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ABSTRACT

FDOA-BASED PASSIVE SOURCE LOCALIZATION: A GEOMETRIC PERSPECTIVE

We consider the problem of passively locating the source of a radio-frequency signal using

observations by several sensors. Received signals can be compared to obtain time difference

of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The geometric

relationship satisfied by these measurements allow us to make inferences about the emitter’s

location. In this research, we choose to focus on the FDOA-based source localization problem.

This problem has been less widely studied and is more difficult than solving for an emitter’s

location using TDOA measurements. When the FDOA-based source localization problem is

formulated as a system of polynomials, the source’s position is contained in the corresponding

algebraic variety. This provides motivation for the use of methods from algebraic geometry,

specifically numerical algebraic geometry (NAG), to solve for the emitter’s location and gain

insight into this system’s interesting structure.
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Chapter 1

Introduction

In the fields of radar, sonar, and acoustics it is often necessary to find the source of a

signal using passive source localization techniques. For instance, ships in distress use a radio-

frequency signal-emitting beacon to alert land-based authorities. For effective search and

rescue, the location of this beacon (and thus, the ship) must be estimated [1]. In acoustics,

many speech and voice recognition algorithms require knowledge of sound source position [2].

Thus, source localization techniques are required to precisely estimate the speaker’s position.

A particularly widespread use for passive source localization techniques is in the area

of passive radar. Traditional (active) radar detection and imaging involves a signal sent by

the user being reflected off of objects in its range. Conversely, passive radar utilizes signals

already being transmitted to make observations. This distinction is shown in Figure 1.1.

In passive radar, the sources of the observed signals are often unknown and can include

communication towers, Wi-Fi routers, and space-based Global Positioning Systems, among

many other radio-frequency emitters [3]. To effectively utilize a signal for radar applications,

it is often necessary to determine the origin of the signal being used, thus requiring source

localization techniques.

Passive techniques are becoming more important as technology is increasingly prevalent.

It is said that the electromagnetic spectrum is becoming ‘crowded’ with radiation emitted

at various frequencies. This causes an increase in noise from interfering signals and limits

waveform options for signal transmission. Since passive radar does not require emission of a

signal by the observer, it is a promising alternative to traditional active radar techniques.

Passive source localization involves measuring an observed signal with several nearby

receivers. The received signals can then be compared to obtain time difference of arrival

(TDOA) and frequency difference of arrival (FDOA) quantities. TDOA measurements de-

scribe the time delays caused by separation between the receivers and the emitter. The re-
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Figure 1.1: Active radar involves the sending of a signal, then receiving the waves after reflection
off of a scene or target. Knowledge about the sent wave can be used to determine the location of
the target or to distinguish objects in a scene. In passive radar, the user does not have knowledge
about the sent signal’s frequency or origin. One way to make the information usable is to determine
the origin of the signal using passive source localization.

ceived signals also experience a frequency shift caused by a difference in velocity between the

emitter and the receiver. This is due to the Doppler effect [4]. FDOA measurements quantify

this disparity in observed signal frequency. Using these relationships, TDOA/FDOA mea-

surements, along with receiver locations and velocities, can be used to back-out the source

location.

The problem of locating an emitter using TDOA or FDOA is highly algebraic and geomet-

ric in nature. In fact, the problem can be described by a set of polynomial equations whose

solution corresponds to the location of the transmitter. This suggests the use of methods

from computational algebraic geometry. The FDOA-based problem in particular is highly

nonlinear, which makes its solution ill-conditioned and sensitive to noise. Approaching the

problem from an algebro-geometric perspective provides tools for understanding the intricate

relationship between emitter location and velocity, receiver geometry and velocities, and the

resulting frequency shift.

This dissertation develops methods for passive source localization using FDOA measure-

ments, since the TDOA case has been comprehensively studied in [2, 5–14], among others.

Additionally, geolocation of a source using only FDOA measurements is valuable since many

2



signals possess fine Doppler resolution and coarse range (TDOA) resolution. In fact, the

radar ambiguity function ensures an inverse relationship between range and Doppler reso-

lution1 [4]. With traditional radar applications the user has control over the type of signal

being transmitted, but this is not true for the passive setting. Thus, it is beneficial to possess

capabilities for processing a diverse set of waveforms.

This thesis is organized as follows. A technical summary of the TDOA and FDOA-

based source localization problem, along with an overview of relevant work in the area, is

presented in Chapter 2. The closing paragraph outlines the objectives of this dissertation.

Chapter 3 shows how the problem can be formulated as systems of polynomials, which

provides natural bounds for the number of receivers necessary to obtain a zero-dimensional

solution set. Framing the source-localization problem in this way also allows for the use of

techniques from computational algebraic geometry, specifically utilizing numerical algebraic

geometry (NAG) and elimination theory. An overview of some of these methods is provided

in Chapter 4. This concludes the preliminary section.

Chapters 5, 6, and 7 detail three separate projects related to FDOA-based passive source

localization. Chapter 5 presents a novel geolocation algorithm utilizing the NAG techniques

presented in Section 4.1 in conjunction with the RANdom SAmpling Consensus (RANSAC)

method. This algorithm combines the polynomial system solving power of the NAG software

Bertini [15] with the robustness to noise of RANSAC. It is also one of only a handful of

algorithms that allow for a solution to be found using only FDOA measurements.

In addition to TDOA and FDOA measurements, the direction of arrival (DOA) of a signal

is a useful quantity for locating a source. In Chapter 6 the relationship between TDOA,

FDOA, and direction of arrival is explored. This relationship leads to a novel technique for

estimating direction of arrival from TDOA or FDOA measurements. This method utilizes a

simplification arising from the far-field assumption.

1This is discussed further in Appendix A.
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For a fixed set of system parameters, we construct a map between the location of a source

and the corresponding set of FDOA measurements. A natural question to ask is: what is

the image of this map? This corresponds to the set of all feasible FDOA measurements.

Chapter 7 provides an analysis of the surface of feasible FDOA measurements and assesses

its use for de-noising data. The work in this chapter employs elimination theory (specifically,

the Dixon resultant) and numerical algebraic geometry.

The final chapter (Chapter 8) contains concluding remarks and a discussion of a few

related projects that may be pursued in the future.
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Chapter 2

Background

As was discussed in the previous chapter, this work features several approaches to un-

derstanding and exploiting the algebra and geometry of FDOA-based source localization.

This chapter provides an introduction to the geolocation problem (Section 2.1) along with

an overview of current work in the area.

2.1 Geolocation with TDOA and FDOA

Source localization is often performed using measurements of a signal obtained by several

nearby receivers. In this thesis we do not focus on the signal processing techniques used to

extract the relevant quantities from a signal, although a summary is included in Appendix

A. Instead, the focus of this work is on the geolocation of a source once measurements are

obtained.

In passive source localization, observers do not have information about the signal that

was sent, such as its frequency or the time of transmission, but can compare the received

signals to find discrepancies in frequency or time delay. This information can be used to

solve for the signal’s origin, using the geometric relationship between the receivers and the

location of the source. Specific measurements gathered are the time difference of arrival

(TDOA) and frequency difference of arrival (FDOA). Additionally, the geolocation problem

can be simplified if information about the transmitter is known a priori, such as altitude

(ALT).

This section outlines the mathematical and physical framework for geolocation using

TDOA and FDOA and summarizes other relevant work in the field. The problem is for-

mulated in three dimensions with an earth-centered, earth-fixed coordinate system (ECEF).

Later in this thesis, the two-dimensional system will also be considered as a simpler case. Al-
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Figure 2.1: Passive source localization seeks to find the position of the emitter (blue tower), given
measurements of the signal by several receivers (red circles). For FDOA-based source localization,
the relative velocity between emitter and receivers must be nonzero.

though the methods developed here are relevant to a variety of scenarios, we usually assume

a radio-frequency signal for consistency.

2.1.1 Time Difference of Arrival (TDOA)

Consider a transmitter at location x = (x, y, z)T , emitting a signal with speed of propaga-

tion c. For a radio-frequency signal in free space, c is the speed of light. There are n sensors

observing the signal at locations x1 = (x1, y1, z1)
T , ... , xn = (xn, yn, zn)

T . The amount of

time it takes the signal to travel to the ith receiver is

τi =
1

c
‖xi − x‖ =

1

c

√
(xi − x)2 + (yi − y)2 + (zi − z)2.

This gives rise to the first definition.

Definition 1. The time difference of arrival (TDOA), between the first receiver and

the ith receiver is equivalent to

c · τ1,i = ‖xi − x‖ − ‖x1 − x‖

=
√
(xi − x)2 + (yi − y)2 + (zi − z)2 −

√
(x1 − x)2 + (y1 − y)2 + (z1 − z)2. (2.1)

6



This is essentially the signal lag time between receivers. The above equation can be

written for all pairs of receivers, although only n−1 pairs will be linearly independent. This

is due to the fact that the measurements should satisfy the relation:

τi,j + τj,k − τi,k = 0.

Thus, without loss of generality, one can simply consider the TDOA measurements between

receivers 2, ..., n and receiver 1. We refer to receiver 1 as the reference receiver.

The receiver positions x1, . . . ,xn are known parameters. Thus, we frame the relation

above ( 2.1) as the map:

T3 : R3 −→ Rn−1 (2.2)

x −→ (τ2,1, . . . , τn,1),

with τi,j defined as in (2.1). When provided with TDOA measurements (τ ∗2,1, . . . , τ
∗
n,1), the

TDOA-based source localization problem consists of finding the corresponding x∗ such that

T3(x
∗) = (τ ∗2,1, . . . , τ

∗
n,1). This requires the inversion of T3.

This map is the focus of the recent extensive analysis of the TDOA system from an alge-

braic geometry perspective by Compagnoni et al. [12, 13]. The authors specifically consider

the two-dimensional TDOA problem as a map as in (2.2). Viewing the problem from this

viewpoint allows for the discussion of questions such as: What does the set of feasible TDOA

measurements look like? Given a set of TDOA measurements, can we identify the source

location they originated from? Is this unique?

