7 research outputs found

    Light in Power: A General and Parameter-free Algorithm for Caustic Design

    Get PDF
    We present in this paper a generic and parameter-free algorithm to efficiently build a wide variety of optical components, such as mirrors or lenses, that satisfy some light energy constraints. In all of our problems, one is given a collimated or point light source and a desired illumination after reflection or refraction and the goal is to design the geometry of a mirror or lens which transports exactly the light emitted by the source onto the target. We first propose a general framework and show that eight different optical component design problems amount to solving a light energy conservation equation that involves the computation of visibility diagrams. We then show that these diagrams all have the same structure and can be obtained by intersecting a 3D Power diagram with a planar or spherical domain. This allows us to propose an efficient and fully generic algorithm capable to solve these eight optical component design problems. The support of the prescribed target illumination can be a set of directions or a set of points located at a finite distance. Our solutions satisfy design constraints such as convexity or concavity. We show the effectiveness of our algorithm on simulated and fabricated examples

    Spec2Fab: A reducer-tuner model for translating specifications to 3D prints

    Get PDF
    Multi-material 3D printing allows objects to be composed of complex, heterogenous arrangements of materials. It is often more natural to define a functional goal than to define the material composition of an object. Translating these functional requirements to fabri-cable 3D prints is still an open research problem. Recently, several specific instances of this problem have been explored (e.g., appearance or elastic deformation), but they exist as isolated, monolithic algorithms. In this paper, we propose an abstraction mechanism that simplifies the design, development, implementation, and reuse of these algorithms. Our solution relies on two new data structures: a reducer tree that efficiently parameterizes the space of material assignments and a tuner network that describes the optimization process used to compute material arrangement. We provide an application programming interface for specifying the desired object and for defining parameters for the reducer tree and tuner network. We illustrate the utility of our framework by implementing several fabrication algorithms as well as demonstrating the manufactured results.United States. Defense Advanced Research Projects Agency (N66001-12-1-4242)National Science Foundation (U.S.) (CCF-1138967)reducer-tuner model for translating specifications to 3D prints (IIS-1116296)Google (Firm) (Faculty Research Award

    Fabricating BRDFs at high spatial resolution using wave optics

    Get PDF
    Recent attempts to fabricate surfaces with custom reflectance functions boast impressive angular resolution, yet their spatial resolution is limited. In this paper we present a method to construct spatially varying reflectance at a high resolution of up to 220dpi, orders of magnitude greater than previous attempts, albeit with a lower angular resolution. The resolution of previous approaches is limited by the machining, but more fundamentally, by the geometric optics model on which they are built. Beyond a certain scale geometric optics models break down and wave effects must be taken into account. We present an analysis of incoherent reflectance based on wave optics and gain important insights into reflectance design. We further suggest and demonstrate a practical method, which takes into account the limitations of existing micro-fabrication techniques such as photolithography to design and fabricate a range of reflection effects, based on wave interference.United States-Israel Binational Science FoundationIntel Corporation (Intel Collaborative Research Institute for Computational Intelligence)National Science Foundation (U.S.) (CGV 1116303

    Customizing Indoor Wireless Coverage via 3D-Fabricated Reflectors

    Get PDF
    Judicious control of indoor wireless coverage is crucial in built environments. It enhances signal reception, reduces harmful interference, and raises the barrier for malicious attackers. Existing methods are either costly, vulnerable to attacks, or hard to configure. We present a low-cost, secure, and easy-to-configure approach that uses an easily-accessible, 3D-fabricated reflector to customize wireless coverage. With input on coarse-grained environment setting and preferred coverage (e.g., areas with signals to be strengthened or weakened), the system computes an optimized reflector shape tailored to the given environment. The user simply 3D prints the reflector and places it around a Wi-Fi access point to realize the target coverage. We conduct experiments to examine the efficacy and limits of optimized reflectors in different indoor settings. Results show that optimized reflectors coexist with a variety of Wi-Fi APs and correctly weaken or enhance signals in target areas by up to 10 or 6 dB, resulting to throughput changes by up to -63.3% or 55.1%

