15 research outputs found

    Automated generation of formal safety conditions from railway interlocking tables

    Get PDF

    Design Time Methodology for the Formal Modeling and Verification of Smart Environments

    Get PDF
    Smart Environments (SmE) are intelligent and complex due to smart connectivity and interaction of heterogeneous devices achieved by complicated and sophisticated computing algorithms. Based on their domotic and industrial applications, SmE system may be critical in terms of correctness, reliability, safety, security and other such vital factors. To achieve error-free and requirement-compliant implementation of these systems, it is advisable to enforce a design process that may guarantee these factors by adopting formal models and formal verification techniques at design time. The e-Lite research group at Politecnico di Torino is developing solutions for SmE based on integration of commercially available home automation technologies with an intelligent ecosystem based on a central OSGi-based gateway, and distributed collaboration of intelligent applications, with the help of semantic web technologies and applications. The main goal of my research is to study new methodologies which are used for the modeling and verification of SmE. This goal includes the development of a formal methodology which ensures the reliable implementation of the requirements on SmE, by modeling and verifying each component (users, devices, control algorithms and environment/context) and the interaction among them, especially at various stages in design time, so that all the complexities and ambiguities can be reduced

    Methodologies synthesis

    Get PDF
    This deliverable deals with the modelling and analysis of interdependencies between critical infrastructures, focussing attention on two interdependent infrastructures studied in the context of CRUTIAL: the electric power infrastructure and the information infrastructures supporting management, control and maintenance functionality. The main objectives are: 1) investigate the main challenges to be addressed for the analysis and modelling of interdependencies, 2) review the modelling methodologies and tools that can be used to address these challenges and support the evaluation of the impact of interdependencies on the dependability and resilience of the service delivered to the users, and 3) present the preliminary directions investigated so far by the CRUTIAL consortium for describing and modelling interdependencies

    Application of lean scheduling and production control in non-repetitive manufacturing systems using intelligent agent decision support

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Lean Manufacturing (LM) is widely accepted as a world-class manufacturing paradigm, its currency and superiority are manifested in numerous recent success stories. Most lean tools including Just-in-Time (JIT) were designed for repetitive serial production systems. This resulted in a substantial stream of research which dismissed a priori the suitability of LM for non-repetitive non-serial job-shops. The extension of LM into non-repetitive production systems is opposed on the basis of the sheer complexity of applying JIT pull production control in non-repetitive systems fabricating a high variety of products. However, the application of LM in job-shops is not unexplored. Studies proposing the extension of leanness into non-repetitive production systems have promoted the modification of pull control mechanisms or reconfiguration of job-shops into cellular manufacturing systems. This thesis sought to address the shortcomings of the aforementioned approaches. The contribution of this thesis to knowledge in the field of production and operations management is threefold: Firstly, a Multi-Agent System (MAS) is designed to directly apply pull production control to a good approximation of a real-life job-shop. The scale and complexity of the developed MAS prove that the application of pull production control in non-repetitive manufacturing systems is challenging, perplex and laborious. Secondly, the thesis examines three pull production control mechanisms namely, Kanban, Base Stock and Constant Work-in-Process (CONWIP) which it enhances so as to prevent system deadlocks, an issue largely unaddressed in the relevant literature. Having successfully tested the transferability of pull production control to non-repetitive manufacturing, the third contribution of this thesis is that it uses experimental and empirical data to examine the impact of pull production control on job-shop performance. The thesis identifies issues resulting from the application of pull control in job-shops which have implications for industry practice and concludes by outlining further research that can be undertaken in this direction

    From Resilience-Building to Resilience-Scaling Technologies: Directions -- ReSIST NoE Deliverable D13

    Get PDF
    This document is the second product of workpackage WP2, "Resilience-building and -scaling technologies", in the programme of jointly executed research (JER) of the ReSIST Network of Excellence. The problem that ReSIST addresses is achieving sufficient resilience in the immense systems of ever evolving networks of computers and mobile devices, tightly integrated with human organisations and other technology, that are increasingly becoming a critical part of the information infrastructure of our society. This second deliverable D13 provides a detailed list of research gaps identified by experts from the four working groups related to assessability, evolvability, usability and diversit

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Resilience-Building Technologies: State of Knowledge -- ReSIST NoE Deliverable D12

    Get PDF
    This document is the first product of work package WP2, "Resilience-building and -scaling technologies", in the programme of jointly executed research (JER) of the ReSIST Network of Excellenc

    Geographical Versus Functional Modelling by Statecharts of Interlocking Systems

    Get PDF
    AbstractThe development of computer controlled Railway Interlocking Systems (RIS) has seen an increasing interest in the use of Formal Methods, due to their ability to precisely specify the logical rules that guarantee the safe establishment of routes for trains through a railway yard.Recently, a trend has emerged about the use of statecharts as a standard formalism to produce precise specifications of RIS. This paper describes an experience in modelling a railway interlocking system using statecharts. Our study has addressed the problem from a “geographical”, distributed, point of view: that is, our model is composed by models of single physical entities (points, signals, etc.) that collectively implement the interlocking rules, without any centralized database of rules, which is on the other hand a typical way of implementing such a system (what we call “functional” approach).One of the main aims of our approach, is to verify its ability to reduce revalidation efforts in the case of physical modifications to the yard; we show how the geographical approach may reduce this effort by requiring only the revalidation of those software modules that are actually affected by the changes
    corecore