131 research outputs found

    Geolocation with FDOA Measurements via Polynomial Systems and RANSAC

    Full text link
    The problem of geolocation of a transmitter via time difference of arrival (TDOA) and frequency difference of arrival (FDOA) is given as a system of polynomial equations. This allows for the use of homotopy continuation-based methods from numerical algebraic geometry. A novel geolocation algorithm employs numerical algebraic geometry techniques in conjunction with the random sample consensus (RANSAC) method. This is all developed and demonstrated in the setting of only FDOA measurements, without loss of generality. Additionally, the problem formulation as polynomial systems immediately provides lower bounds on the number of receivers or measurements required for the solution set to consist of only isolated points.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Dual-Satellite Source Geolocation with Time and Frequency Offsets and Satellite Location Errors

    Get PDF
    This paper considers locating a static source on Earth using the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements obtained by a dual-satellite geolocation system. The TDOA and FDOA from the source are subject to unknown time and frequency offsets because the two satellites are imperfectly time-synchronized or frequency-locked. The satellite locations are not known accurately as well. To make the source position identifiable and mitigate the effect of satellite location errors, calibration stations at known positions are used. Achieving the maximum likelihood (ML) geolocation performance usually requires jointly estimating the source position and extra variables (i.e., time and frequency offsets as well as satellite locations), which is computationally intensive. In this paper, a novel closed-form geolocation algorithm is proposed. It first fuses the TDOA and FDOA measurements from the source and calibration stations to produce a single pair of TDOA and FDOA for source geolocation. This measurement fusion step eliminates the time and frequency offsets while taking into account the presence of satellite location errors. The source position is then found via standard TDOA-FDOA geolocation. The developed algorithm has low complexity and performance analysis shows that it attains the Cramér-Rao lower bound (CRLB) under Gaussian noises and mild conditions. Simulations using a challenging scenario with a short-baseline dual-satellite system verify the theoretical developments and demonstrate the good performance of the proposed algorithm

    An Analysis of Radio-Frequency Geolocation Techniques for Satellite Systems Design

    Get PDF
    This research 1) evaluates the effectiveness of CubeSat radio-frequency geolocation and 2) analyzes the sensitivity of different RF algorithms to system parameters. A MATLAB simulation is developed to assess geolocation accuracy for variable system designs and techniques (AOA, TDOA, T/FDOA). An unconstrained maximum likelihood estimator (MLE) and three different digital elevation models (DEM) are utilized as the surface of the Earth constraint to improve geolocation accuracy. The results presented show the effectiveness of the MLE and DEM techniques, the sensitivity of AOA, TDOA, and T/FDOA algorithms, and the system level performance of a CubeSat geolocation cluster in a 500km circular orbit

    FDOA-based passive source localization: a geometric perspective

    Get PDF
    2018 Fall.Includes bibliographical references.We consider the problem of passively locating the source of a radio-frequency signal using observations by several sensors. Received signals can be compared to obtain time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The geometric relationship satisfied by these measurements allow us to make inferences about the emitter's location. In this research, we choose to focus on the FDOA-based source localization problem. This problem has been less widely studied and is more difficult than solving for an emitter's location using TDOA measurements. When the FDOA-based source localization problem is formulated as a system of polynomials, the source's position is contained in the corresponding algebraic variety. This provides motivation for the use of methods from algebraic geometry, specifically numerical algebraic geometry (NAG), to solve for the emitter's location and gain insight into this system's interesting structure

    COMPARISON BETWEEN TWO SENSORS AND MULTIPLE SENSORS WITH TOA AND TDOA/FDOA FUSIONS AND NON-FUSIONS UNDER NOISE JITTER MITIGATION

    Get PDF
    The prominence of geolocation technology and its demand has risen in recent years. Stringent and precise positioning is at the forefront of both civilian and military applications. The importance of precision leads to a rise in processing and algorithm run times. In addition, space, time and atmospheric conditions contribute to the complexity of geolocation operations. Past research measured time-of-arrival, time-difference-of-arrival, and frequency-difference-of arrival under stringent conditions using a synthetic aperture approach of two airborne sensors. While four sensors have been proven to be ideal in the geolocation of an emitter, we aim to decrease the requirement to three sensors and retain the purity of the original two sensor algorithm. Three-sensor fusion from multiple time-samples enhances the precision of the estimate and provides the end-user a better positioning solution. We propose the utilization of three airborne sensors collecting measurements from the synthetic aperture model. Sensor angular separation and aperture size are addressed. A thorough investigation into ionosphere mitigation is provided. Finally, an overall summary and comparison between two- and three-sensor approaches are documented.Lieutenant, United States NavyApproved for public release; distribution is unlimited

