facial expression is shown at its peak frame. Four faces in mount rushmore data are 

animated consecutively. The female elf model is sparse polygon model. After facial 

expression mapping, the result still shows clear deformation detail around lips and eyes 

(bottom row in fig. 12). Those face model have various face shapes and topologies but 

could be animated easily with the proposed framework.  
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Fig. 12. The top row and second row show three wireframe models and their corresponding conformed mesh: 

ogre (column one), female elf (column two) and male head (column three). Row three demonstrates fitting 
error distribution, where different color represents the fitting difference.  From row four to  row 2 to the bottom 

row are the results of six facial expression mapping for those three models in row 1, where column one are the 

neutral expression; from column two to column 7 are six facial expressions: anger, sadness, fear, happiness, 
disgust and surprise. 
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7 Conclusion and future work 

We have presented a 3D facial animation framework for automatic facial animation 

generation. It included methods for automatic static facial expression mapping and valid 

dynamic facial parameter integration. The facial expression deviation is transferred based on 

local encoded geometric information of face models. The advantage of the proposed method 

enables us to Map facial movements to facial models regardless of their mesh topologies 

triangular or quadrilateral mesh. We have demonstrated that the proposed method works for 

different types of face models, such as point cloud model, triangular face model and 

quadrilateral mesh models. Apart from manually labeling a few feature landmarks on the 

face, all the rest procedure is automatic, which enables the method work very efficient. 

      Though the manual labeled markers on the faces play an important role in fitting 

especially at the early stage of optimization, the whole optimization procedure of the fitting 

balances the importance of those marks and the actual shape. Therefore, the quality of the 

fitting depends on many factors including the complexity of the target face, point density and 

marker accuracy etc. In the future, to improve the current method, we would like to make it as 

a fully automatic procedure by developing an automatic and precise feature point detection 

method on 3D faces [52]. The parameters generated by the unimodal method have 

demonstrated a pleasant effect, but it can be used for generating only a single modal 

animation. In future, we could still need to explore some more flexible methods for 

generating multimodal dynamic facial parameters. 
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