1,117 research outputs found

    The Illumination and Growth of CRL 2688: An Analysis of New & Archival HST Observations

    Full text link
    We present four-color images of CRL 2688 obtained in 2009 using the Wide-Field Camera 3 on HST. The F606W image is compared with archival images in very similar filters to monitor the proper motions of nebular structure. We find that the bright N-S lobes have expanded uniformly by 2.5% and that the ensemble of rings has translated radially by 0.07 in 6.65 y. The rings were ejected every 100y for ~4 millennia until the lobes formed 250y ago. Starlight scattered from the edges of the dark E-W dust lane is coincident with extant H2 images and leading tips of eight pairs of CO outflows. We interpret this as evidence that fingers lie within geometrically opposite cones of opening angles {\approx} 30{\circ} like those in CRL618. By combining our results of the rings with 12CO absorption from the extended AGB wind we ascertain that the rings were ejected at ~18 km s-1 with very little variation and that the distance to CRL2688, v_{exp}/ / {\dot\theta}_exp$, is 300 - 350 pc. Our 2009 imaging program included filters that span 0.6 to 1.6{\mu}m. We constructed a two-dimensional dust scattering model of stellar radiation through CRL2688 that successfully reproduces the details of the nebular geometry, its integrated spectral energy distribution, and nearly all of its color variations. The model implies that the optical opacity of the lobes >~ 1, the dust particle density in the rings decreases as radius^{-3} and that the mass and momentum of the AGB winds and their rings have increased over time.Comment: (51 pages, 6 figures; accepted by ApJ

    Synthetic aperture radar/LANDSAT MSS image registration

    Get PDF
    Algorithms and procedures necessary to merge aircraft synthetic aperture radar (SAR) and LANDSAT multispectral scanner (MSS) imagery were determined. The design of a SAR/LANDSAT data merging system was developed. Aircraft SAR images were registered to the corresponding LANDSAT MSS scenes and were the subject of experimental investigations. Results indicate that the registration of SAR imagery with LANDSAT MSS imagery is feasible from a technical viewpoint, and useful from an information-content viewpoint

    Methods for Real-time Visualization and Interaction with Landforms

    Get PDF
    This thesis presents methods to enrich data modeling and analysis in the geoscience domain with a particular focus on geomorphological applications. First, a short overview of the relevant characteristics of the used remote sensing data and basics of its processing and visualization are provided. Then, two new methods for the visualization of vector-based maps on digital elevation models (DEMs) are presented. The first method uses a texture-based approach that generates a texture from the input maps at runtime taking into account the current viewpoint. In contrast to that, the second method utilizes the stencil buffer to create a mask in image space that is then used to render the map on top of the DEM. A particular challenge in this context is posed by the view-dependent level-of-detail representation of the terrain geometry. After suitable visualization methods for vector-based maps have been investigated, two landform mapping tools for the interactive generation of such maps are presented. The user can carry out the mapping directly on the textured digital elevation model and thus benefit from the 3D visualization of the relief. Additionally, semi-automatic image segmentation techniques are applied in order to reduce the amount of user interaction required and thus make the mapping process more efficient and convenient. The challenge in the adaption of the methods lies in the transfer of the algorithms to the quadtree representation of the data and in the application of out-of-core and hierarchical methods to ensure interactive performance. Although high-resolution remote sensing data are often available today, their effective resolution at steep slopes is rather low due to the oblique acquisition angle. For this reason, remote sensing data are suitable to only a limited extent for visualization as well as landform mapping purposes. To provide an easy way to supply additional imagery, an algorithm for registering uncalibrated photos to a textured digital elevation model is presented. A particular challenge in registering the images is posed by large variations in the photos concerning resolution, lighting conditions, seasonal changes, etc. The registered photos can be used to increase the visual quality of the textured DEM, in particular at steep slopes. To this end, a method is presented that combines several georegistered photos to textures for the DEM. The difficulty in this compositing process is to create a consistent appearance and avoid visible seams between the photos. In addition to that, the photos also provide valuable means to improve landform mapping. To this end, an extension of the landform mapping methods is presented that allows the utilization of the registered photos during mapping. This way, a detailed and exact mapping becomes feasible even at steep slopes

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    Physically-based parameterization of spatially variable soil and vegetation using satellite multispectral data

    Get PDF
    A stochastic-geometric landsurface reflectance model is formulated and tested for the parameterization of spatially variable vegetation and soil at subpixel scales using satellite multispectral images without ground truth. Landscapes are conceptualized as 3-D Lambertian reflecting surfaces consisting of plant canopies, represented by solid geometric figures, superposed on a flat soil background. A computer simulation program is developed to investigate image characteristics at various spatial aggregations representative of satellite observational scales, or pixels. The evolution of the shape and structure of the red-infrared space, or scattergram, of typical semivegetated scenes is investigated by sequentially introducing model variables into the simulation. The analytical moments of the total pixel reflectance, including the mean, variance, spatial covariance, and cross-spectral covariance, are derived in terms of the moments of the individual fractional cover and reflectance components. The moments are applied to the solution of the inverse problem: The estimation of subpixel landscape properties on a pixel-by-pixel basis, given only one multispectral image and limited assumptions on the structure of the landscape. The landsurface reflectance model and inversion technique are tested using actual aerial radiometric data collected over regularly spaced pecan trees, and using both aerial and LANDSAT Thematic Mapper data obtained over discontinuous, randomly spaced conifer canopies in a natural forested watershed. Different amounts of solar backscattered diffuse radiation are assumed and the sensitivity of the estimated landsurface parameters to those amounts is examined

