1,462 research outputs found

    Rainbow Coloring Hardness via Low Sensitivity Polymorphisms

    Get PDF
    A k-uniform hypergraph is said to be r-rainbow colorable if there is an r-coloring of its vertices such that every hyperedge intersects all r color classes. Given as input such a hypergraph, finding a r-rainbow coloring of it is NP-hard for all k >= 3 and r >= 2. Therefore, one settles for finding a rainbow coloring with fewer colors (which is an easier task). When r=k (the maximum possible value), i.e., the hypergraph is k-partite, one can efficiently 2-rainbow color the hypergraph, i.e., 2-color its vertices so that there are no monochromatic edges. In this work we consider the next smaller value of r=k-1, and prove that in this case it is NP-hard to rainbow color the hypergraph with q := ceil[(k-2)/2] colors. In particular, for k <=6, it is NP-hard to 2-color (k-1)-rainbow colorable k-uniform hypergraphs. Our proof follows the algebraic approach to promise constraint satisfaction problems. It proceeds by characterizing the polymorphisms associated with the approximate rainbow coloring problem, which are rainbow colorings of some product hypergraphs on vertex set [r]^n. We prove that any such polymorphism f: [r]^n -> [q] must be C-fixing, i.e., there is a small subset S of C coordinates and a setting a in [q]^S such that fixing x_{|S} = a determines the value of f(x). The key step in our proof is bounding the sensitivity of certain rainbow colorings, thereby arguing that they must be juntas. Armed with the C-fixing characterization, our NP-hardness is obtained via a reduction from smooth Label Cover

    Statistical physics of constraint satisfaction problems

    Full text link
    La technique des rĂ©pliques est une technique formidable prenant ses origines de la physique statistique, comme un moyen de calculer l'espĂ©rance du logarithme de la constante de normalisation d'une distribution de probabilitĂ© Ă  haute dimension. Dans le jargon de physique, cette quantitĂ© est connue sous le nom de l’énergie libre, et toutes sortes de quantitĂ©s utiles, telle que l’entropie, peuvent ĂȘtre obtenue de lĂ  par des dĂ©rivĂ©es. Cependant, ceci est un problĂšme NP-difficile, qu’une bonne partie de statistique computationelle essaye de rĂ©soudre, et qui apparaĂźt partout; de la thĂ©orie des codes, Ă  la statistique en hautes dimensions, en passant par les problĂšmes de satisfaction de contraintes. Dans chaque cas, la mĂ©thode des rĂ©pliques, et son extension par (Parisi et al., 1987), se sont prouvĂ©es fortes utiles pour illuminer quelques aspects concernant la corrĂ©lation des variables de la distribution de Gibbs et la nature fortement nonconvexe de son logarithme negatif. Algorithmiquement, il existe deux principales mĂ©thodologies adressant la difficultĂ© de calcul que pose la constante de normalisation: a). Le point de vue statique: dans cette approche, on reformule le problĂšme en tant que graphe dont les nƓuds correspondent aux variables individuelles de la distribution de Gibbs, et dont les arĂȘtes reflĂštent les dĂ©pendances entre celles-ci. Quand le graphe en question est localement un arbre, les procĂ©dures de message-passing sont garanties d’approximer arbitrairement bien les probabilitĂ©s marginales de la distribution de Gibbs et de maniĂšre Ă©quivalente d'approximer la constante de normalisation. Les prĂ©dictions de la physique concernant la disparition des corrĂ©lations Ă  longues portĂ©es se traduise donc, par le fait que le graphe soit localement un arbre, ainsi permettant l’utilisation des algorithmes locaux de passage de messages. Ceci va ĂȘtre le sujet du chapitre 4. b). Le point de vue dynamique: dans une direction orthogonale, on peut contourner le problĂšme que pose le calcul de la constante de normalisation, en dĂ©finissant une chaĂźne de Markov le long de laquelle, l’échantillonnage converge Ă  celui selon la distribution de Gibbs, tel qu’aprĂšs un certain nombre d’itĂ©rations (sous le nom de temps de relaxation), les Ă©chantillons sont garanties d’ĂȘtre approximativement gĂ©nĂ©rĂ©s selon elle. Afin de discuter des conditions dans lesquelles chacune de ces approches Ă©choue, il est trĂšs utile d’ĂȘtre familier avec la mĂ©thode de replica symmetry breaking de Parisi. Cependant, les calculs nĂ©cessaires sont assez compliquĂ©s, et requiĂšrent des notions qui sont typiquemment Ă©trangĂšres Ă  ceux sans un entrainement en physique statistique. Ce mĂ©moire a principalement deux objectifs : i) de fournir une introduction a la thĂ©orie des rĂ©pliques, ses prĂ©dictions, et ses consĂ©quences algorithmiques pour les problĂšmes de satisfaction de constraintes, et ii) de donner un survol des mĂ©thodes les plus rĂ©centes adressant la transition de phase, prĂ©dite par la mĂ©thode des rĂ©pliques, dans le cas du problĂšme k−SAT, Ă  partir du point de vu statique et dynamique, et finir en proposant un nouvel algorithme qui prend en considĂ©ration la transition de phase en question.The replica trick is a powerful analytic technique originating from statistical physics as an attempt to compute the expectation of the logarithm of the normalization constant of a high dimensional probability distribution known as the Gibbs measure. In physics jargon this quantity is known as the free energy, and all kinds of useful quantities, such as the entropy, can be obtained from it using simple derivatives. The computation of this normalization constant is however an NP-hard problem that a large part of computational statistics attempts to deal with, and which shows up everywhere from coding theory, to high dimensional statistics, compressed sensing, protein folding analysis and constraint satisfaction problems. In each of these cases, the replica trick, and its extension by (Parisi et al., 1987), have proven incredibly successful at shedding light on keys aspects relating to the correlation structure of the Gibbs measure and the highly non-convex nature of − log(the Gibbs measure()). Algorithmic speaking, there exists two main methodologies addressing the intractability of the normalization constant: a) Statics: in this approach, one casts the system as a graphical model whose vertices represent individual variables, and whose edges reflect the dependencies between them. When the underlying graph is locally tree-like, local messagepassing procedures are guaranteed to yield near-exact marginal probabilities or equivalently compute Z. The physics predictions of vanishing long range correlation in the Gibbs measure, then translate into the associated graph being locally tree-like, hence permitting the use message passing procedures. This will be the focus of chapter 4. b) Dynamics: in an orthogonal direction, we can altogether bypass the issue of computing the normalization constant, by defining a Markov chain along which sampling converges to the Gibbs measure, such that after a number of iterations known as the relaxation-time, samples are guaranteed to be approximately sampled according to the Gibbs measure. To get into the conditions in which each of the two approaches is likely to fail (strong long range correlation, high energy barriers, etc..), it is very helpful to be familiar with the so-called replica symmetry breaking picture of Parisi. The computations involved are however quite involved, and come with a number of prescriptions and prerequisite notions (s.a. large deviation principles, saddle-point approximations) that are typically foreign to those without a statistical physics background. The purpose of this thesis is then twofold: i) to provide a self-contained introduction to replica theory, its predictions, and its algorithmic implications for constraint satisfaction problems, and ii) to give an account of state of the art methods in addressing the predicted phase transitions in the case of k−SAT, from both the statics and dynamics points of view, and propose a new algorithm takes takes these into consideration
    • 

    corecore