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Summary
(In English)

This dissertation presents a holistic, formal method for efficient modelling and
verification of safety-critical railway control systems that have product line char-
acteristics, i.e., each individual system is constructed by instantiating common
generic applications with concrete configuration data. The proposed method is
based on a combination of formal methods and domain-specific approaches. While
formal methods offer mathematically rigorous specification, verification and vali-
dation, domain-specific approaches encapsulate the use of formal methods with
familiar concepts and notions of the domain, hence making the method easy for
the railway engineers to use. Furthermore, the method features a 4-step verification
and validation approach that can be integrated naturally into different phases
of the software development process. This 4-step approach identifies possible
errors in generic applications or configuration data as early as possible in the
software development cycle, and facilitates debugging/troubleshooting if errors are
discovered. The proposed method has successfully been applied to case studies of
the forthcoming Danish railway interlocking systems that are compatible with the
European standardized railway control systems ERTMS/ETCS Level 2. Experiments
showed that the method can be used for specification, verification and validation of
systems of industrial size.
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Resumé
(På Dansk)

Denne afhandling præsenterer en holistisk, formel metode til effektiv modeller-
ing og verifikation af sikkerhedskritiske jernbanestyresystemer, der har produktlinje-
egenskaber, dvs hvert enkelt system konstrueres ved at instantiere fælles generiske
applikationer med konkrete konfigurationsdata. Den foreslåede metode er baseret
på en kombination af formelle metoder og domæne-specifikke metoder. Mens de
formelle metoder tilbyder matematisk stringent specifikation, verifikation og valid-
ering, indkapsler de domæne-specifikke metoder brugen af de formelle metoder med
velkendte begreber og notationer for det givne domæne, og gør dermed metoden let
at bruge for jernbaneingeniører. Metoden tilbyder en 4-trins verifikations-og valid-
eringsproces, der kan integreres naturligt i de forskellige faser af software-udvikling.
Denne 4-trins proces identificerer eventuelle fejl i generiske applikationer og kon-
figurationsdata så tidligt som muligt i softwareudviklingsprocessen, og faciliterer
debugging/fejlfinding. Den foreslåede metode har med succes været anvendt
i casestudier af de kommende danske jernbanesikringsanlæg, der er kompatible
med det europæiske standardiserede jernbanestyresystem, ERTMS/ETCS niveau 2.
Forsøg har vist, at fremgangsmåden kan anvendes til specifikation, verifikation og
validering af systemer af industriel størrelse.
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CHAPTER 1
Introduction

1.1 The Danish Signalling Programme . . . . . . . . . . . . . . . . . . 1
1.2 RobustRailS Project . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goals, Scope, and Contributions of the Thesis . . . . . . . . . . . . 3
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

This chapter gives an introduction to the context of the work presented in this
dissertation, namely, the Danish Signalling Programme, a program that replaces the
entire railway signalling in Denmark; and the RobustRailS project, a research project
accompanying the Signalling Programme on a scientific level. Motivated by the
challenges in verification and validation of the new railway control systems that are
going to be deployed in Denmark in the Signalling Programme, our goal in this work
is to provide methods and tools supporting efficient development and verification
and railway control systems. With a primary focus on railway control systems with
product line characteristics, this dissertation shows how the above goal is fulfilled by
the main contributions of the work: a holistic method for verification and validation
of railway control systems with product line characteristics, and its application to the
forthcoming Danish interlocking systems.

The remainder of this chapter is organised as follows. First, Section 1.1 and
Section 1.2 introduce the Danish Signalling Programme and the RobustRailS project,
respectively. Afterwards, the goals, scope, and the main contributions of the work
presented in this dissertation are described in Section 1.3. Section 1.4 concludes the
chapter with an outline of the dissertation.

1.1 The Danish Signalling Programme

In 2009, the Danish government decided to invest in a total renewal of the Danish
railway signalling systems [Ban10] by 2021 in the Danish Signalling Programme*.
The program aims at replacing the entire Danish railway signalling systems, which
are coming to the end of their lives, by the European standardized signalling
systems – European Rail Traffic Management System (ERTMS)/European Train
Control System (ETCS) Level 2 [ERT14]. It is the first time a renewal at this
scale has been attempted, with an estimated investment of EUR 2.5 billion. This
accounts for a full ERTMS/ETCS Level 2 implementation including all onboard
and trackside equipments on the Fjernbane – the long-ranged regional and intercity

*http://www.bane.dk/signalprogrammet

http://www.bane.dk/signalprogrammet


2 1 Introduction

railway, a full Communication Based Train Control (CBTC) on the local system S-
bane, all interlocking systems, country-wide traffic management systems, GMS-R,
interface management, safety approvals, design, testing, implementation, training,
and changes in the internal processes of Banedanmark – the Danish railway infras-
tructure owner [Ban10; Ban14].

The Danish Signalling Programme is expected to bring multiple benefits for
customers, railway infrastructure owners, and railway operators [Ban10; Ban14]:

• Better punctuality, increased line speed, and higher capacity. It is expected that
an 80 percent decline in signal-related delays on main and regional lines and 50
percent on the S-bane as a result of the Signalling Programme.

• Higher and more homogeneous level of safety.

• Economical maintenance in the future.

• Better centralised traffic control, better energy optimisation, and better passenger
information.

• Double the number of rail passengers by 2030, target a greener public transport
system.

The Signalling Programme is currently in progress, with some parts of the new
systems in the early deployment phase.

1.2 RobustRailS Project

Robustness in Railway OperationS (RobustRailS)† is an interdisciplinary project
funded by Innovation Fund Denmark‡ for the period 2012-2016. The project attempts
to answer the question: Can we get trains to run on time?. Accompanying the
Danish Signalling Programme mentioned in Section 1.1, the RobustRailS project
aims at providing extra confidence on the systems that are about to be deployed.
Furthermore, the project investigates also sustainable rail transport for the future
where robustness is integrated in the planning, development, and operations of
railway systems. This means that signalling systems and communications need to
be rethought and redesigned with robustness in mind. Moreover, models shall be
developed to assist the analysis and validation of the effect of robust rail operations.