    Automatic Inspection and Processing of Accessory Based on Vision Stitching and Spectral Illumination

    Get PDF
    The study investigates automatic inspection and processing of the stem accessories based on vision stitching and spectral illumination. The vision stitching mainly involves algorithms of white balance, scale-invariant feature transforms (SIFT) and roundness for whole image of automatic accessory inspection. The illumination intensities, angles, and spectral analyses of light sources are analyzed for image optimal inspections. The unrealistic color casts of feature inspection is removed using a white balance algorithm for global automatic adjustment. The SIFT is used to extract and detect the image features for big image stitching. The Hough transform is used to detect the parameters of a circle for roundness of the bicycle accessories. The feature inspections of a stem contain geometry size, roundness, and image stitching. Results showed that maximum errors of 0°, 10°, 30°, and 50° degree for the spectral illumination of white light LED arrays with differential shift displacements are 4.4, 4.2, 6.8, and 3.5 %, respectively. The deviation error of image stitching for the stem accessory in x and y coordinates are 2 pixels. The SIFT and RANSAC enable to transform the stem image into local feature coordinates

    Variable Resolution & Dimensional Mapping For 3d Model Optimization

    Get PDF
    Three-dimensional computer models, especially geospatial architectural data sets, can be visualized in the same way humans experience the world, providing a realistic, interactive experience. Scene familiarization, architectural analysis, scientific visualization, and many other applications would benefit from finely detailed, high resolution, 3D models. Automated methods to construct these 3D models traditionally has produced data sets that are often low fidelity or inaccurate; otherwise, they are initially highly detailed, but are very labor and time intensive to construct. Such data sets are often not practical for common real-time usage and are not easily updated. This thesis proposes Variable Resolution & Dimensional Mapping (VRDM), a methodology that has been developed to address some of the limitations of existing approaches to model construction from images. Key components of VRDM are texture palettes, which enable variable and ultra-high resolution images to be easily composited; texture features, which allow image features to integrated as image or geometry, and have the ability to modify the geometric model structure to add detail. These components support a primary VRDM objective of facilitating model refinement with additional data. This can be done until the desired fidelity is achieved as practical limits of infinite detail are approached. Texture Levels, the third component, enable real-time interaction with a very detailed model, along with the flexibility of having alternate pixel data for a given area of the model and this is achieved through extra dimensions. Together these techniques have been used to construct models that can contain GBs of imagery data

    Semi-Automated DIRSIG scene modeling from 3D lidar and passive imagery

    Get PDF
    The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is an established, first-principles based scene simulation tool that produces synthetic multispectral and hyperspectral images from the visible to long wave infrared (0.4 to 20 microns). Over the last few years, significant enhancements such as spectral polarimetric and active Light Detection and Ranging (lidar) models have also been incorporated into the software, providing an extremely powerful tool for multi-sensor algorithm testing and sensor evaluation. However, the extensive time required to create large-scale scenes has limited DIRSIG’s ability to generate scenes ”on demand.” To date, scene generation has been a laborious, time-intensive process, as the terrain model, CAD objects and background maps have to be created and attributed manually. To shorten the time required for this process, this research developed an approach to reduce the man-in-the-loop requirements for several aspects of synthetic scene construction. Through a fusion of 3D lidar data with passive imagery, we were able to semi-automate several of the required tasks in the DIRSIG scene creation process. Additionally, many of the remaining tasks realized a shortened implementation time through this application of multi-modal imagery. Lidar data is exploited to identify ground and object features as well as to define initial tree location and building parameter estimates. These estimates are then refined by analyzing high-resolution frame array imagery using the concepts of projective geometry in lieu of the more common Euclidean approach found in most traditional photogrammetric references. Spectral imagery is also used to assign material characteristics to the modeled geometric objects. This is achieved through a modified atmospheric compensation applied to raw hyperspectral imagery. These techniques have been successfully applied to imagery collected over the RIT campus and the greater Rochester area. The data used include multiple-return point information provided by an Optech lidar linescanning sensor, multispectral frame array imagery from the Wildfire Airborne Sensor Program (WASP) and WASP-lite sensors, and hyperspectral data from the Modular Imaging Spectrometer Instrument (MISI) and the COMPact Airborne Spectral Sensor (COMPASS). Information from these image sources was fused and processed using the semi-automated approach to provide the DIRSIG input files used to define a synthetic scene. When compared to the standard manual process for creating these files, we achieved approximately a tenfold increase in speed, as well as a significant increase in geometric accuracy
    • …
    corecore