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Cross-Modality Image Synthesis via

Weakly-Coupled and Geometry Co-Regularized

Joint Dictionary Learning
Yawen Huang, Student Member, IEEE, Ling Shao, Senior Member, IEEE, and Alejandro F. Frangi, Fellow, IEEE

Abstract—Multi-modality medical imaging is increasingly used
for comprehensive assessment of complex diseases in either
diagnostic examinations or as part of medical research trials.
Different imaging modalities provide complementary information
about living tissues. However, multi-modal examinations are
not always possible due to adversary factors such as patient
discomfort, increased cost, prolonged scanning time and scanner
unavailability. In addition, in large imaging studies incomplete
records are not uncommon owing to image artifacts, data
corruption or data loss, which compromise the potential of multi-
modal acquisitions. In this paper, we propose a Weakly-coupled
And Geometry co-regularized (WAG) joint dictionary learning
method to address the problem of cross-modality synthesis while
considering the fact that collecting large amounts of training
data is often impractical. Our learning stage requires only a
few registered multi-modality image pairs as training data. To
employ both paired images and a large set of unpaired data, a
cross-modality image matching criterion is proposed. We then
propose a unified model by integrating such a criterion into
the joint dictionary learning and the observed common feature
space for associating cross-modality data for the purpose of
synthesis. Furthermore, two regularization terms are added to
construct robust sparse representations. Our experimental results
demonstrate superior performance of the proposed model over
state-of-the-art methods.

Index Terms—Dictionary Learning, Sparse Representation,
Image Synthesis, Domain Adaption, Manifold Learning, MRI.

I. INTRODUCTION

MAGNETIC Resonance Imaging (MRI) is a versatile

and noninvasive imaging technique extensively used

in neuroimaging studies. MRI comes in several modalities,

for example, Proton Density (PD)-weighted images distinguish

between fluid and fat, whereas T1weighted scans have good

tissue contrast between gray matter and white matter. Each

modality offers diverse and complementary image contrast

mechanisms unraveling structural and functional information

about brain tissue. Due to variations in the brain images across

modalities, multi-modality MRI is preferred in many pharma-

ceutical clinical trials, in research studies of neurosciences, or

in population imaging cohorts targeting to understand neurode-

generation and cognitive decline. However, the acquisitions

Y. Huang and A.F. Frangi are with the Center for Computational
Imaging and Simulation Technologies in Biomedicine (CISTIB), De-
partment of Electronic and Electrical Engineering, The University of
Sheffield, Sheffield, United Kingdom (e-mail: yhuang36@sheffield.ac.uk,
a.frangi@sheffield.ac.uk).

L. Shao is with the School of Computing Sciences, University of East
Anglia, Norwich, United Kingdom (e-mail: ling.shao@ieee.org).

of a full battery of all these MR images can face constraints

associated with their cost, limited availability of scanning time,

patient comfort or safety considerations. In large scale studies,

it is not uncommon to face incomplete datasets since the

presence of imaging artifacts, acquisition errors or corrupted

data. While various post-processing solutions such as image

imputation [1] and histogram matching [2, 3] have been

proposed to compensate for these latter issues, this is usually

only at the level of derived imaging biomarkers but not of the

data itself [4, 5]. Finally, in longitudinal imaging studies where

images are collected over several years, evolution of imaging

technology may lead to the appearance of new MRI sequences

added to an existing imaging protocol in time, which were not

available as part of the imaging battery acquired at earlier time

points. In these and other applications, it would be desirable

to have a cross-modality image synthesis method that can

generate the target modality images from the source modality

scans. The ability to synthesize different modalities of the

same anatomy can benefit various practical image analysis

tasks including multi-modal registration [6, 7], segmentation

[8], and atlas construction [9, 10].

In the last few years, cross-modality image synthesis has

attracted the attention of the medical image computing com-

munity. Most techniques assume such mapping exists between

source and target imaging modalities. The problem is then

formulated as that of learning the most efficient mapping

representation. To synthesize the target from a source modality,

some methods have been proposed that construct a dictionary

from patches extracted from a single image or from image

pairs [4, 11–13] or that learn the mapping from a large set of

training image pairs [14–17]. Although these approaches have

shown great promise, they are supervised and require labeled

data sets.

In this paper, instead, we propose a single-image cross-

modality synthesis method with an application to T1w, T2w

and PDw brain MRI that utilizes a few registered multi-

modality image pairs1 while employing a larger set of unpaired

data for synthesizing the target image modality from an avail-

able source image modality. Our method extracts the common

latent features that map different image features of the underly-

ing tissues, preserves global statistical image properties across

modalities, and simultaneously, refines extracted features to

preserve the local geometrical structure in each modality. In

1Paired data requires data in both source and target domains from the same
subject and registered with each other. Unpaired data means data in the source
and target domains are from different subjects without registration.
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addition, the proposed approach requires only a few registered

image pairs to find the mapping between the appearances in

different image modalities and employs auxiliary unpaired

training images to further exploit the modality-specific ge-

ometric structure and obtain a robust sparse representation.

To complement the unpaired data with the original training

pairs, manifold ranking-based cross-modality image matching

is employed as a criterion to pick up features of the target

domain from most similar subjects in the source domain.

The mapping between multi-modality data can be complex

and highly nonlinear. To provide the needed flexibility to

map image structures in different modalities, we determine

a common feature space by an association function that

describes and relates cross-modality data. We call the proposed

method Weakly-coupled And Geometry (WAG) co-regularized

joint dictionary learning, and perform extensive experiments

to verify its performance.

The contributions of this work are threefold:

(1) WAG is a unified model, which learns a pair of (not

coupled) dictionaries with a common feature space for

medical imaging cross-modality synthesis. WAG automat-

ically trains dictionary pairs and computes an association

function between source and target modality data based

on only a few registered image pairs;

(2) To enrich this model, we design a cross-modality image

matching criterion that acts collaboratively with a larger

set of unpaired images. This allows identifying correspon-

dences across source and target domains that are invariant

to pose transformations;

(3) We deal with the considerable difference in data dis-

tributions from different modalities (i.e. T1w, T2w and

PDw MRI) by simultaneously minimizing the distribution

discrepancy of similar instances and preserving geometric

structures in each domain.

A preliminary version [5] of this work was presented

earlier at the SASHIMI Workshop in MICCAI 2016

(www.cistib.org/sashimi2016). This work adds to the seminal

version in significant ways. First, we improve the synthesis

model by introducing a cross-modality image-matching crite-

rion to connect and integrate all information from both regis-

tered and unregistered data in different modalities to describe

the diversity of human brain imaging. Second, we extend

the single geometry regularization by preserving modality-

specific local geometric properties to penalize undesired loss

of information. Third, we consider the flexibility of domain-

specific information and construct a common feature space

by a mapping function that describes and associates cross-

modality data. Fourth, we also extend the original experiments

from only comparing with one baseline method to several

recently published approaches involving both supervised and

unsupervised settings. The proposed method demonstrates

state-of-the-art synthesis results using two evaluation metrics

in all of our experiments.