In fact, Compagnoni et al. successfully identify the image of T2 in [12]. This result gave

rise to a method for de-noising data developed by the same authors, that involves projecting

noisy data onto the image of feasible TDOA measurements [14]. This forces the existence of a

real solution x∗ to (2.1). Other methods for managing data to deal with noise include divide

and conquer (DAC) and the RANdom SAmpling Consensus method (RANSAC) [16,17].
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In general, source localization using only TDOA measurements is a well-understood prob-

lem and many algorithms have been developed for its solution. Common approaches include

linearization of the system or a multidimensional parameter search [18]. In 1997, Ho and

Chan presented an algorithm that involved reformulating the TDOA equations (2.1) as a

system of polynomials, then simplifying to a linear system and a degree 7 polynomial of one

variable [8]. Their paper provided a clear introduction to the problem, and its polynomial

formulation for the TDOA equations provided a natural starting point for our study of the

geolocation problem.

Geometrically, each TDOA measurement restricts the potential transmitter location to

a hyperboloid with receivers as the foci (hyperbola in two dimensions). Thus, if several

measurements are obtained, locating the emitter requires finding the intersection of several

hyperbolae (Figure 2.2). An algebraic closed-form solution to TDOA-based geolocation has

been found in several works. Methods for finding these solutions include resultants and

Gröbner bases [19, 20], spherical intersection [5, 10], and spherical interpolation [21], among

others [6, 22]. Numerical algebraic geometry has also been used for the numerical solution

of the TDOA problem in certain applications [23].

2.1.2 Frequency Difference of Arrival (FDOA)

The focus of this dissertation is on the more complicated and less widely studied problem

of FDOA-based source localization. While the TDOA is related to the distance between

the emitter and the receiver, the FDOA is caused by the Doppler shift of the signal due to

disparities between receiver and emitter velocities. With the assumption that the emitter is

fixed, the Doppler shift of the signal at receiver i is,

di =
f0
c

(
vi ·

x− xi

‖x− xi‖

)
.

This is the dot product of the velocity of the ith receiver (vi = (ui, vi, wi)
T ), with the unit

vector pointing from the receiver to the source. This is equivalent to the receiver velocity

8



Figure 2.2: Each TDOA measurement restricts the potential transmitter location to a hyperbola.
In this figure, receivers are given by blue circles, the resulting curves of potential emitter locations
are shown in black, and the emitter location is given by a red X. Note that in three dimensions, the
lines of position (LOP) become hyperboloids.

in the direction of the source. The expression is scaled by the center frequency of the

transmitted signal (f0) divided by speed of propagation, c. From here we leave the constant

factor f0
c

off for simplicity. This is not an issue as long as f0 and c are known, which we

assume in this thesis. However, in practice, f0 may be unknown. In this case f0 could be

treated as an additional variable. With the exclusion of the factor f0
c
, di is proportional to

the frequency shift of the signal at receiver i. From this we can obtain an expression for the

FDOA.

Definition 2. The frequency difference of arrival (FDOA) between receivers i and 1

is proportional to

f1,i = di − d1 = vi ·
x− xi

‖x− xi‖
− v1 ·

x1 − x

‖x1 − x‖ . (2.3)
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As with the TDOA case above, often only the measurements between receivers 2, ..., n

and receiver 1 are considered and the relationship,

fi,j + fj,k − fi,k = 0,

holds for noise-free measurements.

Again we consider the receiver positions x1, . . . ,xn and velocities v1, . . . ,vn as known

parameters and frame the FDOA-based problem (2.3) mathematically as the map:

F3 : R3 −→ Rn−1 (2.4)

x −→ (f1,2, . . . , f1,n).

FDOA-based source localization then consists of identifying the location x∗ where a signal

originated, given that F3(x
∗) = (f ∗

1,2, . . . , f
∗
1,n). There also exists a two-dimensional equiva-

lent of (2.4), F2. This simpler map is used in Chapter 7. The nonlinear nature of the FDOA

equations makes the inversion of F3 (or F2) an ill-posed problem, meaning there are multiple

solutions. The main approach we use to tackle this difficulty is reformulation of the map F3

as a system of polynomials. With the receivers’ locations and velocities as parameters along

with the FDOA measurements, we can solve for the variables corresponding to the source

location, x. The solution set of the polynomial system will contain the correct emitter po-

sition x∗, along with other points. This approach invites methods from computational and

numerical algebraic geometry for the manipulation and solution of polynomial equations.

In the previous section, it was shown that each TDOA measurement limits the possible

source locations to a hyperboloid. Unfortunately, the geometric interpretation of the FDOA-

based problem is not as simple. Figure 2.3 is an example of the curves of constant FDOA

for a fixed set of parameters. Any intersection of the curves in (a) and (b) is a potential

emitter location.
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(a) Curve of constant f1,2. (b) Curve of constant f1,3

Figure 2.3: Curves of potential emitter locations resulting from an FDOA measurement. Any
point in the intersection of the curves in (a) and (b) is a possible emitter location.

The nonlinearity and corresponding complicated geometry of the FDOA equations make

this problem less widely studied than the TDOA case discussed above. While the FDOA

measurements are often used as an additional constraint to the TDOA geolocation systems

(TDOA/FDOA localization) [8], only a few algorithms have been developed using FDOA

alone [24]. In practice, there are some cases where it is desirable to solve for the emitter

location using FDOA only. For instance, in the case of a narrowband signal with a long pulse

duration, the Doppler resolution is higher than the range resolution and it can be difficult

to measure the TDOA accurately [4, 19, 24].

As noted above, the FDOA-based source localization problem is ill-posed. Thus, a few

particular issues arise when attempting to find a solution to the problem. The system

could have several possible solutions, in which case it can be difficult to distinguish which

is correct. Because of this, iterative solvers, such as Newton’s method, can converge to a

wrong solution. Additionally, small perturbations to the system, i.e., noise, could cause the

solutions to become largely inaccurate. Tools from mathematics, such as algebraic geometry,
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can provide insight into the behavior of the system. The difficulty and relevance of this

problem provide the motivation for this study.

In particular, this dissertation seeks to:

• Express FDOA-based source localization as an algebraic variety. (Chapter 3)

• Develop methods for determining a signal’s origin, x∗, when provided with measure-

ments F3(x
∗) = (f ∗

1,2, . . . , f
∗
1,n). These include,

– A geolocation algorithm combining the iterative method, RANSAC, with numer-

ical algebraic geometry. (Chapter 5)

– A method for determining the direction of arrival (DOA) of a signal from a set of

TDOA or FDOA measurements. (Chapter 6)

• Investigate the geometry of the image of F3, the set of feasible FDOA measurements.

(Chapter 7)
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Chapter 3

Polynomial Systems for TDOA and FDOA

It is helpful to transform the TDOA and FDOA equations in Chapter 2 to a set of

polynomials. This allows for the use of methods from algebraic geometry. For consistency,

the polynomials are presented in three dimensions, although it is easy to see how they

could be simplified to a two-dimensional formulation. A polynomial system created from the

TDOA equations was used in [8], but the FDOA polynomial expression is new.

3.1 TDOA System

Equation (2.1) can be converted to a polynomial with the use of one additional variable,

r1, to eliminate the square roots. The resulting system is [8]:

(c · τ1,2)2 + 2cr1 · τ1,2−(x2
2 + y22 + z22) + (x2

1 + y21 + z21)

+ 2 [(x2 − x1)x+ (y2 − y1)y + (z2 − z1)z] = 0

(c · τ1,3)2 + 2cr1 · τ1,3−(x2
3 + y23 + z23) + (x2

1 + y21 + z21)

+ 2 [(x3 − x1)x+ (y3 − y1)y + (z3 − z1)z] = 0

...

(c · τ1,N)2 + 2cr1 · τ1,N−(x2
N + y2N + z2N) + (x2

1 + y21 + z21)

+ 2 [(xN − x1)x+ (yN − y1)y + (zN − z1)z] = 0

r21 − (x2 + y2 + z2)−(x2
1 + y21 + z21) + 2(x1x+ y1y + z1z) = 0.

In addition to its use for removing square roots, r1 has physical significance as a range

variable and represents the distance between the emitter and receiver 1. The variables are

emitter location (x, y, z) and range r1. All other values in the system are parameters. Note

that this system is linear except in r1. This fact was capitalized upon in [8], where the
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system was reduced to a single polynomial in r1. There are well-known methods for solving

univariate polynomials, after which the remaining variables can be obtained by a linear solve.

3.2 FDOA System

Similar to the TDOA case above, the FDOA equations can be converted to polynomial

equations with the use of several range variables, r1, ..., rN . Unsurprisingly, this system is

more complicated than in the TDOA case.

r1r2f1,2 − r1 [u2(x2 − x) + v2(y2 − y) + w2(z2 − z)]

+ r2 [u1(x1 − x) + v1(y1 − y) + w1(z1 − z)] = 0

r1r3f1,3 − r1 [u3(x3 − x) + v3(y3 − y) + w3(z3 − z)]

+ r3 [u1(x1 − x) + v1(y1 − y) + w1(z1 − z)] = 0

...

r1rNf1,N − r1 [uN(xN − x) + vN(yN − y) + wN(zN − z)]

+ rN [u1(x1 − x) + v1(y1 − y) + w1(z1 − z)] = 0

r21 − (x2 + y2 + z2)− (x2
1 + y21 + z21) + 2(x1x+ y1y + z1z) = 0

...

r2N − (x2 + y2 + z2)− (x2
N + y2N + z2N) + 2(xNx+ yNy + zNz) = 0.