The RobustRailS project is partitioned into multiple work packages, each work
package studies a perspective of a robust railway system, from robust infrastructure
to robust operations or passenger flow. The work presented in this dissertation is
part of the deliverables of work package WP.4.1 entitled “Formal Development and
Verification of Railway Control Systems”. The work package focuses on how domain-
specific languages and formal development and verification methods can be used to
facilitate the efficient manufacture of robust and safe railway control systems.

†http://robustrails.man.dtu.dk
‡http://innovationsfonden.dk

http://robustrails.man.dtu.dk
http://innovationsfonden.dk
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1.3 Goals, Scope, and Contributions of the Thesis

Conventionally, the verification and validation process of railway control systems is
informal and mostly manual, hence time-consuming, costly, and error-prone. Thus,
automated verification and validation of railway control systems is an active research
topic, investigated by several research groups, see e.g., [HBK10; Fer+10; Win12;
Jam+14; HPP14].

Goals. As part of the RobustRailS research project, our goal is to establish methods
and tools for efficient development, verification and validation of safety-critical
railway control systems. The method should be formal and facilitate automation
in order to provide a better verification process compared to the conventional one.

Our hypothesis is that a proper combination of formal methods and domain-
specific approaches leads to efficient development and verification of systems with
product line characteristics. Namely,

• Formal methods offer rigorous specification, verification, and validation, while
domain-specific approaches encapsulate the use of formal methods with familiar
concepts and notions of the domain, hence making formal methods more accessi-
ble to end-users.

• The use of reconfigurable, generic artefacts such as generic models and properties
would increase the reusability and efficiency of the formal modelling and verifica-
tion process.

• A combination of bounded model checking and inductive reasoning would be
used to address the challenge of applying formal verification on systems of
industrial size.

Scope. The primary focus of the thesis is railway control systems that are safety-
critical, and have product line characteristics: each individual system is constructed by
instantiating common generic applications with concrete configuration data. Railway
interlocking systems are perfect examples of such systems, hence they are chosen as the
case study for our proposed method.

Contributions. The main contributions of work presented in this dissertation are:

(1) A holistic, formal method for development of safety-critical systems that have prod-
uct line characteristics. The method is built on a combination of formal methods
and domain-specific approaches. The method has the following characteristics.

• Holistic. The method covers different phases of the development process, from
specification, over design, to verification and validation.
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• Formal. The specification, verification and validation in the method are math-
ematically rigorous. Thus, the method provides a higher level of confidence
compared to conventional manual and informal methods.

• The method offers a 4-step verification and validation approach, allowing bugs to
be revealed as early as possible in the development cycle.

• User-friendly. Using domain-specific languages to encapsulate the use of
formal methods, the method provides different levels of abstraction that are
suitable for different user groups: railway engineers, software engineers, or
validators.

• Scalable. The method is capable of verifying the safety properties of systems
of industrial size by using a combination of bounded model checking and
inductive reasoning.

• The method includes amodel-based, domain-specific testing strategywhich verifies
the conformance of the implementation with the design and requirements.

(2) Application of the method to the forthcoming Danish interlocking systems that
will be deployed in the Danish Signalling Programme.

The subsequent chapters of this dissertation will elaborate these contributions in
detail.

1.4 Structure of the Thesis

The remaining chapters of the dissertation are organised as follows.

• Chapter 2 gives a brief introduction to different background topics that are
relevant to the work presented in this dissertation including the revolutionary rail-
way standard ERTMS/ETCS, railway interlocking systems, and in particular the
forthcoming Danish interlocking systems that will be deployed by the Signalling
Programme. The chapter also gives a short summary about formal methods and
domain-specific languages. Some mathematical preliminaries are also presented.

• Chapter 3 presents an overview of the proposed method and its application to
railway interlocking systems. The subsequent chapters, Chapter 4 to Chapter 7,
elaborate the method in detail.

• Chapter 4 presents Interlocking Configuration Language (ICL) – a domain-specific
language for describing interlocking configuration data. The chapter describes
also how the wellformedness of configuration data can be automatically checked.

• Chapter 5 presents the syntax and semantics of Interlocking Dynamic Language
(IDL) – a domain-specific language for specifying generic interlocking models.
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• Chapter 6 presents a generic model of the forthcoming Danish interlocking sys-
tems and a verification technique that is able of verifying the safety properties
for models of realistic size. Furthermore, a comparison with other verification
techniques is also presented.

• Chapter 7 describes a model-based, domain-specific testing strategy tailored for
interlocking systems.

• Chapter 8 concludes the dissertation and presents ideas and suggestions for future
work.

Remarks on Formalisms. Throughout this dissertation, different formalisms are
used in order to give the clearest presentation. RAISE Specification Language
(RSL) [Gro92; Geo04] – the specification language of Rigorous Approach to Industrial
Software Engineering (RAISE) development method [Geo+95; Geo04] – is used to
specify both the abstract syntax and static semantics of ICL in Chapter 4 because RSL
supports algebraic data types and executable specifications. Whereas Backus–Naur
Form (BNF) is used to specify the concrete syntax for IDL in Chapter 5. Note that the
concrete syntax of IDL is presented in Chapter 5 instead of abstract syntax like the
way ICL is presented in Chapter 4 because IDL is used to specify the generic model,
safety properties, and test objectives of the Danish interlocking systems in Chapter 6
and Chapter 7. Denotational semantics of ICL and IDL are given in Chapter 5 for
readability.

Related Work. Other work related to content of a chapter is presented in the
respective chapter.

Prerequisites. Readers are assumed to be familiar with formal specification, formal
verification, and domain-specific languages. Knowledge about railway domain is not
mandatory for understanding the content of this dissertation.

Remarks on Hyperlinks. In the electronic version – i.e., Portable Document Format
(PDF) – of this dissertation, most of the abbreviations, citations, inline macro name
listings, and cross references are hyperlinks: they are linked to their corresponding
definitions, sources, full specifications, and content, respectively. One can follow
(click) the links to reach the corresponding content within the dissertation.
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This chapter describes briefly some background knowledge that is relevant to the
work presented in this dissertation. First, an introduction to the standardised
ERTMS/ETCS, railway interlocking systems, and their relation are given in Sec-
tion 2.1 to Section 2.4. Afterwards, the forthcoming Danish interlocking systems are
described in detail in Section 2.5. Product line characteristics of interlocking systems
are introduced in Section 2.6. Section 2.7 to Section 2.10 introduce shortly formal
methods, model checking, and model-based testing, and domain-specific languages,
respectively. Finally, Section 2.11 presents some mathematical preliminaries, includ-
ing Kripke structures, k-induction, and input/output state transitions systems, that
will be used throughout this dissertation.