The remainder of this paper is organized as follows. Section

II reviews related work. Section III defines the cross-modality

synthesis problem and introduces our proposed method. The

experimental results are demonstrated in Section IV with

discussions. The discussion of this work is given in Section

V. Section VI concludes the paper.

II. RELATED WORK

To synthesize a target modality image from a source modal-

ity image, several approaches have been suggested in the

literature with promising results [13, 15, 16]. Most of these

methods can be broadly referred to as example-based methods

and roughly subdivided based on the size of the training set.

Example-based methods learn the source-target mapping

from a very small number of source-target image pairs (e.g.

several or even a pair of images) by extracting multiple

image patches from the source image and assuming the same

sparse codes are shared between source and target modality

spaces. One of the well-established cross-modality synthesis

approaches in this category is Hertzmann et al.’s image

analogies [11], which transfers the texture information from

a source modality space onto a target modality space. The

same strategy is also applied to facilitate multi-modal image

registration in correlative microscopy [6]. Kroon et al. [18]

mapped between T1w and T2w magnetic resonance images

by simply using the peaks in a joint histogram of registered

image pairs to transform between source and target image

representations. Techniques based on sparse representations

have been presented, which separately learn two corresponding

dictionaries from registered image pairs and synthesize the

target MRI modality data from the patches of the source MRI

modality [4]. Recently, Jog et al. [13] proposed a nonlinear

regression-based image synthesis approach that used registered

image pairs to train a random forest regressor for predicting

the target from the source image intensity.

Some example-based methods learn the source-target map-

ping assuming that a large set of source-target modality image

pairs (e.g. the whole dataset) is available. These approaches

vary on how to generate a model (e.g. learning a dictionary,

a manifold or a network) that relates to the number of

the patches of the registered image pairs. In measuring the

similarity between training and test data of the same modality,

Ye et al. [14] proposed an iterative patch-based modality

propagation approach. For each patch of the test image, a

global search was performed comparing the input patch with

each patch in the training dataset. The nearest neighbors to

the input patch were found in the source domain; the target

modality image was synthesized with the corresponding target

modality patches. Rather than learning the mapping between

both domains in the original data space, coupled dictionary

learning [19] can alleviate simple cross-modality heterogeneity

in the projected feature space. As an extension, semi-coupled

dictionary learning was presented by advancing a linear map-

ping to model the relationship on the sparse representations

from both domains. Burgos et al. [16] introduced another

framework called pseudo CT synthesis for generating CT-

like image from the T1w or T2w input using multi-atlas

deformable registration and tissue contrast fusion. In [17], a

location-sensitive deep learning-based method was proposed

to explicitly utilize voxel image coordinates by incorporating

image intensities and spatial information into a deep network
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Fig. 1. Overview of the proposed cross-modality image synthesis method. Squares within the 3D images represent the extracted 3D patches with size of
5×5×5. The first step is to project the extracted paired/unpaired patches into a common feature space denoted by circles for source modality data and triangles
for target modality data respectively. Then, we measure the divergence of the distribution of the maximum mean discrepancy (MMD) over all matched pairs
from the first step to seek the intrinsic pairs in the reproducing kernel Hilbert space (RKHS). After that, to better preserve the modality-specific information,
we adopt the Laplacian eigenmaps to capture the local geometric structure for each domain and denoted by geometric co-regularization term. Finally, the
expected dictionary pairs can be trained based on the processed features.

for synthesis. Instead of using coupled image pairs as training

data, matching feature representations and learning spatial

relations with joint sparse coding [15] has shown great poten-

tial in synthesizing images across modalities. To improve the

quality of the synthesized images across different modalities,

Huang et al. [20] proposed to first align weakly-supervised

data and then generate super-resolution cross-modality data si-

multaneously using joint convolutional sparse coding scheme.

Inspired by this strategy, we integrate paired and unpaired

training data by constructing correspondences across different

modalities and leverage weakly-coupled data effectively.

As argued in [15], collecting a large number of multi-

modality images is both time-consuming and expensive, and

sometimes even impractical in medical imaging. Most of the

methods, especially the full-set-based approaches, require con-

siderable amounts of co-registered training data in both source

and target domains. Motivated by this and the above works,

we propose a more practical cross-modality image synthesis

solution that links source-target domains in a weakly-coupled

fashion, which outperforms existing state-of-the-art methods

on several experimental scenarios.

III. METHOD

In this section, we first formulate the problem formally.

Then, we propose a general framework for cross-modality

image synthesis. Our approach extends the conventional dictio-

nary learning approach by jointly learning a pair of dictionaries

from the constructed common feature space that describes and

associates cross-modality data. We also consider the minimiza-

tion of the distribution divergence between both modalities

while preserving modality-specific local geometric properties

that penalize undesired loss of information. Finally, we utilize

unpaired images in both domains as auxiliary training data

that enhances the supervised learning process. This additional

unsupervised step collaborates with and complements the

registered training image pairs. An overview of our proposed

method is depicted in Fig. 1.

A. Problem Definition

Let X = {X1, ...,XS} be the source modality images of S
subjects using modality M1, and Y = {Y1, ...,YT } be the

target modality images of T subjects imaged using modality

M2. Therefore, Xi and Yi represent the i-th subject-specific

images for each modality, and S and T indicate the total

numbers of samples in each corresponding training set. Each

domain is broken down into a registered/paired domain subset

of size R, i.e., XP = {X1, ...,XR}, YP = {Y1, ...,YR},
and an unregistered/unpaired domain subset of size T − R
or S − R, respectively, i.e. XU = {XR+1, ...,XS},
YU = {YR+1, ...,YT } so X = XP ∪XU and Y = YP ∪YU .

The assumption here is that R ≪ S, T and we only need

access to a few registered pairs and a much larger set of

unpaired images. Images in the sets X and Y are represented

as m×n matrices whose columns are each of the 3D patches

vectorized in lexicographic order. Hence, image data matrices

X = [x1, ...,xn] ∈ R
m×n and Y = [y1, ...,yn] ∈ R

m×n,

contain n overlapping 3D patches (covering the whole image

volume) of dimension m (viz. the cardinality of the 3D

patches). The training matrices X and Y are comprised of

paired training sub-matrices XP , YP and unpaired training

sub-matrices XU , YU . We denote the test image in the same

way by a matrix Xt. The test 3D patches in Xt are acquired

with modality M1, and will be the input to synthesize the

corresponding 3D patches in modality M2.

