33,248 research outputs found

    A study of the classification of low-dimensional data with supervised manifold learning

    Full text link
    Supervised manifold learning methods learn data representations by preserving the geometric structure of data while enhancing the separation between data samples from different classes. In this work, we propose a theoretical study of supervised manifold learning for classification. We consider nonlinear dimensionality reduction algorithms that yield linearly separable embeddings of training data and present generalization bounds for this type of algorithms. A necessary condition for satisfactory generalization performance is that the embedding allow the construction of a sufficiently regular interpolation function in relation with the separation margin of the embedding. We show that for supervised embeddings satisfying this condition, the classification error decays at an exponential rate with the number of training samples. Finally, we examine the separability of supervised nonlinear embeddings that aim to preserve the low-dimensional geometric structure of data based on graph representations. The proposed analysis is supported by experiments on several real data sets

    Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds

    Full text link
    The Euclidean scattering transform was introduced nearly a decade ago to improve the mathematical understanding of convolutional neural networks. Inspired by recent interest in geometric deep learning, which aims to generalize convolutional neural networks to manifold and graph-structured domains, we define a geometric scattering transform on manifolds. Similar to the Euclidean scattering transform, the geometric scattering transform is based on a cascade of wavelet filters and pointwise nonlinearities. It is invariant to local isometries and stable to certain types of diffeomorphisms. Empirical results demonstrate its utility on several geometric learning tasks. Our results generalize the deformation stability and local translation invariance of Euclidean scattering, and demonstrate the importance of linking the used filter structures to the underlying geometry of the data.Comment: 35 pages; 3 figures; 2 tables; v3: Revisions based on reviewer comment

    Nonlinear Supervised Dimensionality Reduction via Smooth Regular Embeddings

    Full text link
    The recovery of the intrinsic geometric structures of data collections is an important problem in data analysis. Supervised extensions of several manifold learning approaches have been proposed in the recent years. Meanwhile, existing methods primarily focus on the embedding of the training data, and the generalization of the embedding to initially unseen test data is rather ignored. In this work, we build on recent theoretical results on the generalization performance of supervised manifold learning algorithms. Motivated by these performance bounds, we propose a supervised manifold learning method that computes a nonlinear embedding while constructing a smooth and regular interpolation function that extends the embedding to the whole data space in order to achieve satisfactory generalization. The embedding and the interpolator are jointly learnt such that the Lipschitz regularity of the interpolator is imposed while ensuring the separation between different classes. Experimental results on several image data sets show that the proposed method outperforms traditional classifiers and the supervised dimensionality reduction algorithms in comparison in terms of classification accuracy in most settings

    A Fusion Scheme of Local Manifold Learning Methods

    Get PDF
    Spectral analysis‐based dimensionality reduction algorithms, especially the local manifold learning methods, have become popular recently because their optimizations do not involve local minima and scale well to large, high‐dimensional data sets. Despite their attractive properties, these algorithms are developed based on different geometric intuitions, and only partial information from the true geometric structure of the underlying manifold is learned by each method. In order to discover the underlying manifold structure more faithfully, we introduce a novel method to fuse the geometric information learned from different local manifold learning algorithms in this chapter. First, we employ local tangent coordinates to compute the local objects from different local algorithms. Then, we utilize the truncation function from differential manifold to connect the local objects with a global functional and finally develop an alternating optimization‐based algorithm to discover the low‐dimensional embedding. Experiments on synthetic as well as real data sets demonstrate the effectiveness of our proposed method
    • 

    corecore