Note that this chapter does not aim to give an exhaustive study about these topics,
but rather a brief introduction that is adequate for understanding the work presented
in this dissertation. Readers are advised to consult the respective references for more
thorough studies.
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2.1 ERTMS/ETCS

The European Rail TrafficManagement System (ERTMS) is an initiative implemented by
the European Commission (EC) in order to increase cross-border*interoperability and
safety of rail traffic across Europe. ERTMS is the first international standard for train
command-control and train-to-ground communication systems. ERTMS consists of
two complementary subsystems:

(A) GSM-Railways (GSM-R)

(B) European Train Control System (ETCS)

ERTMS is not technologically advanced in terms of its subsystems: the tech-
nologies for the subsystems have been there for years, some technologies are even
going to be obsolete, e.g., GSM-R. However, ERTMS is revolutionary in the sense
that it pieces existing technologies together to create a comprehensive solution for
interoperability and safety in railway. Therefore, EC obliges European railways
to deploy ERTMS for their new railway systems via European Council Directive
96/48/EC [Eur96] and European Commission Decision 2001/260/EC [Eur01]. Due
to its advantages, ERTMS has grown out of Europe and become a global standard
for railways: many countries outside Europe have started implementing ERTMS for
their railway systems [Sys15].

GSM-R. GSM-Railways (GSM-R) provides data channels for train-to-ground com-
munication by adapting the well-known commercial wireless communication stan-
dard Global System for Mobile Communications (GSM) to railway applications.
Although GSM-R is mandated by ERTMS standard, it has been shown that GSM-
R has a number of shortcomings such as limited technical support in future, low
capacity, and many others [Sni15]. In order to overcome such shortcomings, newer
wireless communication standards have been investigated as alternatives for GSM-
R in the future. In the dissertation for another work package within RobustRailS
project, Sniady has studied the possibility of using Long Term Evolution (LTE) – the
latest commercial telecommunication standard, also known as 4G – as an alternative
for GSM-R and strategies for migrating to LTE from GSM-R [Sni15].

ETCS. European Train Control System (ETCS) is a state-of-the-art railway signalling,
train control, and train protection system that enhances the interoperability, safety,
and capacity of rail traffic. Based on the communication provided by GSM-R, ETCS
manages and supervises train movements. Two primary features provided by ETCS
are (1) in-cab signalling, and (2) Automatic Train Protection (ATP) [TVA09].

(1) In-cab signalling: In traditional railway signalling systems, classical colour light
signals – which are physically installed along the tracks in a given railway
*The term border in cross-border should be understood generally as either a border between countries,

or a border between two different railway signalling and train control systems.
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network – allow or disallow trains to move forward at a certain speed. In ETCS†,
these colour signals are replaced by the Driver Machine Interface (DMI) inside the
driver cabin. The DMI displays all commands from the control centre and other
information to the driver. This is referred as in-cab signalling. In-cab signalling
reduces the risk of human errors made by train drivers. First, it reduces the
risk that the driver may read a wrong signal, miss a signal, or misinterpret the
meaning of a signal. Second, the DMI provides drivers much more precise,
detailed, and frequent information, which is great support for train drivers in
driving the train.

(2) Automatic Train Protection (ATP): ATP is a system that supervises the train driver
on a train. The ATP calculates a braking curve [ERT14] describing the safe upper
limit of the train speed at a certain location based on the current speed profile,
the characteristics of the train, and the current movement authority granted to
the train. The actual speed and position of the train are then compared with
this braking curve in order to ensure that the train driver obeys all the signalling
rules. The ATP will take immediate actions to prevent hazardous situations
from happening. For example, the ATP will trigger the emergency brakes if the
train travels too fast compared to the allowed speed. Additionally, the braking
curve can serve as a guideline for the train driver to have an optimal and smooth
driving. An example of such monitoring is the ceiling speed monitoring module
(CSM) in ETCS onboard computer. The CSM has been modelled and analysed
in [Bra+14b].

ETCS is specified at five different application levels: 0, NTC, 1, 2, and 3 [ERT14].
These levels differ in terms of efficiency, safety, and investment cost: the level 0 is the
least autonomous level where ETCS-fitted trains – i.e., trains equipped with ETCS
onboard equipments – operate in non-fitted trackside systems, while the level 3 is
the most autonomous level where movement authorities and the position of trains
are monitored and communicated via radio communication network. Railway infras-
tructure owners can choose an appropriate level based on their specific requirements
and strategies. ETCS Level 2 will be deployed in Denmark by the Danish Signalling
Programme as mentioned in Section 1.1. Therefore, the research presented in this
dissertation considers ETCS Level 2. Throughout the remaining of this dissertation,
ETCS refers to ETCS Level 2 if not indicated otherwise.

2.2 ETCS Level 2 Architecture

In this section, the architecture of ETCS Level 2 will be introduced briefly. Note that
the introduction here is merely for understanding the context of the work presented
in this dissertation, hence only a simplified architecture is presented. Figure 2.1
shows a simplified schematic architecture of ETCS Level 2. ETCS is divided into
two general subsystems: onboard and trackside.

†at an appropriate application level, e.g., level 1 to 3
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Figure 2.1: ETCS Level 2 schematic architecture

Onboard Subsystem. The onboard subsystem, also known asOn-board Unit (OBU)
in ETCS terminology, is a set of ETCS elements installed on a train. A train equipped
with an ETCS onboard subsystem is referred as an ETCS-fitted train. Some of the
elements of the OBU are listed in the following.

• European Vital Computer (EVC): The EVC is the brain of an OBU. It is responsible
for all the computation and logic of the system onboard the train. The EVC has
interfaces with the train and other modules in the OBU. It orchestrates all the
operations in the onboard subsystem.

• Driver Machine Interface (DMI): The DMI is the interface between the train driver
and the OBU. The DMI displays all necessary information to the driver, e.g., the
current speed of the train or the current speed limit. The DMI also serves as an
input device for the driver to enter information for setting up the OBU.