Problem Statement: We first denote the coding coefficients

AX , AY of X, Y over the learned dictionaries ΦX , ΦY , the

projected data PX , PY of X, Y in a defined common space,

and a mapping function F (·) to represent the relationship

between the sparse codes AX , AY of two domains, where
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the detailed descriptions and the corresponding mathematical

formulations are provided in the following subsections. Given

a pair of training matrices X and Y with X =
[

XP XU
]

and

Y =
[

YP YU
]

, our goal is: 1) to learn a pair of dictionaries
{

ΦX ,ΦY
}

, their sparse codes
{

AX ,AY
}

, and an association

function F (·) : M1 → M2 using the projected data PX

and PY ; and 2) to minimize the inter-modality divergence

between PX and PY , and 3) to preserve the domain-specific

local geometric structure.

B. Dictionary Learning

Assume that X = [x1, ...,xn] ∈ R
m×n is a training dataset,

which can be reconstructed by the linear combination of a set

of n coefficients that lie on a k-dimensional sparse space,

AX =
[

αX
1 , ...,αX

n

]

∈ R
k×n is associated to the dictionary

ΦX =
[

φX
1 , ...,φX

k

]

∈ R
m×k. Here, k > m to make the

dictionary over-complete [21]. Considering the reconstruction

error for each data point, the problem of learning a dictionary

ΦX for sparse representation of X can be formulated as

min
ΦX ,AX

∥

∥X−ΦXAX
∥

∥

2

F
+ λ

∥

∥AX
∥

∥

0
, (1)

where ‖·‖F is the Frobenius norm, ‖·‖
0

is the l0-norm that

penalizes non-zero elements in A, and λ denotes a regular-

ization parameter to trade off sparsity vs. reconstruction error.

As shown in [22], the minimization problem in Eq. (1) is, in

general, NP-hard under the l0-norm. An alternative solution

is to relax the l0-norm with the l1-norm and obtain a near-

optimal result [23]. The dictionary learning problem in Eq.

(1) can be reformulated as

min
ΦX ,AX

∥

∥X−ΦXAX
∥

∥

2

F
+ λ

∥

∥AX
∥

∥

1
. (2)

The above objective function is not simultaneously convex

over Φ and A. A practical solution is to alternate between

optimizing for the dictionary Φ and for the sparse codes A

fixing the other degree of freedom. This makes the problem

convex and the solution converges to a local minimum [24].

When the dictionary is fixed, the algorithm is known as

Lasso/LARS [25] with an l1 penalty over the coefficients

and can be solved by the feature-sign search approach [24].

When sparse codes are fixed, such an optimization problem

is reduced to a least squares optimization with quadratic

constraints, and can be solved using a Lagrange dual [24].

When dealing with multi-modality data, one can simply

construct two independent dictionaries using conventional dic-

tionary learning. Specifically, given two training data sets X

and Y, following the dictionary learning procedure described

in [21, 26] and Eq. (2), we can learn the dictionaries separately

to obtain the two dictionaries, ΦX and ΦY , and the two

corresponding sparse coefficients, AX and AY , respectively.

The data of each modality can be reconstructed using the

respective dictionary and associated sparse coefficients.

C. Cross-Modality Dictionary Learning

Cross-modality image synthesis is based on learning a

joint sparse representation [19] with a common set of sparse

codes shared between source and target image modalities,

i.e. AX ≡ AY . These sparse codes act on independent

dictionaries for each modality, viz. ΦX and ΦY , to reconstruct

the corresponding source and target images. To this effect,

both 3D patches in the source and target modalities must be

perfectly co-registered. To map the tissue appearance across

modalities, the joint dictionary learning strategy groups two

independent reconstruction errors (viz.
∥

∥X−ΦXAX
∥

∥

2

F
and

∥

∥Y −ΦYAY
∥

∥

2

F
) in a single objective function to be opti-

mized:

min
ΦX ,ΦY ,A

∥

∥X−ΦXA
∥

∥

2

F
+
∥

∥Y −ΦYA
∥

∥

2

F
+ λ ‖A‖

1

s.t.
∥

∥φX
i

∥

∥

2

2
≤ 1,

∥

∥φY
i

∥

∥

2

2
≤ 1 ∀i = 1, ..., k,

(3)

where A denotes the same coefficients to be enforced of

registered data pairs projected in a common feature space.

As in the single dictionary learning optimization problem,

the joint optimization function in Eq. (3) is convex regarding

the learned dictionaries, ΦX and ΦY , for fixed sparse codes

A. Therefore, the computation of A and of the dictionary

pairs can be alternated. Analyzing (3), we note that this

objective function is suitable to collaboratively learn a pair of

dictionaries, so the sparse codes in the source modality space

M1 can directly reconstruct the target modality imageM2 in

a transferable feature space.

Although joint dictionary learning achieves very good re-

sults, it assumes that source and target images, when rep-

resented with jointly learned dictionary pairs, ΦX and ΦY ,

must share the same sparse codes. In addition, all previous

work requires that the training dataset contains registered

image pairs, which imposes additional demands. In this paper,

we address the above problems by relaxing the need for a

common sparse representation and providing more flexibility

in reducing the registration requirement to a small training

dataset only.

D. Weak Coupling and Geometry Co-regularization

To make the proposed method effective for generalized

cross-modality synthesis, we combine the following ideas:

(1) we integrate paired and unpaired training data in both

modalities into a unified framework; (2) we relax the need

for a shared sparse code in source and target domains; (3) we

allow for dissimilar data distributions as required when dealing

with very different image modalities; and (4) we include a

mechanism that preserves the local geometric structure specific

to the modalities of the source and target images. In the

following, we introduce each component, and then summarize

our overall approach.

1) Cross-modality image matching: To relate and integrate

the information from the paired and unpaired training data

subsets of each modality, we introduce a criterion called

cross-modality image matching (CMIM) for incorporating the

information from the unpaired training data into dictionary

learning and cross-modality image synthesis.

In visually matching cross-modality data, it is common to

identify the same features across source and target imaging

modalities. In this work, we extract High-Frequency (HF)
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features from source and target images where the resolutions

of both modalities are similar. This is based on the assumption

that tissues may present different visual appearances one

each modality but they share similar high order edge/texture

characteristics while modality-specific details affect primarily

Low-Frequency (LF) properties [19].

In this paper, we follow [19, 27] and adopt first- and

second- order derivatives involving horizontal and vertical

gradients as the HF features for each training data by Xh =
H ∗ X, Yh = H ∗ Y. Generally, H is a high-pass filter

operator used to extract derivatives, Considering first and

second order derivatives, H is one of the following operators:

H1
1,H

2
1,H

1
2,H

2
2, where H1

1 = [−1, 0, 1], H2
1 = H1

1

T
, and

H1
2 = [−2,−1, 0, 1, 2], H2

2 = H1
2

T
. Once the features in both

domains are computed, we can use them to optimize CMIM

and define a mapping C (·) : X → Y . In particular, CMIM can

be thought of as a unilateral matching metric (i.e., the weighted

regression) that focuses on a particular goal (e.g. matching

across resolutions, modalities, or domains. [28–30]). Given

associated HF image feature sets, Xh and Yh, corresponding

to both paired and unpaired training image data sets, XP ,

XU , YP and YU , CMIM represents an ensemble of paired

and unpaired cross-modality matching sub-problems. Images

in XP and YP are endowed with a natural correspondence,

XP
⇋ YP . In contrast, CMIM finds a mapping for multi-

modality unpaired image data for XU and YU . Since XP and

YP are already registered/paired, we can assume a perfect

matching between them. By integrating the unpaired image

data, we can establish a final affinity matrix TTT ∈ R
n×n such

that C(X ,Y) =
∥

∥Xh −TTTYh
∥

∥

2

2
:

TTT =







D(xh
1 ,y

h
1 ) · · · D(xh

1 ,y
h
n)

...
. . .