    A new iterative algorithm for geolocating a known altitude target using TDOA and FDOA measurements in the presence of satellite location uncertainty

    Get PDF
    AbstractThis paper considers the problem of geolocating a target on the Earth surface whose altitude is known previously using the target signal time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements obtained at satellites. The number of satellites available for the geolocation task is more than sufficient and their locations are subject to random errors. This paper derives the constrained Cramér-Rao lower bound (CCRLB) of the target position, and on the basis of the CCRLB analysis, an approximately efficient constrained maximum likelihood estimator (CMLE) for geolocating the target is established. A new iterative algorithm for solving the CMLE is then proposed, where the updated target position estimate is shown to be the globally optimal solution to a generalized trust region sub-problem (GTRS) which can be found via a simple bisection search. First-order mean square error (MSE) analysis is conducted to quantify the performance degradation when the known target altitude is assumed to be precise but indeed has an unknown but deterministic error. Computer simulations are used to compare the performance of the proposed iterative geolocation technique with those of two benchmark algorithms. They verify the approximate efficiency of the proposed algorithm and the validity of the MSE analysis

    Geolocation of a Known Altitude Target Using TDOA and GROA in the Presence of Receiver Location Uncertainty

    Get PDF
    This paper considers the problem of geolocating a target on the Earth surface using the target signal time difference of arrival (TDOA) and gain ratio of arrival (GROA) measurements when the receiver positions are subject to random errors. The geolocation Cramer-Rao lower bound (CRLB) is derived and the performance improvement due to the use of target altitude information is quantified. An algebraic geolocation solution is developed and its approximate efficiency under small Gaussian noise is established analytically. Its sensitivity to the target altitude error is also studied. Simulations justify the validity of the theoretical developments and illustrate the good performance of the proposed geolocation method

    Passive Geolocation of Low Power Emitters in Urban Environments using TDOA

    Get PDF
    Low-power devices are commonly used by the enemy to control Improvised Explosive Devices (IEDs), and as communications nodes for command and control. Quickly locating the source of these signals is difficult, especially in an urban environment where buildings and towers can cause interference. This research presents a geolocation system that combines several geolocation and error mitigation methods to locate an emitter in an urban environment. The proposed geolocation system uses a Time Difference of Arrival (TDOA) technique to estimate the location of the emitter of interest. Using sensors at known locations, TDOA estimates are obtained by cross-correlating the signal received at all the sensors. A Weighted Least Squares (WLS) solution is used to estimate the emitter\u27s location. If the variance of the location estimate is too high, a sensor is detected as having a Non-Line of Sight (NLOS) path from the emitter, and is removed from the geolocation system and a new position estimate is calculated with the remaining sensor TDOA information. The performance of the system is assessed through modeling and simulations. The test results confirm the feasibility of identifying a NLOS sensor, thereby improving the geolocation system\u27s accuracy in an urban environment

    MmWave V2V Localization in MU-MIMO Hybrid Beamforming

    Get PDF
    Recent trends for vehicular localization in millimetre-wave (mmWave) channels include employing a combination of parameters such as angle of arrival (AOA), angle of departure (AOD), and time of arrival (TOA) of the transmitted/received signals. These parameters are challenging to estimate, which along with the scattering and random nature of mmWave channels, and vehicle mobility lead to errors in localization. To circumvent these challenges, this paper proposes mmWave vehicular localization employing difference of arrival for time and frequency, with multiuser (MU) multiple-input-multiple-output (MIMO) hybrid beamforming; rather than relying on AOD/AOA/TOA estimates. The vehicular localization can exploit the number of vehicles present, as an increase in a number of vehicles reduces the Cramr-Rao bound (CRB) of error estimation. At 10 dB signal-to-noise ratio (SNR) both spatial multiplexing and beamforming result in comparable localization errors. At lower SNR values, spatial multiplexing leads to larger errors compared to beamforming due to formation of spurious peaks in the cross ambiguity function. Accuracy of the estimated parameters is improved by employing an extended Kalman filter leading to a root mean square (RMS) localization error of approximately 6.3 meters
    corecore