• GSM-R module provides the communication interface to the Radio Block Center
(RBC) in the trackside subsystem.

• Balise Transmission Module (BTM): The BTM reads the information stored in Eu-
robalises placed along the track as the train passes them. This information is
essential for the OBU to compute the braking curves.

• Odometry: The odometry system estimates the current speed of the train and
its position in the relation to the last reference location specified by the last
Eurobalises that the train has passed.

Trackside Subsystem. The trackside subsystem consists of elements that are in-
stalled along the railway tracks. Some of the elements are listed in the following.
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• Eurobalises: Eurobalises are reference beacons installed along the tracks. Each
Eurobalise contains the information about its precise location and track charac-
teristics such as gradient or friction.

• Interlocking: Interlocking systems are responsible for guiding trains safely through
the network. Interlocking systems are explained more in Section 2.3.

• Traffic Management System (TMS): The TMS is a centralised system that manages
the overall traffic and interfaces with signalmen, timetabling systems, and traffic
information systems.

• Radio Block Center (RBC): The RBC manages trains running within the railway net-
work under its control. It uses the information provided by the traffic management
system, the OBU on the trains within the railway network under control, and the
interlocking to calculate for each train Movement Authority (MA) dictating how
far forward the train can go. RBC is also responsible for voice communication and
data services.

A Typical Operation Scenario. In the following, a simplified version of a typical
operation scenario in ETCS Level 2 is given in order to illustrate how different systems
in ETCS Level 2 work together.

(1) The OBU of a train sends an MA request via GSM-R to the current RBC that the
train is registered to. The MA asks for authorization to move further.

(2) The RBC, after receiving the MA request, consults the TMS about the timetable
for the train based on the identifier registered for the train in order to figure out
which route(s) shall be set (i.e., reserved) for the train.

(3) The RBC requests the interlocking to set the route(s) for the train as specified in
the timetable.

(4) The interlocking checks the status of track sections, points and set them to ap-
propriate states for the train to pass through safely. Afterwards, the interlocking
notifies the RBC that the routes have been set.

(5) The RBC calculates the new MA and sends it to the train. The new MA dictates
how far ahead the train can go, and the maximum speed allowed.

(6) The OBU, when receiving the new MA, calculates the new braking curve based
on the new MA and information (e.g., location, track characteristics) it obtained
from the Eurobalises. Then, the new information is displayed to the driver via
the DMI. The new braking curve is also fed to the ATP to safe-guard the train.
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2.3 Railway Interlocking Systems

A railway interlocking system (abbreviated as interlocking) is responsible for guiding
trains safely through a given railway network. It is a vital part of any railway
signalling system and has the highest safety integrity level (SIL4) according to the
CENELEC 50128 standard [CEN12]. An interlocking system monitors the trackside
elements of the railway network under its control, and set them to appropriate
configuration so that trains can travel through the network without derailing or
colliding to others [TVA09].

Interlockings are categorised into the following types based on their locking
technologies [TVA09].

(1) Mechanical interlockings are the earliest type of interlockings. Their locking
mechanism is purely mechanical using levers to operate different trackside
elements to desired configuration.

(2) Relay interlockings consist of complex electrical circuits made up from electrical re-
lays‡ (electrically operated switches) arranged according to a certain interlocking
logic. This interlocking logic ensures that once the trackside elements are locked
in a certain configuration, all others conflicting configurations which may lead to
collisions or derailments cannot be locked at the same time.

(3) Electronic interlockings (also known as solid state interlockings or computerised
interlockings) are the latest type of interlockings where the locking logic is
implemented by software rather than hard-wired circuits. Since electronic in-
terlockings are developed after relay interlockings, the software implementation
of locking mechanism often imitates the hard-wired circuits. Electronic interlock-
ings provide also extra functionalities compared to other types of interlockings
due to the resources available in software implementation.

There are three primary approaches toward interlocking implementation:

(a) Route-based. In a route-based interlocking, the railway network is divided into
fixed fractions called routes [TVA09; Hax14]. A single centralised interlocking
logic (either hard-wired by cables or implemented by software) controls the
elements in the railway network layout and reserve routes for trains.

(b) Communication-based. Similarly to route-based approach, in a communication-
based interlocking [EE04; PE09], there exists a centralised interlocking control
logic. However, the railway network is not divided into fixed fractions. Instead,
trains maintain constant communication with the interlocking logic and report
their positions on the rail tracks. The interlocking logic ensures that every train
under its control has an appropriate safe distance with other trains in front, or
behind it. In other words, the interlocking logic maintains for every train under
its control a safety envelope, similar to air traffic control.

‡http://en.wikipedia.org/wiki/relay

http://en.wikipedia.org/wiki/relay


2.4 Interlockings and ETCS Level 2 13

(c) Geographical-based. In a geographical-based interlocking, e.g., see [BF05; Fan12a;
HP00; HPP14], the interlocking logic is distributed to the elements in the
network layout. In order to reserve a fraction of the network for a train, messages
are passed between the related elements following a predefined protocol. The
goal of this protocol is to reach a consensus agreement on reserving the network
fraction.

2.4 Interlockings and ETCS Level 2

Interlockings are not specified in ETCS standard. In principles, any relay interlock-
ings or electronic interlockings can operate with ETCS-fitted system provided that
they are compatible with ETCS. Traditionally, interlockings use colour light signals
to convey permissions to drive forward to trains. On the contrary, in ETCS Level
2, these permissions are conveyed by movement authorities communicated via an
RBC and a radio network to trains. To this end, the concept of virtual signal – signals
that play the same role as traditional colour signals, but do not physically exist – is
employed in the interface between ETCS and interlockings. Virtual signal concept
is further explained in Section 2.5. Throughout this dissertation, if not mentioned
otherwise, an interlocking shall be understood as an interlocking that is compatible
with ETCS Level 2.

2.5 The new Danish Interlocking Systems

In this section, we introduce briefly the new Danish interlocking systems – elec-
tronic and route-based interlocking systems according to the categories presented
in Section 2.3 – and the domain terminology. First, Section 2.5.1 describes different
components of a specification of an interlocking system which is compatible with
ETCS Level 2. Then, Section 2.5.2 explains the interlocking principles and the strict
procedure that interlocking systems employ to ensure safety. Last, Section 2.5.3
explains the sequential release feature in the new Danish interlocking systems.

