100 research outputs found

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Blind Image Watermark Detection Algorithm based on Discrete Shearlet Transform Using Statistical Decision Theory

    Get PDF
    Blind watermarking targets the challenging recovery of the watermark when the host is not available during the detection stage.This paper proposes Discrete Shearlet Transform as a new embedding domain for blind image watermarking. Our novel DST blind watermark detection system uses a nonadditive scheme based on the statistical decision theory. It first computes the probability density function (PDF) of the DST coefficients modelled as a Laplacian distribution. The resulting likelihood ratio is compared with a decision threshold calculated using Neyman-Pearson criterion to minimise the missed detection subject to a fixed false alarm probability. Our method is evaluated in terms of imperceptibility, robustness and payload against different attacks (Gaussian noise, Blurring, Cropping, Compression and Rotation) using 30 standard grayscale images covering different characteristics (smooth, more complex with a lot of edges and high detail textured regions). The proposed method shows greater windowing flexibility with more sensitive to directional and anisotropic features when compared against Discrete Wavelet and Contourlets

    On the data hiding theory and multimedia content security applications

    Get PDF
    This dissertation is a comprehensive study of digital steganography for multimedia content protection. With the increasing development of Internet technology, protection and enforcement of multimedia property rights has become a great concern to multimedia authors and distributors. Watermarking technologies provide a possible solution for this problem. The dissertation first briefly introduces the current watermarking schemes, including their applications in video,, image and audio. Most available embedding schemes are based on direct Spread Sequence (SS) modulation. A small value pseudo random signature sequence is embedded into the host signal and the information is extracted via correlation. The correlation detection problem is discussed at the beginning. It is concluded that the correlator is not optimum in oblivious detection. The Maximum Likelihood detector is derived and some feasible suboptimal detectors are also analyzed. Through the calculation of extraction Bit Error Rate (BER), it is revealed that the SS scheme is not very efficient due to its poor host noise suppression. The watermark domain selection problem is addressed subsequently. Some implications on hiding capacity and reliability are also studied. The last topic in SS modulation scheme is the sequence selection. The relationship between sequence bandwidth and synchronization requirement is detailed in the work. It is demonstrated that the white sequence commonly used in watermarking may not really boost watermark security. To address the host noise suppression problem, the hidden communication is modeled as a general hypothesis testing problem and a set partitioning scheme is proposed. Simulation studies and mathematical analysis confirm that it outperforms the SS schemes in host noise suppression. The proposed scheme demonstrates improvement over the existing embedding schemes. Data hiding in audio signals are explored next. The audio data hiding is believed a more challenging task due to the human sensitivity to audio artifacts and advanced feature of current compression techniques. The human psychoacoustic model and human music understanding are also covered in the work. Then as a typical audio perceptual compression scheme, the popular MP3 compression is visited in some length. Several schemes, amplitude modulation, phase modulation and noise substitution are presented together with some experimental results. As a case study, a music bitstream encryption scheme is proposed. In all these applications, human psychoacoustic model plays a very important role. A more advanced audio analysis model is introduced to reveal implications on music understanding. In the last part, conclusions and future research are presented

    Wavelet Domain Watermark Detection and Extraction using the Vector-based Hidden Markov Model

    Get PDF
    Multimedia data piracy is a growing problem in view of the ease and simplicity provided by the internet in transmitting and receiving such data. A possible solution to preclude unauthorized duplication or distribution of digital data is watermarking. Watermarking is an identifiable piece of information that provides security against multimedia piracy. This thesis is concerned with the investigation of various image watermarking schemes in the wavelet domain using the statistical properties of the wavelet coefficients. The wavelet subband coefficients of natural images have significantly non-Gaussian and heavy-tailed features that are best described by heavy-tailed distributions. Moreover the wavelet coefficients of images have strong inter-scale and inter-orientation dependencies. In view of this, the vector-based hidden Markov model is found to be best suited to characterize the wavelet coefficients. In this thesis, this model is used to develop new digital image watermarking schemes. Additive and multiplicative watermarking schemes in the wavelet domain are developed in order to provide improved detection and extraction of the watermark. Blind watermark detectors using log-likelihood ratio test, and watermark decoders using the maximum likelihood criterion to blindly extract the embedded watermark bits from the observation data are designed. Extensive experiments are conducted throughout this thesis using a number of databases selected from a wide variety of natural images. Simulation results are presented to demonstrate the effectiveness of the proposed image watermarking scheme and their superiority over some of the state-of-the-art techniques. It is shown that in view of the use of the hidden Markov model characterize the distributions of the wavelet coefficients of images, the proposed watermarking algorithms result in higher detection and decoding rates both before and after subjecting the watermarked image to various kinds of attacks