...

D(xh
n,y

h
1 ) · · · D(xh

n,y
h
n)






, (4)

where D(xh
i ,y

h
j ) is a distance function generally designed to

measure the distances between each pair of HF feature vectors

in X and Y using an g-dimensional Gaussian kernel

D(xh
i ,y

h
j ) =

1

(
√
2πσ)g

e−
‖xh

i
−y

h
j ‖2

2σ2 , (5)

where σ 6= 0 denotes the kernel bandwidth. TTT establishes a

one-to-one correspondence for each source domain 3D patch.

We preserve the most relevant features with the largest D
values within Y while discarding other 3D patches. In this

way, from TTT we define T̂TT as:

T̂TT(i, j) =

{

1, if j = ji,
0, otherwise.

(6)

where ji = maxj (TTT (i, j)) is the maximum element of the

i-th row in TTT. Furthermore, we set the maximum element

T̂TT (i, ji) to be 1 where all other values are set to 0 resulting in

a binary assignment matrix T̂TT. Given T̂TT, each source patch is

only mapped to one target patch with the most similar tissue

texture. Hence, patches across different domains can be treated

as the registered pairs after such a processing, i.e., X ⇋ Y
for each xi paired with yji denoted as Pi = {xi,yji} for

i = 1 . . . n.

2) Computing the mapping function: Starting off by Eq.

(2), by minimizing the reconstruction error, the corresponding

sparse codes AX and AY for each modality can be computed,

respectively. To allow these codes to differ for the paired exam-

ples and unpaired data matched via CMIM, we assume there

exists a mapping function F : M1 → M2 with Y = F (X).
Accordingly, the sparse codes of X and Y over the dictionaries

will be related by such a mapping function F
(

AX ,AY
)

. To

build a stable mapping between two domains, Wang et al.

[31] assumed that the sparse codes from the source domain

had to be identical to those for the target domain via a linear

projection W. As suggested in [32], projecting both source

and target domain data into a common feature space can better

describe and associate cross-modality data. Inspired by this

strategy, we first define the cross-modality relationship in the

projected data PX , PY of X, Y, and replace F(AX ,AY)
by F(PX ,PY), and then incorporate the projected features

into CMIM-driven coupled dictionary learning. The objective

function of this learning model is:

min
ΦX ,ΦY ,AX ,AY

∥

∥X−ΦXAX
∥

∥

2

F
+

∥

∥Y −ΦYAY
∥

∥

2

F

+ λ
(∥

∥AX
∥

∥

1
+
∥

∥AY
∥

∥

1

)

+
∥

∥

∥
Xh − T̂TTYh

∥

∥

∥

2

2

+ νF
(

PX ,PY
)

,

(7)

where PX = QXAX ∈ R
k×n and PY = QYAY ∈

R
k×n denote the projected data of X and Y, respectively,

in the common feature space. Here, λ and ν are regular-

ization parameters. The projection matrices, QX ∈ R
k×k

and QY ∈ R
k×k are the projection matrices for AX and

AY , respectively. Generally, F(PX ,PY) can be applied to

any joint dictionary learning scheme with F(PX ,PY) =
∥

∥PX −PY
∥

∥

2

F
=

∥

∥QXAX −QYAY
∥

∥

2

F
. For example, in

Eq. (3) of [19], F is defined with an infinitely large ν
having QX = QY = I, while in [31] F is defined so

QX = I and QY = W, where I is the identity matrix. The

solutions of QX and QY are not unique. Following [32], an

additional regularization constraint should be added to ensure

the uniqueness of these solutions. Moreover, to guarantee the

projected data lands in a common space and we can synthesize

data of the target modality from projected data of the source

modality, an additional regularization constraint is provided

to make the function separately convex with respect to each

variable. Given PX and PY , we minimize their distance

in the projected common space considering the projections

separately, viz. ν
(

∥

∥AXQX −PY
∥

∥

2

F
+
∥

∥AYQY −PX
∥

∥

2

F

)

.

Solving this objective function, we obtain AX = QX−1
PY

and AY = QY−1
PX , where PX = QXAX and PY =

QYAY denote the projected data of X and Y, respectively,

in the constructed common feature space.

3) Maximum Mean Discrepancy Regularization: When the

source and target image modalities have very different tissue

appearances, corresponding patches may be associated to very

different features and, hence, the mapping derived from CMIM

may not be optimal. Matching by HF features can be insuffi-

cient here. We therefore add an extra term to CMIM to better

constrain the optimal match between image pairs. We measure
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the divergence of the distribution of the empirical maximum

mean discrepancy (MMD) [33, 34] over all matched image

pairs. MMD is a nonparametric statistic utilized to assess

whether two samples are drawn from the same distribution.

In this paper, we seek that the probability distributions of

the projected data PX and PY are identical in the common

HF feature space. To this effect, we follow [33, 35, 36] and

estimate the largest difference of PX and PY in expectations

over functions in the unit ball of a reproducing kernel Hilbert

space:

1

n2

∥

∥

∥

∥

∥

∥

n
∑

i=1

pX
i +

n
∑

j=1

pY
j

∥

∥

∥

∥

∥

∥

2

H

=
n
∑

i,j=1

pX
i

T
mi,jp

Y
j

= Tr
(

PXT
MPY

)

,

(8)

where (·)T is the transpose operator, and M ∈ R
n×n denotes

the matrix defined as:

mi,j =

{

1/n2, if j = ji, hence, {pi,pji} ∈ Pi,
−1/n2, otherwise.

(9)

The objective function is then rewritten by incorporating the

MMD regularization term into Eq. (7).

4) Geometry Co-Regularization: During dictionary learn-

ing, features of X and Y are jointly captured in the dictio-

nary atoms. However, this process focuses on the common

space learning and fails to preserve modality/domain-specific

information within the training image dataset. In this paper,

we attempt to represent specific modality properties by intro-

ducing the domain-specific graph Laplacian (a.k.a. geometry

co-regularization term). To realize this idea, Lu et al. [37] and

Zheng et al. [38] proposed the use of Laplacian eigenmaps

to respect the intrinsic geometrical structure (manifold as-

sumption) but their work focused on single-domain problems.