2.5.1 Specification of Interlocking Systems

The specification of a given interlocking system consists of two main components:
(1) a railway network, and (2) a corresponding interlocking table.

Railway Networks. A railway network in ETCS Level 2 consists of a number of
trackside elements of different types§: (a) linear sections, (b) points, and (c) marker
boards.

§Here we only show types that are relevant to the work presented in this dissertation. Furthermore,
for simplicity, we do not consider level crossings, derailers, moveable bridges.
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Figure 2.2 shows an example layout of a railway network having six linear sec-
tions (b10,t10,t12,t14,t20,b14), two points (t11,t13), and eight marker boards
(mb10..mb21).

t10 t14t13t12

mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

Figure 2.2: A railway network layout example

Different types of trackside elements are described in detail in the following.

(a) Linear sections. A linear section is a section (track segment) with up to two
neighbours: one in the up end, and one in the down end. For example, the
linear section t12 in Figure 2.2 has t13 and t11 as neighbours at its up end and
down end, respectively. In Danish railway’s terminology, up and down denote
the directions in which the distance from a reference location is increasing and
decreasing, respectively. The reference location is the same for both up and down,
e.g., an end of a railway line. For simplicity, in the examples and figures in the
rest of this dissertation, the up (down) direction is assumed to be the left-to-right
(right-to-left) direction, if it is not indicated otherwise.

(b) Points. A point can have up to three neighbours: one at the stem, one at the plus
end, and one at the minus end, e.g., point t11 in Figure 2.2 has t10, t12, and t20
as neighbours at its stem, plus, and minus ends, respectively. The ends of a point
are named so that the stem and plus ends form the straight (main) path through
the point, and the stem andminus ends form the branching (siding) path through
the point. A point can be switched between two positions: PLUS and MINUS¶.
When a point is in the PLUS (MINUS) position, its stem end is connected to its
plus (minus) end, thus traffic can run from its stem end to its plus (minus) end and
vice versa. It is not possible for traffic to run from plus end tominus end and vice
versa.
Linear sections and points are collectively called (train detection) sections, as
they are provided with train detection equipments‖ used by the interlocking
system to detect the presence of trains on the sections. Note that sections are
bidirectional by default, i.e., trains are allowed to travel in both directions (not at
the same time) in a given section. For instance, trains can travel a linear section
from its up end to its down end, and from its down end to its up end.

¶These terms are used in Denmark. In other countries, the terms NORMAL and REVERSE are used
in place of PLUS and MINUS, respectively.

‖The equipments can be track circuits or axle counters, see [TVA09]. In case track circuits are used for
train detection, sections are sometimes referred as track circuits.
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In the scope of this dissertation, we do not distinguish between point machines
– the mechanical/electrical machines that drive switching movements between
positions of a point – and their associated detection sections. In practice, points
are usually referred by the identifier of their point machines. These identifiers
are different from the names of the associated detection sections. However, for
simplicity, in our work, we refer to the points by the names of the detection
sections that they lie on.

(c) Marker boards. Along each linear section, up to two marker boards (one for each
direction) can be installed. A marker board can only be seen in one direction and
is used as reference location (e.g., for the start and end of routes) for trains going
in that direction. For example, in Figure 2.2, marker board mb13 is installed along
section t12 for travel direction up.

Virtual Signals. As mentioned in Section 2.3, contrary to legacy systems, there are
no physical signals in ETCS Level 2, but interlocking systems have a virtual signal
associated with each marker board. Virtual signals play a similar role as physical
signals in legacy systems: a virtual signal can be OPEN or CLOSED, respectively,
allowing or disallowing traffic to pass the associated marker board. However,
trains (more precisely train drivers) do not see the virtual signals, as opposed to
physical signals. Instead, the aspect of virtual signals (OPEN or CLOSED) are
communicated from the RBC to the onboard computer in the train via a radio
network. For simplicity, the terms virtual signals, signals, and marker boards are used
interchangeably throughout this dissertation.

Interlocking Tables. An interlocking system monitors constantly the status of track-
side elements, and sets them to appropriate states in order to allow trains travelling
safely through the railway network under control. The interlocking system grants a
train the permission to drive on a fraction of the network layout, called a route, at a
time.

A route is a path from a source signal to a destination signal (different from the
source signal) in the given railway network. A route is called an elementary route
if there are no signals that are located between its source signal and its destination
signal, and that are intended for the same direction as the route. A compound route is
a route created by concatenating multiple elementary routes so that permissions to
drive on these elementary routes can be granted to a train at once.

In railway signalling terminology, setting a route denotes the process of allocating
the resources – i.e., sections, points, signals – for the route, and then locking it
exclusively for only one train when the resources are allocated. On the other
hand, releasing a route denotes the process of releasing the resources that have been
allocated for a route after they have been used by a train.

An interlocking table specifies the elementary routes in the given railway network
and the conditions for setting these routes. The specification of a route r and
conditions for setting r include the following information:
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• id(r) – the route’s unique identifier,

• src(r) – the source signal of r,

• dst(r) – the destination signal r,

• path(r) – the list of sections constituting r’s path from src(r) to dst(r),

• overlap(r) – a list of the sections in r’s overlap, i.e., the buffer space after dst(r) that
would be used in case trains overshoot the route’s path,

• points(r) – a map from points** used by r to their required positions,

• signals(r) – a set of protecting signals used for flank or front protection [TVA09]
for the route, i.e., preventing other traffic from intervening with the traffic in the
route, and

• con f licts(r) – a set of conflicting routes which must not be set while r is set.

Table 2.3 shows an interlocking table example for the network shown in Figure 2.2.
Each row of the table corresponds to a route specification. The column names are
identical to the information of the route specifications that these columns contain. As
an example, the first row in Table 2.3 specifies a route with id 1a. The route goes from
the source signal mb10 to the destination signal mb13 via three sections t10, t11 and
t12 on its path, and has no overlap. It requires point t11 (on its path) to be in PLUS
position, and point t13 (outside its path) to be in MINUS position (as a protecting
point). The route has mb11, mb12 and mb20 as protecting signals, and it is in conflict
with routes 1b, 2a, 2b, 3, 4, 5a, 5b, 6b, and 7.