    Digital rights management (DRM) - watermark encoding scheme for JPEG images

    Get PDF
    The aim of this dissertation is to develop a new algorithm to embed a watermark in JPEG compressed images, using encoding methods. This encompasses the embedding of proprietary information, such as identity and authentication bitstrings, into the compressed material. This watermark encoding scheme involves combining entropy coding with homophonic coding, in order to embed a watermark in a JPEG image. Arithmetic coding was used as the entropy encoder for this scheme. It is often desired to obtain a robust digital watermarking method that does not distort the digital image, even if this implies that the image is slightly expanded in size before final compression. In this dissertation an algorithm that combines homophonic and arithmetic coding for JPEG images was developed and implemented in software. A detailed analysis of this algorithm is given and the compression (in number of bits) obtained when using the newly developed algorithm (homophonic and arithmetic coding). This research shows that homophonic coding can be used to embed a watermark in a JPEG image by using the watermark information for the selection of the homophones. The proposed algorithm can thus be viewed as a ‘key-less’ encryption technique, where an external bitstring is used as a ‘key’ and is embedded intrinsically into the message stream. The algorithm has achieved to create JPEG images with minimal distortion, with Peak Signal to Noise Ratios (PSNR) of above 35dB. The resulting increase in the entropy of the file is within the expected 2 bits per symbol. This research endeavor consequently provides a unique watermarking technique for images compressed using the JPEG standard.Dissertation (MEng)--University of Pretoria, 2008.Electrical, Electronic and Computer Engineeringunrestricte

    Optimized DWT Based Digital Image Watermarking and Extraction Using RNN-LSTM

    Get PDF
    The rapid growth of Internet and the fast emergence of multi-media applications over the past decades have led to new problems such as illegal copying, digital plagiarism, distribution and use of copyrighted digital data. Watermarking digital data for copyright protection is a current need of the community. For embedding watermarks, robust algorithms in die media will resolve copyright infringements. Therefore, to enhance the robustness, optimization techniques and deep neural network concepts are utilized. In this paper, the optimized Discrete Wavelet Transform (DWT) is utilized for embedding the watermark. The optimization algorithm is a combination of Simulated Annealing (SA) and Tunicate Swarm Algorithm (TSA). After performing the embedding process, the extraction is processed by deep neural network concept of Recurrent Neural Network based Long Short-Term Memory (RNN-LSTM). From the extraction process, the original image is obtained by this RNN-LSTM method. The experimental set up is carried out in the MATLAB platform. The performance metrics of PSNR, NC and SSIM are determined and compared with existing optimization and machine learning approaches. The results are achieved under various attacks to show the robustness of the proposed work

    ИНТЕЛЛЕКТУАЛЬНЫЙ числовым программным ДЛЯ MIMD-компьютер

    Get PDF
    For most scientific and engineering problems simulated on computers the solving of problems of the computational mathematics with approximately given initial data constitutes an intermediate or a final stage. Basic problems of the computational mathematics include the investigating and solving of linear algebraic systems, evaluating of eigenvalues and eigenvectors of matrices, the solving of systems of non-linear equations, numerical integration of initial- value problems for systems of ordinary differential equations.Для більшості наукових та інженерних задач моделювання на ЕОМ рішення задач обчислювальної математики з наближено заданими вихідними даними складає проміжний або остаточний етап. Основні проблеми обчислювальної математики відносяться дослідження і рішення лінійних алгебраїчних систем оцінки власних значень і власних векторів матриць, рішення систем нелінійних рівнянь, чисельного інтегрування початково задач для систем звичайних диференціальних рівнянь.Для большинства научных и инженерных задач моделирования на ЭВМ решение задач вычислительной математики с приближенно заданным исходным данным составляет промежуточный или окончательный этап. Основные проблемы вычислительной математики относятся исследования и решения линейных алгебраических систем оценки собственных значений и собственных векторов матриц, решение систем нелинейных уравнений, численного интегрирования начально задач для систем обыкновенных дифференциальных уравнений

    Probabilistic modeling of wavelet coefficients for processing of image and video signals