Inspired by such a strategy, we capture and preserve the

local geometric structure of each modality using the projected

feature space. To be specific, given PX and PY of X and Y,

respectively, one can construct two q-nearest neighbor graphs,

GX and GY , with n vertices each based on prior work by

[38]. The weight matrices WX and WY of GX and GY

are then defined as the matrices with elements wX
i,j = 1

and wY
i,j = 1 if and only if for any two features pX

i , pX
j

or pY
i , pY

j satisfying: pX
i or pY

i is among the q-nearest

neighbors of pX
j or pY

j , otherwise wX
i,j = 0 or wY

i,j = 0.

Let DX = diag
(

dX1 , · · ·, dXn
)

and DY = diag
(

dY1 , · · ·, dYn
)

be the degree matrices of PX and PY , with elements dXj =
∑n

i=1
wX

i,j and dYj =
∑n

i=1
wY

i,j . Based on the graph Laplacian

[39], we can define GX = DX −WX and GY = DY −WY ,

respectively. Considering the case of mapping the graphs GX

and GY to the projected features PX and PY , a reasonable

criterion [40] for preserving the domain-specific geometrical

strictures is designed by minimizing the following objective

function:

1

2

n
∑

i,j=1

(

wX
i,j

∥

∥pX
i − pX

j

∥

∥

2

2
+ wY

i,j

∥

∥pY
i − pY

j

∥

∥

2

2

)

=
1

2

n
∑

i,j=1

(

pX
i pX

i

T
di,i − pX

i pX
j

T
wY

i,j

+ pY
i p

Y
i

T
di,i − pY

i p
Y
j

T
wY

i,j

)

=
1

2
Tr

(

PXGXPX T
+PYGYPYT

)

.

(10)

The regularization criterion in Eq. (10) guarantees that the

projected data varies smoothly along the geodesics of the

manifold defined by the corresponding graph.

5) Objective Function: To summarize: we start-off with few

registered cross-modal image-pairs and complement them with

extensive unpaired images which are projected onto a common

feature space. We then minimize the statistical divergence

of the distributions of the projected data pairs. Finally, we

preserve domain-specific properties by integrating the MMD

and geometry co-regularization terms into Eq. (7) leading to

the final objective function:

min
Φ,A,Q

∥

∥X−ΦXAX
∥

∥

2

F
+
∥

∥Y −ΦYAY
∥

∥

2

F
+
∥

∥

∥
Xh − T̂TTYh

∥

∥

∥

2

2

+ ν
(

∥

∥AXQX −PY
∥

∥

2

F
+
∥

∥AYQY −PX
∥

∥

2

F

)

+ λ
(∥

∥AX
∥

∥

1
+
∥

∥AY
∥

∥

1

)

+ γ Tr
(

PX T
MPY

)

+
µ

2
Tr

(

PXGXPX T
+PYGYPYT

)

,

(11)

where γ and µ are the regularization parameters for trading

off the effects of the MMD and geometry co-regularization

terms, respectively.

E. Optimization

Similarly to existing joint dictionary learning methods

[31, 32, 37], the optimization problem of Eq. (11) is not simul-

taneously convex regarding the dictionaries, sparse codes, and

projection matrices. Instead, we divide the proposed method

into three sub-problems: learning sparse coefficients, identify-

ing a dictionary pair, and updating the projection matrices.

1) Computing Sparse Codes: We initialize the dictionary

pair ΦX , ΦY and the projection matrices QX , QY , fix them,

and solve for AX and AY . Particularly, ΦX and ΦY can be

simply initialized as two random matrices (or use PCA or

DCT bases), and QX , QY can be initialized to two identity

matrices. Unlike conventional sparse coding, two additional

terms are related to the projected feature space. Given ΦX ,

ΦY and QX , QY , we can rewrite Eq. (11) as follows:

min
AX

∥

∥X−ΦXAX
∥

∥

2

F
+
∥

∥

∥
Xh − T̂TTYh

∥

∥

∥

2

2

+ ν
∥

∥AXQX −PY
∥

∥

2

F

+ λ
∥

∥AX
∥

∥

1
+Tr

(

γPX T
MPY +

µ

2
PXGXPX T

)

,

min
AY

∥

∥Y −ΦYAY
∥

∥

2

F
+

∥

∥

∥
Xh − T̂TTYh

∥

∥

∥

2

2

+ ν
∥

∥AYQY −PX
∥

∥

2

F

+ λ
∥

∥AY
∥

∥

1
+Tr

(

γPX T
MPY +

µ

2
PYGYPYT

)

.

(12)
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However, the problem in Eq. (12) is non-differentiable when

the sparse codes take zero values. Coordinate Descent is

usually adopted [21, 37, 38] to solve this l1-regularized least

squares problem. This is done by updating each vector αX
i or

αY
i individually while considering constant all other vectors

αX
j or αY

j where j 6= i. To optimize over each αX
i or αY

i ,

Eq. (12) can be expanded using vector-wise manipulations.

Sparse representations in vector form can be solved by the

feature-sign search algorithm [41].

2) Identifying Dictionary Pairs: Fixing the sparse codes

AX and AY , learning dictionary pairs ΦX and ΦY can be

simplified and casted into quadratically constrained quadratic

programing (QCQP):

min
ΦX ,ΦY

∥

∥X−ΦXAX
∥

∥

2

F
+
∥

∥Y −ΦYAY
∥

∥

2

F
+

∥

∥

∥
Xh − T̂TTYh

∥

∥

∥

2

2

s.t.

∥

∥

∥
φX

i

∥

∥

∥

2

2

≤ 1,
∥

∥

∥
φY

i

∥

∥

∥

2

2

≤ 1 ∀i = {1, ..., k} .
(13)

The optimization in Eq. (13) can be solved by the Lagrange

dual method [42].

3) Updating Projection Matrices: Considering constant the

dictionary pairs and the corresponding sparse codes, we can

then update the projection matrices by only considering QX

and QY :

min
QX ,QY

ν(
∥

∥AXQX −PY
∥

∥

2

F
+
∥

∥AYQY −PX
∥

∥

2

F
). (14)

Eq. (14) can be solved using simple ridge regression. Follow-

ing [32], additional constraints, viz. δ
(

∥

∥QX
∥

∥

2

F
+
∥

∥QY
∥

∥

2

F

)

regarding the projection matrices QX and QY , are imposed

to avoid over-fitting. We can rewrite Eq. (14) by combining

the constraints as:

min
QX

ν
∥

∥AXQX −PY
∥

∥

2

F
+ δ

∥

∥QX
∥

∥

2

F
,

min
QY

ν
∥

∥AYQY −PX
∥

∥

2

F
+ δ

∥

∥QY
∥

∥

2

F
.

(15)

The solution of Eq. (15) can be analytically derived as

QX = PYAX T
(

AXAX T
+ (δ/ν)I

)−1

,

QY = PXAYT
(

AYAYT
+ (δ/ν)I

)−1

,

(16)

where I indicates an identity matrix. Algorithm 1 summarizes

the proposed method.