2.5.2 Interlocking Principles

In order to prevent hazardous situations, e.g., collision and derailment of trains,
interlocking systems employ a classic principle:

A route is locked exclusively for use of one train at a time.

This is obtained by following a strict procedure for setting and releasing routes
based on information in their interlocking tables. As an example, let us consider the
following procedure for route 1a specified in Table 2.3:

(0) Initially the route is free.

(1) The route is dispatched either manually by a signalman or automatically by a
traffic management system. As a result, the route is marked as requested.

**These include points in the path and overlap, and points used for flank and front protection. For
detail about flank and front protection, see [TVA09].
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(2) The interlocking system checks the status of different track-side elements in the
system to figure out whether it can start allocating resources for route 1a, e.g.,
sections t10, t11 and t12 must be vacant, and the conflicting routes must not be
allocated or locked. If so, the interlocking commands the protecting signals of
the route – i.e., mb11, mb12 and mb20 – to change to CLOSED, and it commands
points to switch to their required positions according to the route’s specification
– i.e., it commands t11 to switch to PLUS, and t13 to switch to MINUS.

(3) The interlocking system monitors constantly the status of the track-side elements.
When the signals and points have changed their status as commanded in step (2),
the route is locked and its source signal mb10 is commanded to change to OPEN,
allowing a train to enter the route.

(4) When the locked route is occupied – i.e., a train enters it, the source signal mb10 is
set to CLOSED preventing other trains from entering.

(5) The whole route is released (set back to free) when the train has finished using it
– i.e., the train has passed mb13, or the train has come to a standstill in front of
mb13.

(6) A route can be cancelled when it is in step (1), (2), or (3) if the route has not been
occupied by a train. The interlocking will release the resources allocated for the
route and set the route back to free.

2.5.3 Sequential Release

The new Danish interlocking systems employ sequential release (also known as sec-
tional release) [TVA09, chap. 4]. This feature results in two major changes to the
procedure explained above:

(a) With sequential release, the interlocking can release an element in a locked route
as soon as the train has passed it, instead of waiting until the train has finished
using the route and then releasing the route as a whole. Consequently, the
capacity increases.

(b) As a direct result of (a), a route may be allocated – in step (2) of the procedure
in Section 2.5.2 – while some of its conflicting routes are still in use by trains,
instead of waiting for all of its conflicting routes to be released as specified in
the procedure.

The advantage of sequential release is better illustrated by an extension of the
example shown in Figure 2.2 where several linear sections reside between sections
t11 and t12 on route 1a in Table 2.3. For such an extended example, as soon as a train
T1 has left t11 while going along route 1a, t11 can be released. As a consequence,
route 7 (see Table 2.3) can already be allocated by another train T2 (assuming that other
allocation conditions are fulfilled), while 1a is still used by T1. If sequential release
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had not been employed, route 7 could first have been allocated, when route 1a had
been released (i.e., when T1 had passed mb13, or it had come to a standstill in t12 in
front of mb13).

Note that the term sequential release may be used differently at different op-
erational levels. (1) At a high operational level, sequential release is performed
on compound routes: each single elementary route of a given compound route
is released sequentially. In that sense, sequential release is a route-wise feature.
(2) On the other hand, at a low operational level, sequential release is performed
on elementary routes: each single element of an elementary route is released
sequentially [TVA09, chap. 4]. In this case, sequential release is an element-wise
feature. In the former usage of the term, sequential release is merely used for
operational purposes so that part of a long compound route can be released sooner.
Although elementary routes are released one by one, the release of each elementary
route has to follow the release procedure for an elementary route. Therefore, if the
procedures for releasing elementary routes are correct, then sequential release, in its
former sense, does not have any influence on safety of the system. On the other hand,
in the latter usage of the term, sequential release is more granular and it results in
significant changes in the procedures for setting and releasing routes, consequently
safety of the considered systems. Thus it poses extra challenges in proving safety
properties of the systems. Furthermore, the latter offers better train throughput
gain (which is the main purpose of sequential release) than the former, and if the
sequential release is done correctly at the low operational level, it is not needed in the
high operational level. Compound routes become simply operational shortcuts. In
the work documented in this dissertation, we consider sequential release in its latter
usage of the term. In order to include this feature into the models of interlocking
systems, additional variables and transitions are required as described in Chapter 6.
Therefore, the models become more complex with a higher level of concurrency.
Consequently, the verification tasks are more challenging.

2.6 Product Line Characteristics

Railway interlocking systems have the characteristics of product lines [HP15]:

(a) There exist generic applications that are common and reusable for all systems; and

(b) Each individual system is produced by instantiating the generic applications
with the concrete configuration data for that system.

As illustrated in Figure 2.4, for railway interlocking systems, the generic applications
are generic interlocking logic and control algorithms, generic safety and functional
properties that must be satisfied by a system. These generic applications are
derived from railway signalling rules and know-how. The configuration data for
an individual interlocking system is the concrete network layout under control and
the corresponding interlocking table of the given interlocking. Each individual
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interlocking system is constructed by instantiating the generic applications with the
concrete configuration data for that interlocking system.

GENERIC APPLICATIONS
Interlocking Logics
Safety Properties
Test Objectives

INDIVIDUAL SYSTEM

CONFIGURATION DATA
Network Layout
Interlocking Table

Figure 2.4: Illustration of the product line characteristics of interlocking systems

2.7 Formal Methods

Software and hardware systems play more and more important roles in our daily
lives. As a result, they are growing in their functionalities and complexity. An error
in such systems may cause catastrophic loss of money, time, or even human lives. A
grand challenge in software engineering is to enable the development of systems that
operate reliably despite the complexity. A way to address this grand challenge is to
use formal methods. This section presents a brief introduction to formal methods.

Formal methods employ “mathematically based languages, techniques, and tools
for specifying and verifying” software or hardware systems [CW96]. Formal meth-
ods are the mathematical foundation for software and hardware development. By
building a mathematically rigorous model of complex systems, it is possible to
verify thoroughly the properties of the systems. Formal methods are involved in
different phases of software development life-cycle such as specification, verification,
or implementation [CW96; Col15; Hax10].