    Get PDF
    Statistical estimation and detection techniques are widely used in signal processing including wavelet-based image and video processing. The probability density function (PDF) of the wavelet coefficients of image and video signals plays a key role in the development of techniques for such a processing. Due to the fixed number of parameters, the conventional PDFs for the estimators and detectors usually ignore higher-order moments. Consequently, estimators and detectors designed using such PDFs do not provide a satisfactory performance. This thesis is concerned with first developing a probabilistic model that is capable of incorporating an appropriate number of parameters that depend on higher-order moments of the wavelet coefficients. This model is then used as the prior to propose certain estimation and detection techniques for denoising and watermarking of image and video signals. Towards developing the probabilistic model, the Gauss-Hermite series expansion is chosen, since the wavelet coefficients have non-compact support and their empirical density function shows a resemblance to the standard Gaussian function. A modification is introduced in the series expansion so that only a finite number of terms can be used for modeling the wavelet coefficients with rendering the resulting PDF to become negative. The parameters of the resulting PDF, called the modified Gauss-Hermite (NIGH) PDF, are evaluated in terms of the higher-order sample-moments. It is shown that the MGH PDF fits the empirical density function better than the existing PDFs that use a limited number of parameters do. The proposed MGH PDF is used as the prior of image and video signals in designing maximum a posteriori and minimum mean squared error-based estimators for denoising of image and video signals and log-likelihood ratio-based detector for watermarking of image signals. The performance of the estimation and detection techniques are then evaluated in terms of the commonly used metrics. It is shown through extensive experimentations that the estimation and detection techniques developed utilizing the proposed MGH PDF perform substantially better than those that utilize the conventional PDFs. These results confirm that the superior fit of the MGH PDF to the empirical density function resulting from the flexibility of the MGH PDF in choosing the number of parameters, which are functions of higher-order moments of data, leads to the better performance. Thus, the proposed MGH PDF should play a significant role in wavelet-based image and video signal processin

    Resilient Digital Image Watermarking for Document Authentication

    Get PDF
    Abstract—We consider the applications of the Discrete Cosine Transform (DCT) and then a Chirp coding method for producing a highly robust system for watermarking images using a block partitioning approach subject to a self-alignment strategy and bit error correction. The applications for the algorithms presented and the system developed include the copyright protection of images and Digital Right Management for image libraries, for example. However, the principal focus of the research reported in this paper is on the use of printscan and e-display-scan image authentication for use in e-tickets where QR code, for example, are embedded in a full colour image of the ticket holder. This requires that an embedding procedure is developed that is highly robust to blur, noise, geometric distortions such as rotation, shift and barrel and the partial removal of image segments, all of which are considered in regard to the resilience of the method proposed and its practical realisation in a real operating environment

    Robust digital image watermarking algorithms for copyright protection

    Get PDF
    Digital watermarking has been proposed as a solution to the problem of resolving copyright ownership of multimedia data (image, audio, video). The work presented in this thesis is concerned with the design of robust digital image watermarking algorithms for copyright protection. Firstly, an overview of the watermarking system, applications of watermarks as well as the survey of current watermarking algorithms and attacks, are given. Further, the implementation of feature point detectors in the field of watermarking is introduced. A new class of scale invariant feature point detectors is investigated and it is showed that they have excellent performances required for watermarking. The robustness of the watermark on geometrical distortions is very important issue in watermarking. In order to detect the parameters of undergone affine transformation, we propose an image registration technique which is based on use of the scale invariant feature point detector. Another proposed technique for watermark synchronization is also based on use of scale invariant feature point detector. This technique does not use the original image to determine the parameters of affine transformation which include rotation and scaling. It is experimentally confirmed that this technique gives excellent results under tested geometrical distortions. In the thesis, two different watermarking algorithms are proposed in the wavelet domain. The first algorithm belongs to the class of additive watermarking algorithms which requires the presence of original image for watermark detection. Using this algorithm the influence of different error correction codes on the watermark robustness is investigated. The second algorithm does not require the original image for watermark detection. The robustness of this algorithm is tested on various filtering and compression attacks. This algorithm is successfully combined with the aforementioned synchronization technique in order to achieve the robustness on geometrical attacks. The last watermarking algorithm presented in the thesis is developed in complex wavelet domain. The complex wavelet transform is described and its advantages over the conventional discrete wavelet transform are highlighted. The robustness of the proposed algorithm was tested on different class of attacks. Finally, in the thesis the conclusion is given and the main future research directions are suggested
    corecore