F. Cross-Modality Image Synthesis

Once the optimization is completed, we can obtain the

trained dictionary pairs, sparse coefficients and their projection

matrices, and then apply the learned model to synthesize

images across modalities. Given a test image Xt, we first

compute the coefficients AtX of Xt related to ΦX by solving

a single sparse coding problem in Eq. (2). After that, we

associate AtX to the expected sparse codes AtY via QX and

QY leading to

AtY ≈ QY−1
PtX = QY−1

QXAtX , (17)

where PtX is the projected data of Xt. Finally, the data in the

targetM2 modality, Yt, can be synthesized by Yt = AtYΦY .

Algorithm 1: WAG Algorithm

Input: Training data X and Y, parameters λ, µ, σ, γ.

1 Initialize ΦX
0 , ΦY

0 , AX
0 , AY

0 , QX
0 , QY

0 .

2 Let QX
0 = I, QY

0 = I, PX
0 ← AX

0 QX
0 , PY

0 ← AY
0 Q

Y
0 .

3 while not converged do

4 Fix other variables, update AX
i+1 and AY

i+1
by sparse

coding according to Eq. (12).

5 Fix other variables, update ΦX
i+1 and ΦY

i+1
by

dictionary learning according to Eq. (13).

6 Fix other variables, update QX
i+1 and QY

i+1
according

to Eq. (16) based on AX
i+1, AY

i+1
and ΦX

i+1, ΦY
i+1

.

7 Update PX
i+1 ← AX

i+1Q
X
i+1, PY

i+1
← AY

i+1
QY

i+1
.

8 end

Output: ΦX , ΦY and QX , QY .

Algorithm 2: Cross-Modality Image Synthesis

Input: Test image Xt, dictionary pairs ΦX and ΦY ,

projection matrices QX and QY .

1 Initialize AtX
0 , AtY

0 by Eq. (17).

2 Let AtY
0 ← QY−1

QXAtX
0 , Yt

0 ← AtY
0 ΦY

0 .

3 while not converged do

4 Solve AtX
i+1, AtY

i+1
using Eq. (12) with QX , QY and

Yt
i .

5 Update Yt
i+1 ← QY−1

QXAtX
i+1Φ

Y = AtY
i+1

ΦY .

6 end

Output: Synthesized image Yt.

Algorithm 2 summarizes the process for cross-modality image

synthesis.

IV. EXPERIMENTS

Herewith, we describe an extensive experimental evaluation

of the proposed method. We first introduce the datasets used

for the evaluation, the experimental settings, and the methods

we benchmark against. Finally, we show the statistical signif-

icance test to assess the importance of our improvements.

A. Databases and Pre-processing

We validate our method on two public multi-modality brain

datasets, viz. IXI2 and NAMIC3 databases, respectively. The

IXI database involves 578 healthy subjects each imaged using

a matrix of 256×256×v (v = 112∼136) scanned with a

Magnetic Resonance Imaging (MRI) system. The NAMIC

database, instead, contains 20 subjects (ten are normal controls

and the other ten are schizophrenic) each imaged using a ma-

trix of 128×128×z (z = 88) scanned with a 3T MRI system.

For our experiments, we adopt PDw, T2w MRI scans from

the IXI dataset, and T1w, T2w acquisitions form the NAMIC

dataset. Following [4, 14, 15], all the experimental images

are skull stripped, linearly registered and/or inhomogeneity

corrected. In the experiments, we perform a more challenging

division by applying half of the dataset for training while

2http://brain-development.org/ixi-dataset/
3http://hdl.handle.net/1926/1687
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TABLE I
THE NUMBER OF SELECTED PAIRED/UNPAIRED IMAGES.

IXI NAMIC RATIO

PAIRED SETS UNPAIRED SETS PAIRED SETS UNPAIRED SETS PAIRED/FULL SET

Scenario #1 289 – 10 – 100%

Scenario #2 145 72 6 2 50.2%

Scenario #3 73 108 4 3 25.3%

Scenario #4 37 126 2 4 12.8%

Input PDw SC T2w (32.14, 0.7622) MIMECS T2w (32.10, 0.7214) WAG-0 T2w (32.30, 0.7767)

Ground Truth T2w (PSNR, SSIM) WAG-GC T2w (32.87, 0.7913) WAG-MMD T2w (33.32, 0.8263) WAG T2w (36.24, 0.9100)

Fig. 2. Synthesized results generated using SC, MIMECS, WAG-0, WAG-GC, WAG-MMD and WAG (zoom in for details).

the remaining for testing. Particularly, by fixing the number

of test data (i.e., 289 subjects for IXI and 10 subjects for

NAMIC, respectively), we divide our training set into two

subsets with registered image pairs and unpaired image sets (in

each domain). We evaluate these four cases listed in Table I for

two datasets separately. Specifically, Table I shows the number

of selected paired/unpaired images with respect to different

modalities for each scenario we explored. The ratio of paired

images over the full training set are 100%, 50%, 25% and 13%

for Scenarios #1 to #4, respectively. Correspondingly, WAG

has 289, 145, 73 and 37 original registered pairs for training

for each scenario. To create a set of unpaired images valid for

a fair comparison, we remove the other half of available paired

to generated a similar amount of paired image sets for each

scenario. For instance, at the Scenario #2, 72 out of 144 sets

(for 145 registered image pairs) are used for training as the

unpaired data, and so on. The logical presentation of Scenario

#2 can be expressed as:

• Paired sets: A = 145 subjects with both PDw and T2w

images.

• Unpaired sets: B = 72 subjects with PDw images.

• Unpaired sets: C = 72 subjects with T2w images.

• A ∩ B ∩ C = Ø

B. Experimental Setup

We evaluate our method in two scenarios. First, we use the

IXI dataset for synthesizing the T2w images from the PDw

acquisitions and vice versa. Second, we adopt the NAMIC

dataset for generating the T1w scans from the T2w inputs

and vice versa. In our experiments, we randomly select 100

thousand training patch pairs from both datasets respectively,

which have no relation with the test images used in our

experiments. We consider patches of dimension 5 × 5 × 5
voxels. Following [32, 35], the regularization parameters γ,

λ, µ, and ν are empirically set to be 105, 0.15, 1, 0.01,

respectively. The number of atoms in the learned dictionary is

set as 1024 according to [19]. Correspondingly, matrix P has

n items in the k dimensional space, Q has k elements in the k
dimensional space, G and T have n items in the n dimensional

space, where n is the size of the training set and k is the size

of the trained dictionary. Unless otherwise explicitly stated, we

always use scenario #4 in all our experiments, which is a more

challenging case between paired training data and unpaired

training data (we will examine the effects of all scenarios

in Section IV-D). For the evaluation metrics, we adopt the

widely used Peak Signal to Noise Ratio (PSNR) and Structural

Similarity Index (SSIM) [43] to objectively assess the quality

of the synthesized images.

