1,433 research outputs found

    Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control

    Get PDF
    Numerical methods that preserve geometric invariants of the system, such as energy, momentum or the symplectic form, are called geometric integrators. In this paper we present a method to construct symplectic-momentum integrators for higher-order Lagrangian systems. Given a regular higher-order Lagrangian L: T( k )Q→ R with k≥ 1 , the resulting discrete equations define a generally implicit numerical integrator algorithm on T( k - 1 )Q× T( k - 1 )Q that approximates the flow of the higher-order Euler–Lagrange equations for L. The algorithm equations are called higher-order discrete Euler–Lagrange equations and constitute a variational integrator for higher-order mechanical systems. The general idea for those variational integrators is to directly discretize Hamilton’s principle rather than the equations of motion in a way that preserves the invariants of the original system, notably the symplectic form and, via a discrete version of Noether’s theorem, the momentum map. We construct an exact discrete Lagrangian Lde using the locally unique solution of the higher-order Euler–Lagrange equations for L with boundary conditions. By taking the discrete Lagrangian as an approximation of Lde, we obtain variational integrators for higher-order mechanical systems. We apply our techniques to optimal control problems since, given a cost function, the optimal control problem is understood as a second-order variational problem.Fil: Colombo, Leonardo Jesus. University of Michigan; Estados UnidosFil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España. Consejo Superior de Investigaciones Científicas; Españ

    A Discrete Geometric Optimal Control Framework for Systems with Symmetries

    Get PDF
    This paper studies the optimal motion control of mechanical systems through a discrete geometric approach. At the core of our formulation is a discrete Lagrange-d’Alembert- Pontryagin variational principle, from which are derived discrete equations of motion that serve as constraints in our optimization framework. We apply this discrete mechanical approach to holonomic systems with symmetries and, as a result, geometric structure and motion invariants are preserved. We illustrate our method by computing optimal trajectories for a simple model of an air vehicle flying through a digital terrain elevation map, and point out some of the numerical benefits that ensue

    On the Benefits of Surrogate Lagrangians in Optimal Control and Planning Algorithms

    Full text link
    This paper explores the relationship between numerical integrators and optimal control algorithms. Specifically, the performance of the differential dynamical programming (DDP) algorithm is examined when a variational integrator and a newly proposed surrogate variational integrator are used to propagate and linearize system dynamics. Surrogate variational integrators, derived from backward error analysis, achieve higher levels of accuracy while maintaining the same integration complexity as nominal variational integrators. The increase in the integration accuracy is shown to have a large effect on the performance of the DDP algorithm. In particular, significantly more optimized inputs are computed when the surrogate variational integrator is utilized

    High order variational integrators in the optimal control of mechanical systems

    Get PDF
    In recent years, much effort in designing numerical methods for the simulation and optimization of mechanical systems has been put into schemes which are structure preserving. One particular class are variational integrators which are momentum preserving and symplectic. In this article, we develop two high order variational integrators which distinguish themselves in the dimension of the underling space of approximation and we investigate their application to finite-dimensional optimal control problems posed with mechanical systems. The convergence of state and control variables of the approximated problem is shown. Furthermore, by analyzing the adjoint systems of the optimal control problem and its discretized counterpart, we prove that, for these particular integrators, dualization and discretization commute.Comment: 25 pages, 9 figures, 1 table, submitted to DCDS-

    Optimal Control of Underactuated Mechanical Systems: A Geometric Approach

    Full text link
    In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.Comment: 20 pages, 2 figure

    Geometric, Variational Integrators for Computer Animation

    Get PDF
    We present a general-purpose numerical scheme for time integration of Lagrangian dynamical systems—an important computational tool at the core of most physics-based animation techniques. Several features make this particular time integrator highly desirable for computer animation: it numerically preserves important invariants, such as linear and angular momenta; the symplectic nature of the integrator also guarantees a correct energy behavior, even when dissipation and external forces are added; holonomic constraints can also be enforced quite simply; finally, our simple methodology allows for the design of high-order accurate schemes if needed. Two key properties set the method apart from earlier approaches. First, the nonlinear equations that must be solved during an update step are replaced by a minimization of a novel functional, speeding up time stepping by more than a factor of two in practice. Second, the formulation introduces additional variables that provide key flexibility in the implementation of the method. These properties are achieved using a discrete form of a general variational principle called the Pontryagin-Hamilton principle, expressing time integration in a geometric manner. We demonstrate the applicability of our integrators to the simulation of non-linear elasticity with implementation details
    corecore