    Modeling and model-aware signal processing methods for enhancement of optical systems

    Full text link
    Theoretical and numerical modeling of optical systems are increasingly being utilized in a wide range of areas in physics and engineering for characterizing and improving existing systems or developing new methods. This dissertation focuses on determining and improving the performance of imaging and non-imaging optical systems through modeling and developing model-aware enhancement methods. We evaluate the performance, demonstrate enhancements in terms of resolution and light collection efficiency, and improve the capabilities of the systems through changes to the system design and through post-processing techniques. We consider application areas in integrated circuit (IC) imaging for fault analysis and malicious circuitry detection, and free-form lens design for creating prescribed illumination patterns. The first part of this dissertation focuses on sub-surface imaging of ICs for fault analysis using a solid immersion lens (SIL) microscope. We first derive the Green's function of the microscope and use it to determine its resolution limits for bulk silicon and silicon-on-insulator (SOI) chips. We then propose an optimization framework for designing super-resolving apodization masks that utilizes the developed model and demonstrate the trade-offs in designing such masks. Finally, we derive the full electromagnetic model of the SIL microscope that models the image of an arbitrary sub-surface structure. With the rapidly shrinking dimensions of ICs, we are increasingly limited in resolving the features and identifying potential modifications despite the resolution improvements provided by the state-of-the-art microscopy techniques and enhancement methods described here. In the second part of this dissertation, we shift our focus away from improving the resolution and consider an optical framework that does not require high resolution imaging for detecting malicious circuitry. We develop a classification-based high-throughput gate identification method that utilizes the physical model of the optical system. We then propose a lower-throughput system to increase the detection accuracy, based on higher resolution imaging to supplement the former method. Finally, we consider the problem of free-form lens design for forming prescribed illumination patterns as a non-imaging application. Common methods that design free-form lenses for forming patterns consider the input light source to be a point source, however using extended light sources with such lenses lead to significant blurring in the resulting pattern. We propose a deconvolution-based framework that utilizes the lens geometry to model the blurring effects and eliminates this degradation, resulting in sharper patterns

    Modeling and model-aware signal processing methods for enhancement of optical systems

    Full text link
    Theoretical and numerical modeling of optical systems are increasingly being utilized in a wide range of areas in physics and engineering for characterizing and improving existing systems or developing new methods. This dissertation focuses on determining and improving the performance of imaging and non-imaging optical systems through modeling and developing model-aware enhancement methods. We evaluate the performance, demonstrate enhancements in terms of resolution and light collection efficiency, and improve the capabilities of the systems through changes to the system design and through post-processing techniques. We consider application areas in integrated circuit (IC) imaging for fault analysis and malicious circuitry detection, and free-form lens design for creating prescribed illumination patterns. The first part of this dissertation focuses on sub-surface imaging of ICs for fault analysis using a solid immersion lens (SIL) microscope. We first derive the Green's function of the microscope and use it to determine its resolution limits for bulk silicon and silicon-on-insulator (SOI) chips. We then propose an optimization framework for designing super-resolving apodization masks that utilizes the developed model and demonstrate the trade-offs in designing such masks. Finally, we derive the full electromagnetic model of the SIL microscope that models the image of an arbitrary sub-surface structure. With the rapidly shrinking dimensions of ICs, we are increasingly limited in resolving the features and identifying potential modifications despite the resolution improvements provided by the state-of-the-art microscopy techniques and enhancement methods described here. In the second part of this dissertation, we shift our focus away from improving the resolution and consider an optical framework that does not require high resolution imaging for detecting malicious circuitry. We develop a classification-based high-throughput gate identification method that utilizes the physical model of the optical system. We then propose a lower-throughput system to increase the detection accuracy, based on higher resolution imaging to supplement the former method. Finally, we consider the problem of free-form lens design for forming prescribed illumination patterns as a non-imaging application. Common methods that design free-form lenses for forming patterns consider the input light source to be a point source, however using extended light sources with such lenses lead to significant blurring in the resulting pattern. We propose a deconvolution-based framework that utilizes the lens geometry to model the blurring effects and eliminates this degradation, resulting in sharper patterns
    corecore