(1) Formal Specification. Formal specification is the process of describing rigor-
ously a system and its desired properties using one or more formal languages.
Formal languages have a fixed grammar with mathematically defined syntax
and semantics. Formal specification is basically the process of converting the
understanding of a system in informal forms such as contractual documentation
in natural languages into mathematical forms. Writing precisely down a formal
description of the system is two-fold beneficial [CW96]. First, it provides a
greater understanding of the considered system. The specification process
allows uncovering flaws, ambiguities, inconsistencies, and incompleteness in the
design. Second, the process results in an artefact that can be formally analysed,
and serves as an unambiguous communication device between different parties
involving in the development process.
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(2) Formal Verification. Formal methods differ from conventional methods by empha-
sizing heavily on provability and correctness [Col15]. The formal specification
of a system is basically a set of theorems about that system, thus it is possible
to reason about them and prove that they are correct. However, it shall be em-
phasised that formal methods cannot guarantee that software is perfect [Hal90].
Formal methods cannot fix bad assumptions in the design. However, they can
identify the errors and mistakes in reasoning and do so efficiently. Two most
well-established approaches in formal verification are theorem proving [Duf91;
Fit96] and model checking [CGP00; BK08]. The former is the process of finding
a deduction proof from the description of a system to its desired properties
expressed in a given formal system, which defines a set of axioms and inferences
rules. The latter is dedicated to state-based systems and relies on building a finite
model of a system and then explore exhaustively the state space of the model to
prove the desired properties. The former is less automated because it requires
guidance from human. On the other hand, the latter can be fully automated, but
has a major challenge of the state explosion problem – the problem of exponential
growth of the state space with the size of the considered system. One promising
direction is to combine model checking and theorem proving, taking advantages
of both approaches in formal verification [CW96].

(3) Formal Implementation. Once a model of a system is specified and verified,
the system can be formally implemented by converting the specification into
executable code. Executable code can be ensured to conform to the specification
by object code verification, e.g., see [HPK11], using a verified compiler, e.g.,
CompCert†† [Ler09] or [CO84], and verified hardware, or using other runtime
verification techniques, e.g., see [LS09; Bar+04; Hav15].

Although formal methods research has been progressing since the sixties, they
have been mainly used in critical application domains such as aviation, power, or
transportation industries. One of the many reasons for such limited applicability
is the misconception about formal methods pointed out in [Hal90; BH95; Col15].
Nevertheless, formal methods have gained more and more attention from the
community. It has been shown that even applying formal methods correctly,
even in the scope of a fraction of the development cycle, would greatly improve
the understanding and quality of the resulting product [CW96; Woo+09]. There-
fore, formal methods are strongly recommended by many industrial standards for
safety/mission-critical hardware/software systems in aerospace, aviation, defence,
railway, or finance domains. For example, in the railway domain, CENELEC
50128:2011 standard [CEN12] strongly recommends the use of formal methods in
development and verification of systems with the highest safety requirement (SIL4).

††http://compcert.inria.fr/

http://compcert.inria.fr/
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2.8 Model Checking

Model checking is a well-established technique [CGP00; BK08] to verify that a system
conforms to the specification of its intended behaviours. This is done by exploring
the state space in an exhaustive, efficient, and highly automatic manner. However,
the state space grows exponentially in the number of system components, which is
referred to as the state explosion problem. Although there has been lot of advancement
in efficient techniques for storing and exploring state space, the state explosion
problem remains still a primary obstacle preventing model checking from being
applied to complex systems in industrial applications.

Bounded Model Checking (BMC) remedies the state explosion problem by investi-
gating model properties within the vicinity of a state, exploring only those states
that are reachable by means of a bounded number of transition steps. Reachability
is decided using satisfiability solving, hence exploring the whole state space is
avoided [Bie+99a]. Theoretically, BMC can verify global properties – properties that
hold in all reachable states of a system, e.g., invariants described in Section 2.11.1
– if the transition relation is unrolled for a sufficient number of steps, known
as the recurrence diameter of the given transition system [Bie+99a; Bie+06]. In
practice, the recurrence diameter of a given transition system is often too large,
resulting in exhaustion of memory or unacceptable verification time, because the
worst case complexity of the satisfiability solving grows exponentially in the number
of unrolling steps. An alternative technique to verify global properties using BMC is
to combine it with inductive reasoning, resulting in a technique called k-induction
as explained in Section 2.11.2. Although it is not always feasible in practice to
verify properties with BMC, it is getting more and more attention from research and
industries for its excellent ability in finding bugs and automated test case generation.

2.9 Model-based Testing

Testing is a way to check the correctness of a system implementation by experimenting
with it [Tre99]. The system implementation is exercised in a controlled environment.
Based on the observed behaviours, a verdict about the correctness is concluded. In
the work presented in this dissertation, we concentrate on conformance testing – i.e.,
testing to show the system implementation conforms to some specifications of the
intended behaviours of the system. It is well-known that testing is theoretically
not complete, as described by Dijkstra’s famous statement [BR70]: “Testing shows the
presence, not the absence of bugs”. Nevertheless, testing is a dominant and well-adopted
technique in the industry for verification and validation of software systems. Testing
is a mandatory activity in the development process of safety-critical software systems,
e.g., see [CEN12].
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2.9.1 Formal Verification and Testing
The relation between formal methods with testing is summarised in by Tretmans
in [Tre99]:

(1) “formal methods and testing are a perfect couple”;

(2) “testing and formal verification are both necessary”;

(3) “a formal verified specification is a good starting point for testing”;

(4) “formal testing is a good starting point for introducing formal methods in
software development”.

With regard to verification and validation, testing and formal verification are com-
plementary to each other [Con+07; Tre99; Rus+04]. Although formal verification
on a system has been performed on a model of a given system, testing is necessary
to ensure that the system behaves correctly on the given hardware. Due to many
problems such as unexpected delays, different interfaces, or limited memory space
and other resources, an already verified software system may behave incorrectly on
certain hardware. Additionally, the cost and efforts on testing would be reduced
significantly if formal verification has been performed.