C. Compared Methods

To fully evaluate the effectiveness of the proposed method in

different patient groups (e.g. health or pathology), we conduct

comprehensive evaluation on two public datasets and compare

WAG with four state-of-the-art (related) approaches for cross-

modality image synthesis:

• SC: Sparse Coding-based method [19]

• MIMECS: MRI example-based contrast synthesis [4]

• Ve-S: Vemulapalli’s supervised [15]

• Ve-US: Vemulapalli’s unsupervised [15]

• WAG-0: WAG without any regularization terms
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Fig. 3. Cross-modality synthesis results: MIMECS, SC, WAG, WAG-MMD, WAG-GC and WAG-0 on the IXI dataset.

TABLE II
PSNRS AND SSIMS OF THE WAG-SYNTHESIZED IMAGES RESULTING FROM DIFFERENT PAIRED/FULL SET RATIOS DURING DICTIONARY TRAINING.

IXI Dataset

Metric (mean)
Scenario #1 Scenario #2 Scenario #3 Scenario #4

T2w 7→ PDw PDw 7→ T2w T2w 7→ PDw PDw 7→ T2w T2w 7→ PDw PDw 7→ T2w T2w 7→ PDw PDw 7→ T2w

PSNR (dB) 32.11 34.46 31.97 34.27 31.68 34.02 31.54 33.73

SSIM 0.8551 0.8602 0.8539 0.8589 0.8527 0.8578 0.8506 0.8549

TABLE III
ERROR MEASURES OF THE WAG-SYNTHESIZED IMAGES RESULTING FROM DIFFERENT PAIRED/FULL SET RATIOS DURING DICTIONARY TRAINING.

Metric (mean)
Fixing the number of paired data as 145

no unpaired data 36 unpaired data 48 unpaired data 72 unpaired data
T2w 7→ PDw PDw 7→ T2w T2w 7→ PDw PDw 7→ T2w T2w 7→ PDw PDw 7→ T2w T2w 7→ PDw PDw 7→ T2w

PSNR (dB) 31.58 33.88 31.60 33.97 31.71 34.04 31.97 34.27

SSIM 0.8514 0.8563 0.8519 0.8570 0.8528 0.8580 0.8539 0.8589

TABLE IV
ERROR MEASURES OF THE WAG-SYNTHESIZED IMAGES RESULTING FROM DIFFERENT PAIRED/FULL SET RATIOS DURING DICTIONARY TRAINING.

Metric (mean)
Fixing the number of unpaired data as 72

37 paired data 73 paired data 145 paired data
T2w 7→ PDw PDw 7→ T2w T2w 7→ PDw PDw 7→ T2w T2w 7→ PDw PDw 7→ T2w

PSNR (dB) 31.35 33.54 31.57 33.86 31.97 34.27

SSIM 0.8487 0.8532 0.8514 0.8560 0.8539 0.8589

• WAG-MMD: WAG using MMD regularization only

• WAG-GC: WAG using Geometric Co-regularization only

• WAG: Fully fledged WAG method

In particular, SC can be cast as a fundamental baseline only

considering the joint dictionary learning. MIMECS, Ve-S and

Ve-US are the most relevant and state-of-the-art cross-modality

image synthesis approaches. We consider three special cases

of the proposed method by excluding all regularization terms

(WAG-0) or including only either MMD term (WAG-MMD) or

geometric co-regularization term (WAG-GC) for proving that

each of the added term is useful for more accurate synthesis.

The mathematical models of WAG-MMD and WAG-GC are

provided in Section III-D3 and III-D4, respectively.

D. Experimental Results

As we mentioned in Section IV-B, we first address cross-

modality synthesis on the IXI dataset. In this scenario, we

investigate both PDw and T2w images for evaluating and

comparing the proposed WAG method with SC and MIMECS.

To validate that our regularization terms are beneficial, we

compare WAG with WAG-0, WAG-MMD and WAG-GC and

show a set of visual results in Fig. 2, while reporting all

quantitative results in Fig. 3. From Fig. 3, we see that WAG

is always better than MIMECS especially with the standard

WAG (with two regularization terms). We also explore the

effectiveness of different numbers of paired and unpaired

subjects listed in Table I. The averaged PSNRs and SSIMs

are shown in Table II. Generally, a larger number of paired
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T2T2ww  GGrorouunndd  TTrurutthh 
(P(PSSNNR R (d(dB),B),  SSSSIMIM))

T1T1w SC
(26.33, 0.7286)

SC
(26.33, 0.7286)

MIMECS
(26.69, 0.7505)

MIMECS
(26.69, 0.7505)

V_US
(27.76, 0.8281)

V_US
(27.76, 0.8281)

V_S
(28.07, 0.8295)

V_S
(28.07, 0.8295)

WAG
(28.69, 0.8603)

WAG
(28.69, 0.8603)

Fig. 4. Example cross-modality synthesis results generated by MIMECS, SC, Ve-S Ve-US and WAG on the NAMIC dataset.

Fig. 5. Cross-modality synthesis results: MIMECS, SC, WAG, Ve-S and Ve-US on the NAMIC dataset.

TABLE V
AVERAGED PSNRS AND SSIMS OF THE SYNTHESIZED IMAGES USING DIFFERENT METHODS ON THE NAMIC DATASET.

NAMIC Dataset

Metric (mean)
T1w 7→ T2w T2w 7→ T1w

MIMECS SC Ve-US Ve-S WAG MIMECS SC Ve-US Ve-S WAG

PSNR (dB) 23.88 24.58 26.70 27.76 27.96 27.05 26.90 27.66 29.40 30.40

SSIM 0.8779 0.8778 0.8832 0.8874 0.8991 0.9165 0.9177 0.9168 0.9182 0.9259

subjects leads to better synthesis results. The proposed method

under the weakly coupled settings (i.e. small number of paired

images in scenario #4) can match the performance of fully

coupled method (in scenario #1) for cross-modality synthesis.

To see the impact of the number of registered image pairs

or unpaired data in WAG, in Tables III and IV, we show

the mean performance of our proposed method based on

different ratios of paired and unpaired data. In those results,

we first fix the number of registered image pairs to be 145

(referring to scenario #2) to observe the performance variation

by increasing the number of unpaired data from 36 to 72.

Generally, more unpaired data yield better results. We evaluate

how the number of paired data influences the synthesized

results given the fixed number of unpaired images as 72. The

number of paired images is set to 37, 73 and 145 (the same

sets in scenario #2-#4). The more existing paired data, the

better the synthesized results.

In the second scenario, we evaluate WAG and other relevant

methods on the NAMIC dataset involving two sets of major

experiments. The representative and stat-of-the-art synthesis

methods, including SC, MIMECS, Ve-S and Ve-US are em-

ployed to compare with our WAG model. We demonstrate

visual and quantitative results in Fig. 4, Fig. 5 and summarize

the averaged values in Table V, respectively. It can be seen

that our method yields the best results against the compared

approaches proving our claim of being able to synthesize

better results through the added two regularization terms under

weakly-supervised setting.