With polynomial representations for the TDOA and FDOA expressions, the geolocation

problem is reduced to finding the solution to a set of polynomial equations. The location

(x, y, z) and range variables r1, r2, . . . , rN corresponding to the emitter location will be con-

tained in this solution set. With a problem of this type and size, a solution can be found

quickly using techniques from numerical algebraic geometry, particularly with the use of a

parameter homotopy (introduced in Section 4.1). Before solving, however, some additional
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work must be done to find necessary conditions for a solution to exist and for the solution

set to be finite in number.

3.3 Bounds on the Necessary Number of Receivers

For systems of linear equations, it is trivial to predict the dimension of the solution set un-

der the assumption that the equations are linearly independent. This is much the same with

polynomial systems, though the range of degenerate cases is far more nuanced and compli-

cated. With the formulation of the geolocation problem as a system of polynomial equations,

it is easy to provide bounds on the minimum number of receivers2 needed in various scenarios

to reduce the solution set to a finite set of points. This is the content of Table 3.1. Note

that ‘TDOA only’ refers to solving for location using only TDOA measurements, ‘TDOA +

FDOA’ refers to solving with both TDOA and FDOA, etc.

As an example, we consider the case of solving with only TDOA measurements in three

dimensions (x, y, z) using the system in Section 3.1. The number of variables being solved for

is four (three location variables and r1). If there are n receivers, the system above consists

of n equations: n− 1 from TDOA measurements and a single r1 equation. Solving a single

equation in 4 variables results in a three-dimensional solution set. A set with dimension one

less than the ambient space is referred to as a hypersurface. As the number of non-redundant

equations is increased, the dimension of the solution set is typically decreased by one. It

follows that a square system (same number of variables and equations) will most-likely result

in a zero dimensional solution set (only points). This gives a finite solution set. The number

of receivers needed to obtain a square system in the three-dimensional TDOA-only case is

n = 4. If the emitter’s altitude (ALT) is known, the system will have one additional equation

and one less receiver is needed to obtain a square system.

2If receivers are allowed to take measurements over multiple time steps, the systems would change slightly
and a similar table could be provided showing bounds on the number of measurements necessary instead of
receivers. This is included in Appendix B.
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It is important to note that these bounds do not guarantee that there will be only finitely

many solutions for every set of measurements. As an extreme counterexample, consider the

case of stacking all receivers at the same point; the number of (identical) measurements in

this case makes no difference.

Table 3.1: Minimum number of TDOA and FDOA receivers necessary to reduce set of potential
transmitter locations to a finite number, for varying dimensions (2 or 3) and types of measurements
being used.

# receivers (2D) # receivers (3D)
TDOA only 3 4

TDOA + ALT - 3
FDOA only 3 4

FDOA + ALT - 3
TDOA + FDOA 2 3

TDOA + FDOA + ALT - 2
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Chapter 4

Techniques from Algebraic Geometry

In Chapter 3, the TDOA and FDOA expressions (Eqs. 2.1 and 2.3) were converted to

polynomial systems with the use of extra variables for removing the square roots. Given

parameters and measurement values, the source’s location then must lie in the solution set

of a system of polynomial equations, referred to as the algebraic variety associated with the

system. More precisely, the algebraic variety determined by a system of polynomials,

F (z) =




f1(z1, . . . , zN)

f2(z1, . . . , zN)

...

fn(z1, . . . , zN)




,

is defined as the set:

V(F ) = {z∗ ∈ CN | fi(z∗) = 0 for all i}.

In many real-world applications, source-localization included, only the real values of V(F )

are physically realizable. Thus, we wish to consider the real algebraic variety, given by

V(F ) ∩ RN .

The study of algebraic varieties is precisely the focus of computational algebraic geometry.

This work will use both numerical algebraic geometry and symbolic computational algebraic

geometry to gain insight into the source localization problem. Numerical algebraic geometry

can find all isolated solutions to a system of polynomials with prescribed numerical precision.

For example, this field provides methods for solving the FDOA system in Section 3.2. These

techniques are presented in Section 4.1. Symbolic methods provide tools for simplifying
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systems algebraically and identifying relationships between variables. For this work, we

specifically employ tools from elimination theory (Section 4.2).

4.1 Numerical Algebraic Geometry (NAG)

Numerical algebraic geometry provides methods for the numerical solution of polynomial

systems using the computational method, homotopy continuation. In particular, homotopy

continuation can find all finite solutions to a polynomial system. Say there is a target

system, F (z), to be solved. The process works as follows [15]: First, a simpler system G(z)

is constructed; its solutions are known and are referred to as start points. Next, a homotopy

between the two systems is constructed:

H(z, t) = t ·G(z) + (1− t) · F (z).

When t = 1, the solution to H(z, t) = 0 is precisely the solution set of G(z), which is known.

As t gradually decreases to t = 0, the solution to H nears the solution of the target system.

The perturbation of t creates paths from the solutions of G to those of F . These paths are

followed with numerical predictor-corrector methods, such as Euler’s method and Newton’s

method [25]. Homotopy continuation is implemented in several software programs, including

Bertini, Hom4PS, and PHCPack [15,26,27]. The work in this dissertation was implemented

using Bertini [15].

Homotopy continuation can find all isolated solutions to a system of polynomials with a

specified precision. Thus, if parameter values are known, NAG solvers can be used to solve

the TDOA/FDOA systems for the location of the emitter. Furthermore, there are a few

specialized techniques that can allow for more efficient computation of a solution.

4.1.1 Parameter Homotopy

When performing many solves on a system F (z; p) with the same monomial structure

and varying sets of parameters (p), a parameter homotopy can be used to speed up compu-
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tation [15, 28]. This is useful for the FDOA problem, since the structure of the system is

fixed, with only values of {x1, . . . ,xn}, {v1, . . . ,vn}, and {f1,2, . . . , f1,n} differing between

trials. The parameter homotopy consists of two steps. In the first step, the system F (z; p0)

is solved using homotopy continuation, with p0 a set of random complex numbers. During

this step, some paths will usually diverge to infinity. This means that the target system

has fewer isolated solutions than the start system. The remaining paths will converge to

end points. With probability one, the number of paths tracked to end points in step one

is an upper bound for the number of solutions to this system with any set of parameter

values [15]. Thus, it is only necessary to track this smaller number of paths to solve with the

desired set of parameter values pi. This is the key benefit of a parameter homotopy. In the

second step, the end points of F (z; p0) are used as start points for F (z; pi), then homotopy

continuation is carried out as usual. Note that step one only needs to be completed once

per type of system. In this way, solutions can be found for many sets of parameter values

relatively quickly.

4.1.2 Singularity

Homotopy continuation consists of many linear solves at every step. Thus one potential

issue is for the system to become singular. This occurs when paths converge to a multiple

root, causing the corresponding Jacobian matrix to drop rank. Over Cn this is a measure

zero event, and theoretically no two paths should converge during homotopy continuation.

However, since computation is performed with finite precision, there is a small probability of

this happening in reality [15]. Additionally, there is a larger probability that two paths will

simply become close or nearly singular, causing the problem to become poorly conditioned.

To deal with these issues, Bertini utilizes adaptive precision, increasing precision when the

condition number indicates near-singular behavior. As a trade-off, this can result in slower

run-times, but it also allows for accurate path-tracking through troublesome systems.
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4.2 Elimination Theory

The area of elimination theory provides a framework for manipulating algebraic struc-

tures, specifically for the purpose of eliminating variables. This capability can make formulas

more useful and computationally accessible, in addition to providing insight into the structure

of the problem. Geometrically, eliminating a variable is equivalent to projecting an algebraic

variety onto a proper subspace of the original ambient space. In this section we provide a

theoretical foundation for elimination methods, then discuss the particular techniques that

will be utilized for this work.

4.2.1 Ideals and Varieties

We start by defining a new algebraic object:

Definition 3. I ⊂ K[z1, ..., zn] is an ideal if:

1. 0 ∈ I

2. If f, g ∈ I then f + g ∈ I

3. If f ∈ I and h ∈ K[z1, ..., zn], then hf ∈ I. [29]

Here, K[z1, ..., zn] is the ring of polynomials with variables z1, ..., zn and coefficients in the

field K. For our problem, all coefficients are rational, so our ring of interest is Q[z1, ..., zn].

Consider again the system of polynomials,

F (z) =




f1(z1, . . . , zN)

f2(z1, . . . , zN)

...

fn(z1, . . . , zN)




.

The ideal generated by F is denoted I = 〈f1, . . . , fn〉 and consists of all polynomial conse-

quences of F . In other words, I is made up of all polynomial combinations of f1, . . . , fn,
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n∑

i=0

gifi for gi ∈ K[x1, . . . , xn], and is the smallest ideal containing F . In the first paragraph

of this chapter, the solution set of a system of polynomials was introduced as the algebraic

variety, V(F ), associated with the system. In fact, any polynomial in I = 〈f1, . . . , fn〉 will

vanish on V(F ). Thus,

V(I) = {(z1, . . . , zN) ∈ Kn : f(z) = 0 for all f ∈ I}

is equivalent to V(F ) [29]. This allows us to consider polynomials in I other than those

explicitly in F for information about the variety of interest.

It is easy to see that every ideal contains an infinite number of polynomials. Thus it is

desirable to identify polynomials that lie in I and possess certain properties. In this chap-

ter, we specifically consider techniques to find polynomials in I that are lacking particular

variables.

4.2.2 Eliminating Variables

Let’s start with a basic example of elimination. Consider the ideal,

I = 〈y − (x− 2)(x− 3), y − (x− 1)〉 .

The algebraic variety, V(I), is composed of the points of intersection of the curves:

f1 = y − (x− 2)(x+ 3) = 0

and

f2 = y − (x− 1) = 0,

as shown in Figure 4.1. One way to solve for these points is to manipulate f1 and f2 to

obtain a polynomial in only one variable. For instance, substituting y = x − 1 into f1 will

simplify to the polynomial, x2 − 5. From here, it is easy to see that the x-coordinates of the
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Figure 4.1: Eliminating the variable y from 〈f1, f2〉 gives the polynomial x2 − 5. This polynomial
lies in I∩K[x]. This variable elimination is essentially equivalent to projecting V(I) onto the x-axis.

variety are indeed x = ±
√
5. To find the corresponding y-coordinates of V(I), the solution

x = ±
√
5 can be extended to a solution (x, y) by substituting the x solution into f1 or f2.

