3,676 research outputs found

    Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program

    Get PDF
    An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules such as ubiquitin a reasonable speedup (up to a factor of six) is observed for up to 16 cores. The SCF convergence is greatly improved by PCM for proteins compared to the gas phase

    Model ab initio study of charge carrier solvation and large polaron formation on conjugated carbon chains

    Full text link
    Using long C_{N}H_{2} conjugated carbon chains with the polyynic structure as prototypical examples of one-dimensional (1D) semiconductors, we discuss self-localization of excess charge carriers into 1D large polarons in the presence of the interaction with a surrounding polar solvent. The solvation mechanism of self-trapping is different from the polaron formation due to coupling with bond-length modulations of the underlying atomic lattice well-known in conjugated polymers. Model ab initio computations employing the hybrid B3LYP density functional in conjunction with the polarizable continuum model are carried out demonstrating the formation of both electron- and hole-polarons. Polarons can emerge entirely due to solvation but even larger degrees of charge localization occur when accompanied by atomic displacements

    GIAO-PCM Calculations on Alanine Diamide Models Aimed at Predicting Protein Secondary Structures

    Get PDF
    In this paper we extend our theoretical studies dealing with the dependence of relative proton and carbon chemical shifts (CSs) of protein backbone atoms on their conformational position. In an earlier paper (A. Czajlik, I. Hudáky, A. Perczel, J Comp Chem 2011, 32, 3362) we reported on a fair agreement between calculated and observed backbone CSs as a function of backbone conformation. Applying the polarizable continuum model (PCM) in this work, we compare relative CSs of fully optimized alanine diamide conformers with gas phase calculations and experimental results. Along a path on the Ramachandran surface, we collated calculated relative CSs obtained with and without explicit water molecules, as well as with and without considering the PCM reaction field. Furthermore, we traced the energetically relevant reaction paths along the torsional angle ψ connecting the lowest energy minima (helical, extended, polyproline II and inverse γ-turn) on the Ramachandran plot, with the prospect to facilitate identifying them by their relative CSs. We found that consideration of the solvent effect of the environment around a diamide model improves the agreement with experimental findings on abundant conformers. This agreement is of the level achieved previously by a thorough gas phase investigation on considerably larger oligoalanine models. By relating DeltaδCα, DeltaδHα and DeltaδCβ values of polyproline II and inverse γ-turn to the experimentally well characterized helical and extended data, our calculations contribute to protein secondary structure prediction based on nuclear magnetic CS

    An Integrated Effective Fragment—Polarizable Continuum Approach to Solvation: Theory and Application to Glycine

    Get PDF
    A new discrete/continuum solvation model has been developed by combining the effective fragment potential (EFP) for the discrete part and the polarizable continuum model (PCM) for the continuum part. The usefulness of this model is demonstrated by applying it to the calculation of the relative energies of the neutral and zwitterionic forms of glycine. These calculations were performed by treating glycine with ab initiowave functions. Water clusters were treated with bothab initio and EFP methods for comparison purposes, and the effect of the continuum was accounted for by the PCM model. The energy barrier connecting the zwitterionic and neutral three-water clusters was also examined. The computationally efficient EFP/PCM model gives results that are in close agreement with the much more expensive full ab initio/PCM calculation. The use of methods that account for electron correlation is necessary to obtain accurate relative energies for the isomers of glycine

    A PHYSICAL CHEMIST'S GUIDE TO APPLIED COMPUTATIONAL CHEMISTRY: PRACTICAL CALCULATION OF POLYPROTIC ACID PKA VALUES, MERCURY HALIDES, THIOLS, AND METHYLMERCURY ANALOGUES' STABILITIES AND STRUCTURES, AND RAMAN SPECTRA OF MYO-INOSITOL HEXAKIS PHOSPHATE.

    Get PDF
    In this thesis, we present both ab-initio investigation of the series of compounds HgClxy and the charges of each system running x=(0,1,2,3,4) and y=(+2,+1,0,-1,-2). We investigate the energies of formation using Gaussian 03 (G03), a quantum chemistry package. In our calculations, HgCl3-1 was most stable in the gas phase, and HgCl20 the most stable in the polarizable continuum model water-solvated phase. The addition of a solvent layer of H2O molecules did not significantly affect the results. DFT calculations on the series running between HgCl+, through HgCl20, and HgCl3-1 compounds done with the Amsterdam Density Functional (ADF) program from Scientific Computing and Modeling (SCM) yielded absolute Hg NMR shieldings with a Δ of approximately -1000 ppm for each additional atom of Chlorine bonding to the Mercury for the first two additions. We also investigate H3PO4, H3AsO4, and the HClOx acid series with x=(1,2,3,4). We have succeeded in determining pKas with theoretical quality results within 2 kcal/mol of experimental measurement for the majority of the systems examined by use of a discovered linear correlation between experimental and calculated pKa values. Finally, we present our contribution to a joint project involving myo-inositol hexakis phosphate with an experimental group, confirming the observed experimental trends seen in the Raman spectra
    corecore