191 research outputs found

    Cross-Modality Feature Learning for Three-Dimensional Brain Image Synthesis

    Get PDF
    Multi-modality medical imaging is increasingly used for comprehensive assessment of complex diseases in either diagnostic examinations or as part of medical research trials. Different imaging modalities provide complementary information about living tissues. However, multi-modal examinations are not always possible due to adversary factors such as patient discomfort, increased cost, prolonged scanning time and scanner unavailability. In addition, in large imaging studies, incomplete records are not uncommon owing to image artifacts, data corruption or data loss, which compromise the potential of multi-modal acquisitions. Moreover, independently of how well an imaging system is, the performance of the imaging equipment usually comes to a certain limit through different physical devices. Additional interferences arise (particularly for medical imaging systems), for example, limited acquisition times, sophisticated and costly equipment and patients with severe medical conditions, which also cause image degradation. The acquisitions can be considered as the degraded version of the original high-quality images. In this dissertation, we explore the problems of image super-resolution and cross-modality synthesis for one Magnetic Resonance Imaging (MRI) modality from an image of another MRI modality of the same subject using an image synthesis framework for reconstructing the missing/complex modality data. We develop models and techniques that allow us to connect the domain of source modality data and the domain of target modality data, enabling transformation between elements of the two domains. In particular, we first introduce the models that project both source modality data and target modality data into a common multi-modality feature space in a supervised setting. This common space then allows us to connect cross-modality features that depict a relationship between each other, and we can impose the learned association function that synthesizes any target modality image. Moreover, we develop a weakly-supervised method that takes a few registered multi-modality image pairs as training data and generates the desired modality data without being constrained a large number of multi-modality images collection of well-processed (\textit{e.g.}, skull-stripped and strictly registered) brain data. Finally, we propose an approach that provides a generic way of learning a dual mapping between source and target domains while considering both visually high-fidelity synthesis and task-practicability. We demonstrate that this model can be used to take any arbitrary modality and efficiently synthesize the desirable modality data in an unsupervised manner. We show that these proposed models advance the state-of-the-art on image super-resolution and cross-modality synthesis tasks that need jointly processing of multi-modality images and that we can design the algorithms in ways to generate the practically beneficial data to medical image analysis

    Cross-Modality Image Synthesis via Weakly Coupled and Geometry Co-Regularized Joint Dictionary Learning

    Get PDF
    Multi-modality medical imaging is increasingly used for comprehensive assessment of complex diseases in either diagnostic examinations or as part of medical research trials. Different imaging modalities provide complementary information about living tissues. However, multi-modal examinations are not always possible due to adversary factors, such as patient discomfort, increased cost, prolonged scanning time, and scanner unavailability. In additionally, in large imaging studies, incomplete records are not uncommon owing to image artifacts, data corruption or data loss, which compromise the potential of multi-modal acquisitions. In this paper, we propose a weakly coupled and geometry co-regularized joint dictionary learning method to address the problem of cross-modality synthesis while considering the fact that collecting the large amounts of training data is often impractical. Our learning stage requires only a few registered multi-modality image pairs as training data. To employ both paired images and a large set of unpaired data, a cross-modality image matching criterion is proposed. Then, we propose a unified model by integrating such a criterion into the joint dictionary learning and the observed common feature space for associating cross-modality data for the purpose of synthesis. Furthermore, two regularization terms are added to construct robust sparse representations. Our experimental results demonstrate superior performance of the proposed model over state-of-the-art methods

    XmoNet:a Fully Convolutional Network for Cross-Modality MR Image Inference

    Get PDF
    Magnetic resonance imaging (MRI) can generate multimodal scans with complementary contrast information, capturing various anatomical or functional properties of organs of interest. But whilst the acquisition of multiple modalities is favourable in clinical and research settings, it is hindered by a range of practical factors that include cost and imaging artefacts. We propose XmoNet, a deep-learning architecture based on fully convolutional networks (FCNs) that enables cross-modality MR image inference. This multiple branch architecture operates on various levels of image spatial resolutions, encoding rich feature hierarchies suited for this image generation task. We illustrate the utility of XmoNet in learning the mapping between heterogeneous T1- and T2-weighted MRI scans for accurate and realistic image synthesis in a preliminary analysis. Our findings support scaling the work to include larger samples and additional modalities

    TISS-net: Brain tumor image synthesis and segmentation using cascaded dual-task networks and error-prediction consistency

    Get PDF
    Accurate segmentation of brain tumors from medical images is important for diagnosis and treatment planning, and it often requires multi-modal or contrast-enhanced images. However, in practice some modalities of a patient may be absent. Synthesizing the missing modality has a potential for filling this gap and achieving high segmentation performance. Existing methods often treat the synthesis and segmentation tasks separately or consider them jointly but without effective regularization of the complex joint model, leading to limited performance. We propose a novel brain Tumor Image Synthesis and Segmentation network (TISS-Net) that obtains the synthesized target modality and segmentation of brain tumors end-to-end with high performance. First, we propose a dual-task-regularized generator that simultaneously obtains a synthesized target modality and a coarse segmentation, which leverages a tumor-aware synthesis loss with perceptibility regularization to minimize the high-level semantic domain gap between synthesized and real target modalities. Based on the synthesized image and the coarse segmentation, we further propose a dual-task segmentor that predicts a refined segmentation and error in the coarse segmentation simultaneously, where a consistency between these two predictions is introduced for regularization. Our TISS-Net was validated with two applications: synthesizing FLAIR images for whole glioma segmentation, and synthesizing contrast-enhanced T1 images for Vestibular Schwannoma segmentation. Experimental results showed that our TISS-Net largely improved the segmentation accuracy compared with direct segmentation from the available modalities, and it outperformed state-of-the-art image synthesis-based segmentation methods
    • …
    corecore