The ideal, I ∩ K[x], consists of all consequences of f1 = 0 and f2 = 0 which eliminate

the y variable. It is referred to as an elimination ideal. Since the univariate polynomial

x2 − 5 is a polynomial combination of f1 and f2 and is only in variable x, it lies in I ∩K[x].

Note that this elimination is essentially equivalent3 to projecting V(I) onto its x-coordinate

(see Figure 4.1). Elimination allows us to “build up solutions" one coordinate at a time.

This is helpful since it is much easier to solve a univariate polynomial than a full system. It

also allows for variables that are not of interest to be projected out of the system.

4.2.3 Resultants

The elimination technique that proved most useful for this project is the computation of

resultants. Given two polynomials, resultants provide a way of determining whether the two

3In general, the projection of V(I) onto a subset of coordinates, e.g.,xl, . . . , xk, is contained in I ∩
K[xl, ..., xk] and the ideal may contain some extraneous algebraic components. For the sake of relevance,
this is not discussed here. See Chapter 3 of [29] for more information.
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polynomials share a common factor. This is equivalent to determining whether the polyno-

mials share a root in C [29]. Elimination with resultants avoids factoring the polynomials or

performing polynomial division, both of which can be computationally expensive.

We begin by stating a result that lays the foundation for resultant computation. The

univariate case is considered for simplicity. We will explore how this can be extended to the

multivariate case later.

Theorem 4. Consider two polynomials, f and g, with degrees l and m, respectively. The

polynomials have a common factor if and only if there exist polynomials A and B with degrees

less than m and l, respectively, such that,

Af +Bg = 0,

where at least one of A and B is nonzero. [29]

Now, it can be expensive to find A and B explicitly, but we can focus instead on finding

conditions for an appropriate A and B to exist. Say the polynomials f and g are given by:

f = c0 + c1x+ . . .+ clx
l

g = d0 + d1x+ . . .+ dmx
m.

If A and B exist, they will have the form:

A = a0 + a1x+ . . .+ am−1x
m−1

B = b0 + b1x+ . . .+ bl−1x
l−1.

Substituting these polynomials into Af + Bg = 0 and setting coefficients equal to zero, we

get the system:
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a0c0 + b0d0 = 0

a0c1 + a1c0 + b0d1 + b1d0 = 0

. . . . . .
...

am−1cl + bl−1dm = 0.

This forms a linear system in the variables a0, a1, . . . , am−1 and b0, b1, . . . , bl−1. If

there exists a nontrivial solution to this system, then there exist an A and B such that

the condition in Theorem 4 is satisfied. We can represent this system with the matrix of

coefficients,

Syl(f, g; x) =




c0 d0

c1 c0 d1 d0

. . . . . .

cl dm




,

referred to as the Sylvester matrix [29]. Thus, we would like to know if there is a nontrivial

solution to:

Syl(f, g; x) ·




a0
...

am−1

b0
...

bl−1




=




0

...

...

0




.

This occurs precisely when the determinant of the Sylvester matrix is equal to zero. Thus,

the resultant is defined as [29],
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Res(f, g; x) = det(Syl(f, g; x)).

Furthermore, f and g have a common factor precisely when Res(f, g; x) = 0.

The following example shows how this tool is useful for elimination of variables.

Example 5. Consider again the ideal from Section 4.2.2:

I = 〈y − (x− 2)(x+ 3), y − (x− 1)〉 =
〈
y − x2 − x+ 6, y − x+ 1)

〉
.

The expressions f1 and f2 are multivariate with variables x and y. We would like to eliminate

y by finding a polynomial in I∩K[x]. Thus, we compute the resultant with respect to variable

y,

Res(f1, f2; y) =

∣∣∣∣∣∣∣

−x2 − x+ 6 −x+ 1

1 1

∣∣∣∣∣∣∣

= (−x2 − x+ 6)− (−x− 1)

= −x2 + 5.

Notice that the coefficients of y are polynomials in x. Thus, the resultant ends up being a

polynomial in x. Furthermore, −x2 + 5 ∈ I ∩K[x].

Thus, resultants provide a systematic way to find polynomials in the elimination ideal.

The resultant introduced above is specifically referred to as the Sylvester resultant. There

are also methods for resultants involving more than two polynomials, called multipolynomial

resultants. In particular, we find the Dixon resultant to be useful for this work for the sake

of fast computation [30]. This will be covered in more detail when the Doppler shift surface

is introduced in Chapter 7.
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Chapter 5

Numerical Algebraic Geometry and RANSAC

for FDOA-based Geolocation

This chapter describes a novel geolocation algorithm that combines the solving power

of numerical algebraic geometry with the robustness to noise of the RANdom SAmpling

Consensus method. This project was presented at IEEE Radar Conference 2018 and has

been published in the conference proceedings [31].

5.1 Motivation and Overview

With a noiseless system, numerical algebraic geometry (NAG) methods can be used to

find all solutions to the FDOA system presented in Section 3.2 accurate to any prescribed

numerical accuracy. Specifically, it would take only a single solve in a NAG software such

as Bertini [15] to obtain an emitter location. However, there are a couple issues that arise

in real world situations. First, noise and measurement error can plague FDOA calculations

and receiver location and velocity estimates. Additionally, if the receivers are positioned in

a singular configuration or near one, computing the solution may be prohibitively expensive

and the solution itself could be much more accurate in some coordinates than in others.

The nonlinear nature of the problem implies that there will often be multiple real solutions,

which translate to multiple potential emitter locations. A robust accompaniment for the

numerical algebraic geometry methods is an iterative process such as the RANdom SAmple

Consensus (RANSAC) algorithm.

The proposed algorithm has two main components: numerical solution of the FDOA

polynomial system using the NAG software, Bertini [15], and comparison of solutions with

RANSAC. An overview of numerical algebraic geometry methods is provided in the previous

chapter. This chapter will then begin with an overview of the RANSAC algorithm as it
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is to be used in this project (Section 5.2). Section 5.3 then introduces a novel bound for

FDOA measurements that allows for data with high amounts of noise to be thrown out im-

mediately. The proposed geolocation algorithm using both NAG and RANSAC is presented

with numerical results in Section 5.4 . The chapter ends with a discussion of limitations and

benefits of the method (Section 5.5).

5.2 RANdom SAmpling Consensus (RANSAC) Method

RANSAC, originally developed [32] for application to the location determination problem,

is useful when one has data with outliers or corrupt data points. The algorithm works by

choosing a few samples from a set of data, determining a model to fit the samples, then

calculating how many of the remaining data points can be considered inliers with respect

to that model, up to a predetermined tolerance. This process is repeated for a prescribed

number of iterations, then the model with the most inliers is returned.

Using RANSAC for geolocation is not a new idea. In fact, Li et al. applied the algorithm

to source location with TDOA in [17]. This paper proposes a modification of RANSAC to

solve for source location with the FDOA polynomial system, a problem that is now accessible

due to the utilization of numerical algebraic geometry techniques.

The most notable benefit of using RANSAC for this problem is the ability to “ignore"

noisy or corrupt data. Additionally, since many FDOA measurements are needed for the

algorithm, it is natural to reformulate the polynomial system presented in Section 3.2 to

allow for measurements to be taken over multiple time steps. This reduces the number of

receivers needed to a single pair, with each system composed of FDOA measurements from

three separate time steps4.

4See Appendix B for more information on the system reformulation.
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5.3 Note on Denoising

Since one of the key contributions of this project is the use of RANSAC for denoising data,

we include here a brief result that allows us to immediately remove FDOA measurements

that are physically unrealizable due to measurement error or noise.

Proposition 6. The frequency difference of arrival between receivers i and j, fi,j satisfies:

|fi,j| ≤
f0
c
(‖vj‖+ ‖vi‖) ,

where vi and vj are the velocity vectors of receivers i and j, respectively.

Proof.

|fi,j| =
f0
c

∣∣∣∣
vj · (xj − x)

‖xj − x‖ − vi · (xi − x)

‖xi − x‖

∣∣∣∣

=
f0
c

∣∣∣∣
‖vj‖‖xj − x‖ cos(θj)

‖xj − x‖ − ‖vi‖‖xi − x‖ cos(θi)
‖xi − x‖

∣∣∣∣

=
f0
c
|‖vj‖ cos(θj)− ‖vi‖ cos(θi)|

≤ f0
c
(‖vj‖+ ‖vi‖) .

5.4 FDOA-RANSAC (FDOAR) Algorithm

The proposed algorithm considers measurements from a single pair of receivers at n time

steps. After removing points with obvious corruption (according to Prop. 6), subsets of

three time steps5 are randomly chosen from the set of measurements. This data is used to

construct a polynomial system. The system is similar to that given in Chapter 3, but since

we are now considering a single pair of receivers over multiple time steps, it changes slightly.

5See Table B.1 for why three time steps are needed.
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See Appendix B for more information. The system is then solved using Bertini [15]. The

solutions found with Bertini are then fed through the forward map and RANSAC is used to

determine which solution fits the remaining data best. This process is iterated over different

choices of measurement subsets. See pseudocode for this method in Algorithm 1.

The algorithm involves solving a system using the numerical algebraic geometry software,

Bertini [15], during each iteration. Since each system will be of the same form and change

only in certain parameter values (location, velocity, FDOA measurements), the solve can be

structured as a parameter homotopy [15, 28]. As discussed in Section 4.1, this allows for

only necessary paths to be tracked, which provides faster run times. Additionally, when the

solving of an FDOA system results in multiple real, feasible solutions, we have modified the

algorithm to consider each solution separately. This ensures there are no missed solutions,

as can often result from iterative geolocation methods that converge to a single solution [19].

