84,138 research outputs found

    Public Participation GIS for sustainable urban mobility planning: methods, applications and challenges

    Get PDF
    Sustainable mobility planning is a new approach to planning, and as such it requires new methods of public participation, data collection and data aggregation. In the article we present an overview of Public Participation GIS (PPGIS) methods with potential use in sustainable urban mobility planning. We present the methods using examples from two recent case studies conducted in Polish cities of Poznań and Łodź. Sustainable urban mobility planning is a cyclical process, and each stage has different data and participatory requirements. Consequently, we situate the PPGIS methods in appropriate stages of planning, based on potential benefits they may bring into the planning process. We discuss key issues related to participant recruitment and provide guidelines for planners interested in implementing methods presented in the paper. The article outlines future research directions stressing the need for systematic case study evaluation

    A hybrid Delphi-SWOT paradigm for oil and gas pipeline strategic planning in Caspian Sea basin

    Get PDF
    The Caspian Sea basin holds large quantities of both oil and natural gas that could help meet the increasing global demand for energy resources. Consequently, the oil and gas potential of the region has attracted the attention of the international oil and gas industry. The key to realizing the energy producing potential of the region is the development of transnational export routes to take oil and gas from the landlocked Caspian Sea basin to world markets. The evaluation and selection of alternative transnational export routes is a complex multi-criteria problem with conflicting objectives. The decision makers (DMs) are required to consider a vast amount of information concerning internal strengths and weaknesses of the alternative routes as well as external opportunities and threats to them. This paper presents a hybrid model that combines strength, weakness, opportunity and threat (SWOT) analysis with the Delphi metho

    A Hierarchal Planning Framework for AUV Mission Management in a Spatio-Temporal Varying Ocean

    Full text link
    The purpose of this paper is to provide a hierarchical dynamic mission planning framework for a single autonomous underwater vehicle (AUV) to accomplish task-assign process in a limited time interval while operating in an uncertain undersea environment, where spatio-temporal variability of the operating field is taken into account. To this end, a high level reactive mission planner and a low level motion planning system are constructed. The high level system is responsible for task priority assignment and guiding the vehicle toward a target of interest considering on-time termination of the mission. The lower layer is in charge of generating optimal trajectories based on sequence of tasks and dynamicity of operating terrain. The mission planner is able to reactively re-arrange the tasks based on mission/terrain updates while the low level planner is capable of coping unexpected changes of the terrain by correcting the old path and re-generating a new trajectory. As a result, the vehicle is able to undertake the maximum number of tasks with certain degree of maneuverability having situational awareness of the operating field. The computational engine of the mentioned framework is based on the biogeography based optimization (BBO) algorithm that is capable of providing efficient solutions. To evaluate the performance of the proposed framework, firstly, a realistic model of undersea environment is provided based on realistic map data, and then several scenarios, treated as real experiments, are designed through the simulation study. Additionally, to show the robustness and reliability of the framework, Monte-Carlo simulation is carried out and statistical analysis is performed. The results of simulations indicate the significant potential of the two-level hierarchical mission planning system in mission success and its applicability for real-time implementation

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Transport and economic development

    Get PDF

    Enhancing Food Security in a Changing Climate in Africa

    Get PDF
    Climate and socio-ecological change scenarios are invaluable tools in developing appropriate response options for ensuring food security and human wellbeing in the future: evidence-based approach. Climate change necessitates research on crops, livestock and systems that are resilient to variability and extreme events. Prioritize and mainstream food security and nutrition issues into regional and national climate change adaptation and mitigation programmes and initiatives. Opportunities exist for the development of climate-proof and resilient food systems across Africa through technology diffusion, agronomic practices and innovations that can be optimized and scaled up
    corecore