All of our experiments were performed on an Intel Xeon

E5-1620 CPU (3.5 GHz, 8 cores) machine running Windows

10 with 32 GB of RAM. Training of WAG took, on average,

about 30 minutes using a Matlab R2013a code. Execution time
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TABLE VI
PAIRED T-TEST ON THE WAG IMPROVEMENTS USING THE IXI DATASET.

Paired t-test WAG vs. WAG-0 WAG vs. WAG-MMD WAG vs. WAG-GC

IXI: T2w 7→ PDw

p-value (PSNR) < 0.001 < 0.001 < 0.001

p-value (SSIM) < 0.001 < 0.001 < 0.001

IXI: PDw 7→ T2w

p-value (PSNR) < 0.001 < 0.001 < 0.001

p-value (SSIM) < 0.001 < 0.001 < 0.001

TABLE VII
INDEPENDENT T-TEST ON THE PERFORMANCE BENEFITS USING THE IXI DATASET.

Independent t-test WAG vs. MIMECS WAG vs. SC

IXI: T2w 7→ PDw

p-value (PSNR) < 0.001 < 0.001

p-value (SSIM) < 0.001 < 0.001

IXI: PDw 7→ T2w

p-value (PSNR) < 0.001 < 0.001

p-value (SSIM) < 0.001 < 0.001

TABLE VIII
INDEPENDENT T-TEST ON THE PERFORMANCE BENEFITS USING THE NAMIC DATASET.

Independent t-test WAG vs. MIMECS WAG vs. SC WAG vs. Ve-US WAG vs. Ve-S

NAMIC: T1w 7→ T2w

p-value (PSNR) 0.0319 0.0308 0.0450 0.0363

p-value (SSIM) 0.0347 0.0396 0.0468 0.0392

NAMIC: T2w 7→ T1w

p-value (PSNR) 0.0168 0.0361 0.0809 0.041

p-value (SSIM) 0.0143 0.0138 0.0464 0.0345

for the synthesis of one 3D representative image with size

256×256×100 pixels took about 7 minutes.

E. Statistical Test

We conduct two statistical tests illustrating the significance

of the improvements introduced by (1) the various regulariza-

tion terms within WAG, and (2) our method compared with

other state-of-the-art approaches. Regarding the characteristics

of the comparison, we employ a paired-sample t-test for group

(1) and independent (two-samples) t-test for group (2) at

5% significance level. Table VI lists the results of paired

t-test for case (1), which shows our improvements are all

statistically significant. Tables VII and VIII show the results

of independent t-test for case (2), which demonstrates that

the performance benefits of our method against others are

statistically significant in all but one case, i.e., synthesizing

T1w images from T2w data on the NAMIC dataset using Ve-

S method.

V. DISCUSSIONS

To investigate the performance of the proposed method,

in this paper, we extensively validated WAG on two public

datasets, i.e., IXI and NAMIC. We compared our results

with other state-of-the-art methods for cross-modality image

synthesis. We illustrated our method on different synthesis

scenarios of structural brain MRI and synthesized images of

both healthy and schizophrenic subjects. A few registered

multi-modality image pairs were employed and then enriched

with a larger set of unpaired data showing improved synthe-

sis quality. Broadly, unlike most of state-of-the-art methods

heavily relying on supervised learning, the proposed method

allows using weakly-supervised data for generating compet-

itive synthesis results. Surprisingly, from Table II and Table

V, we can see that with only 12.8% originally paired data,

WAG achieves comparable results as WAG using 100% paired

data for synthesis of either T2w or PDw images from the

opposite modality. For the synthesis from T2w data to PDw

data, WAG (#1) with 100% registered image pairs outperforms

WAG (#4) with 12.8% registered image pairs by 0.57 dB for

PSNR and 0.0045 for SSIM, on average. For the synthesis

from PDw data to T2w data, WAG (#1) outperforms WAG

(#4) by 0.73 dB for PSNR and 0.0053 for SSIM, on average.

By using 12.8% paired data, WAG offers an excellent perfor-

mance in two evaluation metrics in all experiments compared

with MIMECS, SC, Ve-US and Ve-S while the compared

methods required 100% registered image pairs for training.

Specifically, as shown in Fig. 4, 5 and Table V, for generating

T2w from T1w data, the average gains on PSNR and SSIM

achieved by WAG are 4.08 dB and 0.0212 higher than the

worst performing approach on the NAMIC dataset. Also, for

synthesizing T1w images from T2w data, the average gains on

PSNR and SSIM achieved by WAG are 3.35 dB and 0.0094

higher than the worst performing approach on the NAMIC

dataset as well. WAG achieves the best performance among all
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supervised state-of-the-art methods under a weakly-supervised

setting (with only 12.8% registered data) in both healthy and

pathological scenarios. This reveals its capability in effectively

leveraging data to boost the learning system. Therefore, the

proposed method is usable in clinical practice considering the

fact that collecting parallel image pairs is costly and usually

limited in many situations.

WAG achieves compelling synthesis results in this paper

for the specific MRI modalities investigated here. However,

our method could be potentially applied to other imaging

modalities having the assumption that images with similar high

order edge/texture characteristics and resolutions. It remains to

be demonstrated the synthesis quality in more complex settings

like, for instance, for the synthesis of PET images from MRI

data, for the synthesis of MRI data from CT images, and for

the more challenging cases such as the synthesis of a tumor

case. In addition, to address multi-modality image synthesis

involving more than two modalities, the natural extension of

the proposed method would currently required that all source

modalities would be available at once at the input. We are

aware of very recent work by other researchers that handle

multi-modality image synthesis even in the absence of one of

some source modalities [44]. In our future work, we plan to

explore extensions to our framework based on multi-modality

image fusion of the source modalities before the synthesis.

Fused features can better express multiple source modalities

and thus synthesize the target image modality even with only

partial input sources.

VI. CONCLUSION

We proposed a weakly-coupled and geometry co-regularized

joint dictionary learning (WAG) method for cross-modality

synthesis of MRI images. Most conventional joint dictio-

nary learning methods with sparse representations assume a

fully supervised setting. Instead, our method only requires a

small subset of registered image pairs and automatically finds

correspondences for a much larger set of unpaired images.

This process assists and enriches the supervised learning

on the smaller subset while booting synthesis performance.

With the proposed cross-modality image matching criterion,

the derived common feature space associates cross-modality

data effectively by updating a pair of dictionaries in both

domains. We integrated our model with both MMD and

modality-specific geometric co-regularization terms to further

improve image synthesis quality. The proposed WAG approach

was applied to cross-modality image synthesis of brain MRI

and experimental results demonstrated that WAG significantly

outperforms competing state-of-the-art methods on two public

databases with healthy and schizophrenic subjects.
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