5.4.1 Numerical Performance

Numerical simulations were run as follows. Consider a Cartesian cube of space, 100m long

on each side. These lengths were chosen arbitrarily and can be scaled. For each numerical

trial, a transmitter was placed at a random location, x, in the cube. Locations and velocities

for 40 pairs of receivers were also generated, with locations being limited to the interior of

the cube and velocities in the range [−2, 2] m/s in each (x,y,z) direction. This is meant

to simulate 40 time steps for a single pair of receivers and a stationary transmitter. For

each pair of receivers, the FDOA was calculated according to (2.3) and noise was added to

simulate various levels of relative FDOA measurement error. We define this,

Relative FDOA Measurement Error :=
σ2
noise

σ2
FDOA

× 100%,

where σ2
noise and σ2

FDOA are the variance of the noise and variance of observed FDOA, re-

spectively. The FDOAR algorithm was then run for 20 iterations, returning final transmitter

estimate x̂. The error for the trial was then calculated: ‖x̂ − x‖ (m). Results are shown
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Algorithm 1 RANSAC for transmitter location with FDOA measurements.
Input: Locations, velocities, and corresponding FDOA measurement(fi) for 1 pair of re-
ceivers at n time steps; number of iterations to run algorithm (numiter), inlier tolerance (ε).
Output: Estimated transmitter location, x̂.

1: Set trial = 0
2: while trial < numiter do

3: Select 3 sample points (between 1 and n) from receiver data (FDOA measurements,
receiver locations, and receiver velocities).

4: Solve for location by running system6 in Bertini [28].
5: Record feasible solutions, sols. ⊲ Solutions must have feasible range values and

satisfy Prop. 6.
6: for ℓ in sols do

7: numinliers = 0 ⊲ Counts inliers for solution. .
8: for {each pair of receivers: k}\{pairs in sample} do

9: Calculate theoretical FDOA meas. for solution ℓ and pair of receivers k.
10: if |Actual FDOA - Est. FDOA| < ε then

11: Increment numinliers.
12: end if

13: end for

14: if numinliers > bestmodel then

15: bestmodel = numinliers
16: Record location as new best transmitter location estimate.
17: end if

18: end for

19: Increment trial.
20: end while

21: return x̂.

in Figure 5.1. For each data point, this process was repeated 50 times and the median of

the error was recorded. Other metrics, such as MSE, could also be used, but median was

chosen for its robustness to outliers.

Many of the worst performing trials above resulted from transmitters located near the

edges of the Cartesian box. We hypothesize that this is the result of very few (or none)

of the receiver pairs being located on the side of the transmitter closest to the edge of the

box. This caused less information to be learned about the transmitter and resulted in a

worse estimate. This is consistent with geolocation intuition and suggests that error values

in Fig. 5.1 would decrease if one could ensure that receivers view the emitter from a variety

of angles.
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Figure 5.1: Error in emitter location resulting from various levels of FDOA measurement error. For
each data point, 50 instances of coupled RANSAC and Bertini were run, each having 20 iterations
and ε = 0.03.

5.5 Discussion

5.5.1 Benefits of FDOAR

We summarize a few of the primary benefits of our approach here:

1. Solving the geolocation systems using numerical algebraic geometry techniques finds

all possible emitter locations. Coupling with RANSAC provides a way to determine

which one of those locations best matches the rest of the data.

2. Any bad data from path failures, inaccuracies, measurement error, etc. is automatically

ignored, assuming the source of the errors is not implicit in the structure of the problem.

3. This method uses FDOA measurements only, though it can be adapted to other mea-

surement combinations.

4. Using multiple time steps, it is necessary to use only two receivers. Additionally, there

is no need to designate a reference receiver, which could corrupt all data points if there

are errors in its location or velocity.
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5. When performing polynomial system solves at multiple points in parameter space,

parameter homotopies could improve efficiency.

5.5.2 Limitations

Each path tracked when solving a polynomial system requires dozens, sometimes hun-

dreds, of linear solves. As a result, any polynomial systems approach will necessarily be

slower than any linear approach. However, linearization necessarily introduces inaccuracy to

nonlinear problems, so the trade-off between speed and accuracy might lead different users

to use different approaches.

As with any RANSAC implementation, speed and accuracy is in part dependent upon

the users choice of the maximum number of iterations and inlier tolerance. The optimal

choice for these variables can depend greatly on the specifics of the problem. Theoretical

results exist that bound the maximum number of iterations with respect to the percentage

of inliers present in the data [33].

32



Chapter 6

Determining Direction of Arrival from Far-Field

TDOA or FDOA Measurements

Thus far, this research has focused primarily on source localization with TDOA and

FDOA measurements. Another useful quantity for describing the location of an emitter is

the angle of arrival (AOA) of a signal, also referred to as the direction of arrival (DOA).

This chapter explores the interesting relationship between these quantities, especially when

working in the far-field. This leads to a novel method for determining direction of arrival

from FDOA or TDOA measurements. This chapter corresponds to a stand-alone paper that

will be submitted for publication [34].

6.1 Introduction

When using a single antenna array, simple geometric relationships between the TDOA

measurements and the known receiver positions allow the direction of arrival to be computed

through a process known as phase interferometry [35]. It follows that with multiple antenna

arrays, the source can be located via triangulation. No analogous method exists using FDOA

measurements. Other techniques for determining the direction of arrival of a signal include

the use of rotating directional antennas or Doppler direction finders [36]. The latter of these

utilizes the Doppler effect, although with a rather different approach than FDOA.

When the distance between the receivers and the transmitter is much greater than the

distance between the receivers it is common to simplify the wave propagation model and

assume that wave curvature is negligible in the region of the receivers. This assumption

is commonly referred to as the far-field assumption [4]. In this paper we present how this

assumption can reduce the computation of DOA to the solution of a linear system.
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While DOA estimation is typically performed with a TDOA-based strategy, our approach

is able to utilize TDOA or FDOA measurements, perhaps both, by capitalizing on the simpli-

fied geometry of the source-localization problem under the far-field assumption. One scenario

where this method might be useful is in the calculation of DOA of a narrowband emitter

using several receivers. The main benefit of this method is its computational efficiency, as

it simplifies the calculation of DOA to solving a linear system of equations. With several

DOA calculations, triangulation can be used to determine location of the source. In Sec-

tion 6.2, we develop a far-field model for the FDOA measurements and discuss a technique

for determining the signal direction of arrival.

This chapter is structured as follows. In Section 6.3, we develop a similar far-field ap-

proximation for the TDOA model and present the analogous DOA technique. Finally, we

summarize the method with some numerical results in Section 6.4 and concluding remarks

in Section 6.5.

6.2 Direction of Arrival with FDOA Measurements

Consider a stationary transmitter located at x. Suppose we have n receivers located at

x1, ...,xn with velocities v1, ...,vn. As presented in Chapter 2, the frequency shift of the

signal between the emitter and the ith receiver is

di =
f0
c

(
vT
i · xi − x

‖xi − x‖

)
, (6.1)

where f0 is the center frequency of the emitter and c is the speed of wave propagation in

the media. In our scenario, we know the receiver positions and velocities, and we would

like to solve for the transmitter position. We cannot measure the frequency shift directly,

but we can measure the difference in frequency shifts, fi,j = dj − di. Scaling by ‖xi − x‖−1

means that each of these equations is nonlinear. Even so, by taking pairwise differences

of the equations in (6.1), one can numerically solve the system by expressing it in terms of
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polynomials and using techniques like homotopy continuation, as discussed in Chapter 5 [31].

While such an approach is able to find all solutions, it is computationally more expensive

than a linear solve.

The nonlinearity of (6.1) makes it difficult to accurately solve for x, so we simplify the

model by deriving a far-field approximation for Equation 6.1. Additionally, for simplicity

we ignore the constant factor of f0/c in (6.1). Thus di is now proportional to the frequency

shift.

6.2.1 Far-field Approximation for FDOA

Assume without loss of generality that the receivers are centered around the origin. We

consider the far-field case, where the distance between receivers is much smaller than the

distance to the emitter, i.e. ‖x − xi‖ >> ‖xi‖, ∀ i. The far-field approximation (as in [4])

for 1/‖x− xi‖ is:

1

‖x− xi‖
=

1

‖x‖

(
1 +O

(‖xi‖
‖x‖

))
.

Truncating after the first term above allows for simplification of the factor (in Eq. 6.1):

xi − x

‖xi − x‖ ≈ xi

‖x‖ − x

‖x‖ .

Additionally, the far-field assumption implies that the first term will have small magnitude.

Thus,
xi − x

‖xi − x‖ is simplified to
−x

‖x‖ . Equation 6.1 becomes:

di = −vT
i x̂, (6.2)

where x̂ = x

‖x‖
, is the unit vector in the direction of x. The entire system of frequency shifts

can be written:
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d = −Vx̂, (6.3)

where

d =




d1
...

dn




V =




vT
1

...

vT
n




.

In practice, the frequency shifts are not observable. Instead the frequency difference of

arrival (FDOA) is measured between receivers. The FDOA is equivalent to the difference in

frequency shifts,

fi,j = dj − di. (6.4)

A system equivalent to (6.3) can be constructed for the FDOA, with the use of a differencing

matrix P. The matrix P has entries of 0 and ±1 corresponding to the differencing in (6.4).

For instance, we can represent the measurements (f1,2, f1,3) as



f1,2

f1,3


 =



−1 1 0

−1 0 1







d1

d2

d3




= Pd.

Thus, with the far-field simplification above, the vector of FDOA measurements, f , is equiv-

alent to,

f = −PVx̂. (6.5)

The matrix −PV will be referred to as Ṽ for simplicity.
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This far-field simplification reduces the FDOA equations to a linear system. This suggests

that FDOA measurements in the far-field case lie on the image of the unit circle transformed

by the matrix Ṽ. This image is an ellipse with rotation and scaling detectable from the

singular value decomposition of Ṽ. Indeed, this can be confirmed by computing the singular

value decomposition of generated far-field FDOA measurements and confirming they lie on

the same subspace as Ṽ. This relationship can be demonstrated visually with a plot of

generated FDOA measurements (Fig. 6.1).

Figure 6.1: Plot of far-field f1,2 vs. f1,3 for a system of three receivers centered around the origin.

Note the image is an ellipse with scaling in the direction of the left singular vectors of Ṽ.

6.2.2 Calculating direction of arrival (DOA)

The far-field approximated form of the FDOA equations is linear with variable x̂, repre-

senting the direction of arrival (DOA) of the signal. Thus, the DOA can be found by solving

(6.5) for x̂. If there are more FDOA measurements than direction components, we can find

the least squares solution to the problem, which is also the pseudo-inverse solution:

x̂ = (ṼT Ṽ)−1ṼT f . (6.6)
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It is necessary that the matrix Ṽ be nonsingular for a solution to exist to (6.6). This adds

a requirement that the relative velocities of the receivers are nonzero.

One method for de-noising in TDOA-based geolocation is the projection of noisy mea-

surements onto the range of the differencing matrix P [7, 14]. This ensures that the TDOA

measurements are physically realizable and consistent between receivers by enforcing a closed

loop condition. One benefit of the method for DOA calculation proposed above is that de-

noising is automatically performed since projection onto the range of −PV is equivalent to

projection onto the range of P. In Chapter 7 we explore this de-noising method further and

discuss additional algebraic conditions that FDOA measurements must satisfy.

6.3 Direction of Arrival with TDOA Measurements

Although the time difference of arrival (TDOA) is simpler than the FDOA case, we

include its far-field approximation for completeness. This leads to a method for determining

DOA with TDOA measurements that is analogous to the relationship developed in the

previous section.

Using the same problem setup as above, the time it takes for the signal to travel between

the emitter and receiver i is:

τi =
1

c
‖xi − x‖,

from here the scalar 1
c

will be left out for simplicity. The far-field approximation for ‖xi−x‖

is given [4],

‖xi − x‖ = ‖x‖
(
1− xi · x̂

‖x‖ +O
(‖xi‖
‖x‖

))
.

Thus, τi becomes

τi = ‖x‖ − xi · x̂.
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As in the FDOA case, τi is not observable. Instead we look to the time difference of arrival

(TDOA) between receivers i and j,

τi,j = (‖x‖ − xj · x̂)− (‖x‖ − xi · x̂)

= xi · x̂− xj · x̂

= (xi − xj) · x̂.

The system of TDOA measurements are equivalent to

τττ = −PXx̂, (6.7)

where X is the matrix of receiver locations and P is a differencing matrix as before. This

suggests that feasible far-field TDOA measurements lie in the image of the unit circle under

transformation of −PX.

As in the FDOA case, the least-squares estimate of direction of arrival can be calculated

using the pseudoinverse:

x̂ = −((PX)TPX)−1(PX)T τ. (6.8)

6.4 Numerical Results

One method of estimator evaluation is the comparison of estimator variance with the

Cramer Rao lower bound (CRLB). Assuming data with additive noise distributed Gaussian

with a given covariance matrix, the CRLB provides a lower bound on the variance of estima-

tor accuracy. We consider here the FDOA-based DOA estimation problem. Consider FDOA

measurements, f̂ij, equal to the sum of the true FDOA and Gaussian-distributed deviation.

That is,
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f̂ = f + δf ,

where E [δf ] = 0 and E
[
δfδfT

]
= Q. The CRLB can then be computed for data with noise

corresponding to covariance matrix Q. This provides a lower bound on variance of DOA

estimation using FDOA measurements. It follows that an algorithm with variance near the

CRLB has optimal accuracy with the given level of noise. For ease of visualization, we will

consider the CRLB corresponding to the AOA (given by θ) as opposed to DOA.

The CRLB of an unbiased estimator is the inverse of the Fisher information matrix, J.

For the FDOA based AOA problem, this is given by [8]:

J(x,X,V;Q) =

(
∂fT

∂x
· ∂x
∂θ

)
Q−1

(
∂f

∂xT
· ∂x

T

∂θ

)
.

This can be calculated for a fixed set of receiver positions (X), velocities (V), covariance

matrix (Q), and emitter location (x). The result is a single value whose inverse is the CRLB

for AOA.

Numerical trials can then be run with our DOA approximation method and the variance

in DOA can be compared to the CRLB. Figure 6.2 shows this comparison for a four receiver

configuration shown in Figure 6.3. The covariance matrix used for this simulation was

Q = c2σ2




1 0.5 . . . 0.5

0.5
. . . 0.5

...

... 0.5
. . . 0.5

0.5 . . . 0.5 1




,

where σ2 is the FDOA variance. This choice of Q is chosen to be consistent with similar

numerical trials in [8]. The dimensions of Q are 6× 6 since 4 receivers result in
(
4
2

)
FDOA

measurements. We define noise power as cσ.
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Figure 6.2: Log-log plot of DOA estimator error vs. the Cramer Rao lower bound on FDOA-based
DOA variance for receivers with configuration shown in Figure 6.3.

Figure 6.3: Receiver configuration for CRB comparison in Figure 6.2.
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The x-axis of Figure 6.2 gives varying levels of noise power and the y-axis shows cor-

responding AOA variance for our approximation and the CRLB. It is clear that the AOA

variance trend mimics that of the CRLB, but is consistently above it.

6.5 Conclusion

Considering far-field FDOA-based geolocation naturally leads to a simple method for

determining direction of arrival. This calculation requires only a linear solve which makes

the corresponding source-localization technique very efficient. Additionally, since FDOA

measurement data is projected onto the range of the differencing matrix, the solution is

naturally de-noised in a method consistent with [7, 14]. Another benefit of this method is

the generality that allows DOA to be calculated with either TDOA or FDOA measurements.

This allows for accurate source localization in the presence of a range of waveforms.
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Chapter 7

The Surface of Feasible Doppler Shifts

In real-world source-localization scenarios, signals may be corrupted by noise or measure-

ment error. This can result in a set of measurements that, when taken together, correspond

to no real source location. Thus, we are motivated to identify the set of feasible FDOA

measurements given by the image of the FDOA map introduced in Chapter 2. This is done

using some of the algebraic geometry techniques discussed in Chapter 4. Utilizing resul-

tants (Section 4.2.3), we are able to find an algebraic expression that every set of Doppler

shifts for a given scenario must satisfy. This could be useful for the de-noising of FDOA

measurements.

7.1 Motivation

In [12–14], Compagnoni et al. perform a comprehensive analysis of range maps, specif-

ically focusing on the TDOA map. They show that the image of a range map forms an

algebraic surface, specifically classified as a Kummer surface7 [13]. Since the TDOA map is

given by the differencing of ranges, the image of the TDOA map is then a projection of this

surface. Compagnoni et al. identify the set of feasible TDOA measurements, or the image

of the map T2 that was introduced in Section 2.1.1, as the convex bounded region in R2

corresponding to the projection of the range map surface.

In [14], identifying this set is shown to be useful for de-noising of TDOA measurements.

Essentially, the distance between raw TDOA measurements and the bounded region of fea-

sible TDOA is minimized, resulting in a feasible and de-noised set of TDOA measurements.

This is shown to improve the performance of TDOA-based source localization algorithms [14].

7A Kummer surface is defined by a polynomial of degree 4 with 16 isolated singular points [13].
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In this chapter, we aim to identify an algebraic expression for the set of feasible Doppler

shifts and corresponding FDOA measurements. This can then be compared to the range

map surface and set of feasible TDOA measurements. Exploring the Doppler shift surface

further will help us to evaluate the possibility for an FDOA de-noising technique analogous

to that developed in [14].

Investigating the set of feasible Doppler shifts involves the use of elimination theory and

resultants. We specifically find the Dixon resultant, a type of multivariate resultant, to

be useful and computationally efficient for eliminating variables. The use of multivariate

resultants as a means of solving the source localization problem has been explored in [19].

Our goal is not to use elimination to solve for the source location directly, but instead to

gather information about the set of possible Doppler shifts and FDOA measurements.

7.2 Problem Formulation

The map F3 was introduced in Chapter 2 for an emitter in R3. For simplicity, we now

consider the map F2 :

F2 : R2 −→ R2 (7.1)

(x, y) −→ (f1,2, f1,3).

This takes the emitter location, (x, y), to a set of FDOA measurements in a system with three

receivers. Recall that receiver locations, xi, yi, and velocities, ui, vi, are fixed parameters.

The image of this map, denoted Im(F2), consists of all values (f1,2, f1,3) where there exists

a corresponding (x, y) ∈ R2 that will be mapped to them. Thus, Im(F2) gives the set of

all feasible FDOA measurements. We would like to find an algebraic expression for Im(F2),

which would translate to a necessary condition that all sets of measurements (f1,2, f1,3) must

satisfy. Unfortunately, for reasons that will be discussed in the next section this is not

possible. Instead, since the FDOA values are equivalent to a difference of Doppler shifts, we

44



consider the Doppler shift map D2 :

D2 : R2 −→ R3 (7.2)

(x, y) −→ (d1, d2, d3),

where d1, d2, and d3 are given by

di =
ui(x− xi) + vi(y − yi)√
(x− xi)2 + (y − yi)2

, (7.3)

as introduced in Section 2.1.2. The maps D2 and F2 are closely related since f1,2 = d2 − d1

and f1,3 = d3 − d1. Thus, the image of F2 is just a projection of the image of D2:

(d1, d2, d3)

















−1 −1

1 0

0 1

















−−−−−−−−−→ (f12, f13).

This means we are able to study the map D2, then transfer the findings to the FDOA-based

scenario. We can describe the image of D2 algebraically and the set of all possible Doppler

shifts (d1, d2, d3) will form a surface in R3. We explore this further in the next section.

7.3 The Image of D2

Let’s step back and consider again the FDOA map (7.1). For the set of potential emit-

ter locations to be zero-dimensional, the planar scenario requires three receivers and two

independent FDOA measurements: f1,2 and f1,3 (see Table 3.1). The image of F2 is two

dimensional, since it is a mapping from R2 to R2 with no degeneracy. Since the dimension of

the image of F2 is equal to the dimension of its codomain, the image cannot be represented

by a nonzero polynomial and thus is not an algebraic variety. This is because the dimension

of an algebraic variety will always be strictly less than the dimension of the ambient space.
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These dimensions are consistent with the TDOA case explored in [12] and explain why the

set of feasible TDOA is not an algebraic set but instead a bounded region of R2.

This is the motivation for looking instead to D2, the map of Doppler shifts. It essentially

lifts a given set of FDOA measurements to a higher dimensional space. As stated above, the

image of F2 is a particular projection of the image of D2. As an added benefit, the equations

defining D2 are algebraically simpler than the equations defining F2. With a fixed set of

parameters, we can map points forward with D2 and F2 to visualize their images. This is

shown for three different sets of parameters in Figures 7.1, 7.2, and 7.3. Any point on the

image is considered feasible, since there exists a corresponding real emitter position. Notice

that the image of D2 is a two-dimensional surface in the variables d1, d2 and d3. We would

like to find an algebraic expression to represent this surface of feasible measurements.

Figure 7.1: (Left) Points in the image of the map D2 for fixed receiver position and velocities.
(Right) Image of F2 with the same parameters. Notice that the plot on the right is a projection of
plot on the left since: f1,2 = d2 − d1 and f1,3 = d3 − d1.
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Figure 7.2: The content of this plot is the same as Figure 7.1 with different parameter values.
Notice that the plot on the right is a projection of plot on the left since: f1,2 = d2 − d1 and
f1,3 = d3 − d1.

Figure 7.3: The content of this plot is the same as Figure 7.1 and Figure 7.2 with different
parameter values. Notice that the plot on the right is a projection of plot on the left since: f1,2 =
d2 − d1 and f1,3 = d3 − d1.

Converting D2 to a set of polynomials allows the use of resultants and elimination theory.

Squaring (7.3) and clearing the denominator, we get the Doppler shift polynomials:
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p1 = ((x− x1)
2 + (y − y1)

2)d21 − (u1(x− x1) + v1(y − y1))
2

p2 = ((x− x2)
2 + (y − y2)

2)d22 − (u2(x− x2) + v2(y − y2))
2

p3 = ((x− x3)
2 + (y − y3)

2)d23 − (u3(x− x3) + v3(y − y3))
2.

There is one expression for each receiver (3 equations) with variables x, y, d1, d2, and d3.

We fix the parameters x1, x2, x3, y1, y2, y3, u1, u2, u3, v1, v2, and v3. We would like to

find the surface defined by all possible (d1, d2, d3). In other words, if I = 〈p1, p2, p3〉 ⊆

Q[x, y, d1, d2, d3], what is I ∩Q[d1, d2, d3]?

7.3.1 Elimination

Introduced in Section 4.2.3, resultants are useful for eliminating variables from one or

more polynomial expressions. For a system of three polynomials, as above, one could re-

peatedly compute the Sylvester resultant for pairs of the equations, eliminating one variable

at a time. However, there are other methods that are more computationally efficient for

a system of this form. One of the fastest methods for computing resultants for variable

elimination with multiple polynomials is the Dixon resultant [37], which falls into a class of

methods known as multivariate resultants. We utilize one of several implementations, the

DR package in Maple [30,38].

Recall, the Sylvester resultant utilizes the fact that if two polynomials f and g have a

common factor, there exist polynomials A and B such that:

Af +Bg = 0,

with a few additional conditions (Theorem 4 in Section 4.2.3). Now, the Dixon resultant

takes advantage of a different condition that polynomials with a factor in common must

satisfy. It is based on the fact that the polynomial
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δ(x, t) =
1

x− t
det



f(x) g(x)

f(t) g(t)


 =

f(x)g(t)− g(x)f(t)

x− t
, (7.4)

will be zero for any value x that is a common zero of f and g [37]. Here, t is an auxiliary

variable and the polynomial δ(x, t) is referred to as the Dixon polynomial. This method

generalizes to systems with multiple polynomials and variables with the addition of more

auxiliary variables. From here, the Dixon resultant computation is carried out in a similar

manner to that of the Sylvester resultant. A matrix of coefficients (Dixon matrix ) is created

whose determinant is zero when all polynomials have a common factor. Thus, the deter-

minant of the Dixon matrix (Dixon resultant) gives an expression from which the desired

variables have been eliminated. For a more complete discussion of these methods, see [30].

For the computation of I∩Q[d1, d2, d3], we seek to use resultants to eliminate x and y from

the ideal generated by p1, p2, and p3. Computing the Dixon polynomial and corresponding

Dixon matrix using the DR package in Maple is a relatively quick task and results in a 5× 5

Dixon matrix. Because this matrix is small, we found that using the “Determinant” command

with minor expansion in Maple to compute the determinant (the Dixon resultant) was faster

than Dixon resultant extraction with the DR package. The resultant, after factoring out a

single extraneous ellipsoid, was found to be a degree 20 polynomial in d1, d2, and d3. The

entire computation, including factoring, took well under a second.

The resulting degree 20 surface is shown in Figure 7.4. The numerical algebraic geome-

try software, Bertini [15], can be used to verify that this polynomial is indeed the resultant

and contains no further extraneous factors. Bertini is able to find positive-dimensional

components in a solution set, for instance curves or surfaces that satisfy a system of poly-

nomials [28]. It provides information about the dimension and degree of each component,

along with a set of points lying on the solution set. This set is referred to as a witness set.

For the system above consisting of p1, p2, and p3 with variables x, y, d1, d2, and d3 and

numerical parameter values, the solution set consists of a single algebraic surface (dimension
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2) of degree 44. Bertini also has the capability to project away variables and return the

dimension and degree of the corresponding projected algebraic variety.8 This is analogous

to performing variable elimination. When we project points in the solution set:

(x, y, d1, d2, d3) −→ (d1, d2, d3),

the result is a single degree 20 surface (now in the variables d1, d2, and d3). This is consistent

with the resultant.

Figure 7.4: Surface for I ∩Q[d1, d2, d3] resulting from Dixon resultant computation. The param-
eters used to generate this surface are the same as those in Figure 7.1.

7.3.2 Discussion

Visually comparing Figure 7.4 and the left side of Figure 7.1, it is clear that the resultant

is not equivalent to the image of D2. While we can verify that every point in the image of D2

8See Chapter 16 of [15] for more information.
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satisfies the resultant, the converse is not true. The surface defined by the resultant includes

many points that are not in the image of D2 and thus do not define feasible Doppler shifts.

This discrepancy is primarily caused by the squaring of each equation to create the

polynomial system defined by p1, p2, and p3. Indeed, the resultant does not include only

points from Im(D2):

(x, y) −→ ( d1, d2, d3)

but also points defined by seven other maps:

(x, y) −→ (−d1, d2, d3)

(x, y) −→ ( d1,−d2, d3)

...

(x, y) −→ (−d1,−d2,−d3).

This means that the resultant consists of 23 copies of the surface in Figure 7.1.

This does not change the fact that the variety corresponding to the resultant is the

smallest algebraic variety containing Im(D2), referred to as the Zariski closure of Im(D2).

If we want to use the surface, for instance for de-noising purposes, it is necessary to find a

way to distinguish between sections of the resultant. We would like to identify whether a

point on the surface corresponds to a truly feasible Doppler shift.

We are interested in how the FDOA case compares to a similar analysis of the TDOA-

based scenario. The surface of feasible Doppler shifts, given by a degree 20 polynomial,

is more complicated than the range map surface found in [13], defined by a polynomial of

degree 4. Additionally, the range map surface has a section in each octant, only one of which

is relevant to the TDOA problem. Thus, the surface can be reduced to just the section lying

in the first octant. Projecting this section of the range map surface to the TDOA space is a

1-to-1 map, with some 1-to-2 regions, and fills a convex region of R2 [13]. Comparatively, the
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projection of Im(D2) or the Doppler shift surface (Figure 7.4) to obtain bounds for FDOA

measurements is not a 1-to-1 map and the resulting region is not convex. In fact, a set of

FDOA measurements has been found to have as many as six corresponding feasible emitter

locations. This complexity can be seen in the right side of Figures 7.1, 7.2, and 7.3.

7.4 Conclusion

Using tools from elimination theory, we are able to identify the surface of feasible Doppler

shifts as being defined by a degree 20 polynomial equation. While this does give a neces-

sary condition that Doppler shifts must satisfy, we often do not have access to the observed

Doppler shifts, only their differences (FDOA). Additionally, the surface defined by the poly-

nomial contains sections that are not in the image of the Doppler shift map. These extraneous

sections arise from the squaring of (7.3) to remove square roots. Unfortunately, this means

that projecting the Doppler shift surface to the FDOA space will indicate a larger region of

feasible FDOA than is actually the case. Additionally, there is no apparent way of separat-

ing out the ‘correct’ region from the rest of the Doppler shift surface. This indicates that

obtaining and utilizing the region of feasible FDOA is much less straightforward than the

comparable TDOA case.

52



Chapter 8

Conclusion and Future Work

8.1 Conclusion

The broad goal of this thesis was to demonstrate how techniques from mathematics, par-

ticularly algebraic geometry, can be useful for tackling the interesting geometry of FDOA-

based source localization. This culminated in three separate projects, each of which ap-

proached the source localization problem from a slightly different angle.

Formulating the problem as a polynomial system (Chapter 3) allowed for the utilization

of polynomial solvers from numerical algebraic geometry. With these tools we are able to find

all zero-dimensional solutions to the FDOA (or TDOA) polynomial system up to a designated

numerical accuracy. Combining this capability with the iterative process, RANSAC, provided

methods for handling noise and measurement error. These concepts build the framework for

the FDOA-RANSAC algorithm developed in Chapter 5.

In addition to TDOA and FDOA measurements, the direction of arrival (DOA) is a

helpful quantity for locating a source. When a source is in the far-field, the resulting FDOA

measurements lie on an ellipse determined by the receiver velocities (Chapter 6). This is an

interesting relationship that allows for the estimation of the direction of arrival from a set

of FDOA or TDOA measurements.

Formulating the FDOA-based source localization problem as a polynomial system also

allows for the use of methods from elimination theory. With the elimination of variables, we

find that all Doppler shifts corresponding to a given receiver configuration lie on an algebraic

surface defined by a degree 20 polynomial equation (Chapter 7). This provides a necessary

condition that all Doppler shifts must satisfy and provides a basis for understanding the

closely-related set of feasible FDOA measurements.
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These projects provide insight into three separate aspects of FDOA-base source localiza-

tion. While the first two projects lead to direct methods for finding the location of a source,

the last project approaches the problem from a more theoretical perspective and seeks to

better understand the complex role that the Doppler shift plays in source localization.

8.2 Future Work

Passive source localization is a mathematically rich and practically valuable area. Thus,

there are several directions in which this research could be extended in the future. Two

potential projects relating to this dissertation are summarized below.

8.2.1 De-noising with the Set of Feasible FDOA

The exploration of the Doppler shift surface in Chapter 7 is the first step toward devel-

oping an algorithm for the de-noising of FDOA measurements. There are a few different

potential approaches to this project. In the TDOA de-noising algorithm developed in [14],

the authors identify the set of feasible TDOA as a convex bounded region of R2. This is the

projection of the range map surface onto the TDOA space. Thus, de-noising of TDOA mea-

surements is performed by minimizing the distance between noisy measurements and this

feasible set. Unfortunately, in the FDOA case, the projection of the Doppler shift surface

to the FDOA space contains additional regions that do not correspond to feasible FDOA

measurements. Thus, minimizing the distance between this set and noisy measurements will

not be an effective method for de-noising.

Another approach to de-noising is to first lift a noisy measurement to a line of Doppler

shifts. Then this line can be projected to the algebraic surface of feasible Doppler shifts.

Methods for the projection to algebraic sets have been established, although in a differ-

ent context [39, 40]. Thus, this is a promising alternative to the method above, although

there is still an issue with the Doppler shift surface containing sections that do not actually

correspond to feasible Doppler shifts.
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8.2.2 Emitter in Motion

One assumption of the model we have used thus far is that the signal’s source is stationary.

However, in practical application this is often not the case. Consider for example the problem

of locating a ship in distress in the ocean. The ship is very likely to be moving; whether

bobbing up and down or drifting with currents. Emitter motion affects the Doppler shift

formula by adding an additional vector-valued variable, v0, velocity of the emitter. Thus the

Doppler shift becomes:

di =
f0
c

(
(vi − v0) ·

x− xi

‖x− xi‖

)
.

When the emitter was assumed to be stationary, the relative velocity between receiver and

emitter was equivalent to vi. Now, adding the possibility for emitter motion, the relative

velocity is equivalent to the difference vi − v0. The addition of this extra set of variables

means that more observations are needed to obtain a zero-dimensional solution set.
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Appendix A

Calculating TDOA and FDOA

The majority of this paper develops methods for using TDOA and FDOA measurements

to locate an emitter. Or, it seeks to answer the question: given a set of measurements, where

did the signal originate? However, for context, some notes should also be made about the

signal processing techniques used to obtain the measurements τi,j and fi,j.

Consider the calculation of TDOA and FDOA between receivers 1 and 2. Receiver 1

collects an incoming signal s1(t) and receiver 2 collects an incoming signal s2(t). Each of

these signals is equivalent to the sent signal, s(t), up to a time delay and a frequency shift.

Mathematically,

s1(t) = s(t− τ1)e
−id1(t−τ1)

s2(t) = s(t− τ2)e
−id2(t−τ2),

with time delay τi and frequency shifts fi.

The time delay and frequency shift between the two received signals can be calculated by

performing a correlation of s1(t) with a time and frequency shifted version of s2(t). This is

done using the cross ambiguity function (CAF). The function is defined mathematically [41]

as

CAF (τ, f) =

∫ T

0

s∗1(t) s2(t+ τ) eift dt,

where ∗ denotes the complex conjugate and τ and f represent the imposed time and frequency

shift, respectively. For the two signals above,
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CAF (τ, f) =

∫ T

0

s∗(t− τ1) s(t+ τ − τ2) e
id1(t−τ1) e−id2(t−τ2) eift dt

=

∫ T

0

s∗(t− τ1) s(t− τ2 + τ) e−i(d2−d1−f)t dt · ei(d2τ2−d1τ1). (A.1)

This is simply an inner product between s1(t) and the modified s2(t). One key property that

follows is that the magnitude,

|CAF (τ, f)| = |
〈
s∗(t− τ1), s(t− τ2 + τ) e−i(d2−d1−f)t

〉
|,

will be largest at the (τ, f) values corresponding to the time delay and frequency shift between

the two signals [42]. This can be proven with the Cauchy-Schwarz inequality. The magnitude

of the inner product is largest when both sides (waveforms in this case) are equivalent. This

is achieved when τ = τ2 − τ1 = τ1,2. Additionally, e−i(d2−d1−f)t = 1 when f = d2 − d1 = f1,2.

Thus, evaluating (A.1) for various values of τ and f and taking the magnitude forms

a surface whose peak corresponds to the TDOA and FDOA. An example of this surface

is shown in Figure A.1. Based on the type of signal received, the cross ambiguity surface

may be broad in the range or frequency directions, making it difficult to accurately find the

maximum. In fact, the radar uncertainty principle states that range resolution and Doppler

resolution are inversely related: an increase in one will lead to a decrease in the other [4].

The cross ambiguity function shown in Figure A.2 demonstrates a case with high FDOA

accuracy and low TDOA accuracy. This is a motivation for developing better methods for

geolocation using TDOA or FDOA; different signals will be more accurate in one type of

measurement or the other.
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Figure A.1: Cross ambiguity function for a linear chirp. The correct TDOA is τ = −1 and the
FDOA is f = −5.

Figure A.2: Cross ambiguity function for a continuous wave signal. As above, the correct TDOA
is τ = −1 and the FDOA is f = −5. Note that this signal results in coarse TDOA resolution and
fine FDOA resolution. Thus, the FDOA estimate has a higher level of accuracy than the TDOA
estimate.
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Appendix B

FDOA System: Measurements Taken over

Multiple Time Steps

If receivers are allowed to take measurements over multiple time steps, the polynomial

systems given in Chapter 3 can be altered slightly to involve measurements from a single

pair of receivers at n time steps. This leads to a variation of Table 3.1, now with bounds

on the number of measurements needed for the solution set to be finite. This is the content

of Table B.1. It is easy to see how these numbers are obtained since a system with 4 receivers

results in 3 linearly independent measurements, 3 receivers result in 2 measurements, etc.

Thus, considering the FDOA system in 3D with a single receiver, we specifically consider the

case with n = 3 measurements, since this will result in a finite solution set with probability

one. This system is:
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ra,1rb,1f1 − ra,1 [ub,1(xb,1 − x) + vb,1(yb,1 − y) + wb,1(zb,1 − z)]

+ rb,1 [ua,1(xa,1 − x) + va,1(ya,1 − y) + wa,1(za,1 − z)] = 0

ra,2rb,2f2 − ra,2 [ub,2(xb,2 − x) + vb,2(yb,2 − y) + wb,2(zb,2 − z)]

+ rb,2 [ua,2(xa,2 − x) + va,2(ya,2 − y) + wa,2(za,2 − z)] = 0

ra,3rb,3f3 − ra,3 [ub,3(xb,3 − x) + vb,3(yb,3 − y) + wb,3(zb,3 − z)]

+ rb,3 [ua,3(xa,3 − x) + va,3(ya,3 − y) + wa,3(za,3 − z)] = 0

r2a,1 − (x2 + y2 + z2)− (x2
a,1 + y2a,1 + z2a,1) + 2(xa,1x+ ya,1y + za,1z) = 0

r2b,1 − (x2 + y2 + z2)− (x2
b,1 + y2b,1 + z2b,1) + 2(xb,1x+ yb,1y + zb,1z) = 0

r2a,2 − (x2 + y2 + z2)− (x2
a,2 + y2a,2 + z2a,2) + 2(xa,2x+ ya,2y + za,2z) = 0

r2b,2 − (x2 + y2 + z2)− (x2
b,2 + y2b,2 + z2b,2) + 2(xb,2x+ yb,2y + zb,2z) = 0

r2a,3 − (x2 + y2 + z2)− (x2
a,3 + y2a,3 + z2a,3) + 2(xa,3x+ ya,3y + za,3z) = 0

r2b,3 − (x2 + y2 + z2)− (x2
b,3 + y2b,3 + z2b,3) + 2(xb,3x+ yb,3y + zb,3z) = 0.

The receivers are now given letters a and b, and time steps are numbered 1-3.

Table B.1: Minimum number of TDOA and FDOA measurements necessary to reduce set of
potential transmitter locations to a finite number, for varying dimensions (2 or 3) and types of
measurements being used.

# measurements (2D) # measurements (3D)
TDOA only 2 3

TDOA + ALT - 2
FDOA only 2 3

FDOA + ALT - 2
TDOA + FDOA 1 2

TDOA + FDOA + ALT - 1
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