2.9.2 Testing Terminology
Testing activities are structured into test suites. A test suite consists of a sequence
of test cases. A test case is a specification fragment covering a test requirement. A
test requirement specifies expected behaviours of a system implementation, referred
as a System Under Test (SUT) in testing terminology. The following information is
associated with a test case:

(1) specification of inputs that stimulate the SUT so that it exhibits the behaviours
under investigation;

(2) specification of expected behaviours of the SUT by means of outputs in response
to the provided inputs; and

(3) references to related requirements that are tested by this inputs.

In testing of reactive systems, inputs usually consist of input traces. An input trace
is a finite sequence of input vectors. An input vector is a value assignment for the
input interfaces of the SUT. Each input vector stimulates the SUT at a certain time
of the test execution. One or more test cases are executed by a test procedure. The
outcome of the execution of a test case on a given SUT is called test result. A test
procedure uses a test oracle to check a test result against the corresponding expected
behaviours and produces a test verdict such as passed, failed, or inconclusive. The
relation between test requirements, test cases, test procedures, and test results is
traceability data. Figure 2.5 illustrates the relation between different terms in testing
terminology.
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Figure 2.5: Testing terminology illustration

2.9.3 Model-based Testing
Model-based Testing (MBT) is an application of model-based design paradigm into
testing. In MBT, there exists a test model specifying the correct behaviours of the
given SUT. Once a test model in a suitable formalism – e.g., an input/output state
transition system as described in Section 2.11 – such that desired requirements can be
expressed by properties in a suitable logic – e.g., Linear Temporal Logic (LTL) [CGP00;
BK08] – most of the remaining elements in MBT approach can be automatically
generated [Bro+05; Pel13; FWA09]:

(a) Requirements can be identified automatically by exploring the test model or
provided manually.

(b) Test cases can be automatically generated.

(c) Test oracles can be automatically generated from the test model.

(d) Test procedures can be automated created and executed.

(e) Traceability data can be automatically derived during above processes.

Due to its great potential of being rigorous and automated, MBT is getting adopted
more and more widely in the industry, especially for safety/mission-critical systems.
Furthermore, research in MBT is also very active. How to create a good test model,
how to efficiently identify test requirements and generate test cases are among the
questions needed to be answer [Bro+05; Pel13; FWA09].

2.10 Domain-specific Languages

Domain-specific Languages (DSLs) are languages that are tailored to a particular domain,
in contrast to General-purpose Languages (GPLs), that are applicable across domains
and do not have specialised features for a particular domain. Many DSLs have been
in use for years: BNF language for describing grammars [Knu64], DOT language for
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describing graphs [Ell+01], R language for statistical computing and graphics [Tea00],
regular expressions for pattern matching and text manipulation, or Cascading Style
Sheets (CSS)‡‡ just to name a few. DSLs are also widely used in domains other
than computing: railway interlocking systems development, e.g., see [HP00; Mew10;
Jam14], or material flow analysis modelling in waste management [ZB14].

A primary difference between DSLs and GPLs is the tradeoff between expres-
siveness and generality. Expressiveness here should be understood as domain-wise
expressiveness, i.e., the ease to express various artefacts in a particular domain using
the constructs defined by a language. Whereas generality means the ability to use
the constructs defined by a language across different domains. While GPLs strive
for generality, DSLs aim at expressiveness. A common feature of DSLs is that they
incorporate the domain knowledge, i.e., concepts and notations, into the languages.
Consequently, DSLs can express more efficiently the artefacts in their respective
domains. Obviously, these artefacts can also be expressed by a GPL, but a domain-
specific description offers certain advantages [MHS05].

(a) Readability. Having domain concepts and notations incorporated in the language
makes a DSL description simpler and easier to understand, especially for users
that are domain experts but are not familiar with software development. DSL
descriptions can serve as a communication device between software engineers
and their clients from the respective domain.

(b) Reduce errors. DSL restrictive constructs prevent certain erroneous descriptions
from being made. Furthermore, as DSL descriptions are more readable, they are
less prone to mistakes, especially when the descriptions become complex.

(c) Productivity. DSLs make the process of mapping domain knowledge to a descrip-
tion in the language straightforward. Consequently, this boosts the productivity
in specification process, as it might be awkward and time-consuming to find an
appropriate description in a GPL for a concept or notation in a given domain.

(d) Reusability. DSLs are developed with reusability in mind. The concepts and
notations incorporated in a DSL can be reused for many applications in that
particular domain.

(e) Efficient analysis and verification. DSLs offer the possibilities for more efficient
and automated analysis, verification, optimisation, parallelization, and transfor-
mation. DSL restrictive constructs make it easier and more efficient to perform
analyses and verification on DSL descriptions than on GPL descriptions.

On the other hand, DSLs have also drawbacks: they require a lot of development
efforts, and the problems that they can express are limited. The problems that can
be expressed by a DSL are restricted to its predefined constructs. Therefore, if an
application in the domain requires extra constructs, the DSL has to be extended.

‡‡http://www.w3.org/style/css

http://www.w3.org/style/css
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Furthermore, contrary to GPLs, DSLs need to be developed for each domain of
interest. The development process requires convergence of the knowledge of both
language development and the respective domain. As the use of DSLs becomes more
common, methodologies, frameworks, and tools for creating DSLs are developed.
For a survey on when and how to create a DSL, see [MHS05]. Many GPLs nowadays
have support for developing DSLs such as Ruby, Scala, or F#, just to name a few.

2.11 Mathematical Preliminaries

This section explains some mathematical preliminaries that are used in this disserta-
tion, in particular Kripke structures, the k-induction scheme for proving invariants
in a Kripke structure, and input/output state transitions systems [CGP00; BK08;
Bro+05; Pel13].

Kripke structures are used to specify behavioural models of interlocking systems
in our method, while k-induction scheme is used for verification of safety properties
as explained in Chapter 6. Input/output state transitions systems are used to
formalise test models in Chapter 7.

2.11.1 Kripke Structures

A Kripke structure K ∈ K, where K is the domain of Kripke structures, is a five-tuple
(S, I0,R,L,AP)with state space S, a set of initial states I0 ⊆ S, a total transition relation
R ⊆ S × S, and labelling function L : S → P(AP), where AP is a set of atomic
propositions and P(AP) is the power set ofAP. The labelling function Lmaps a state
s to the set L(s) of atomic propositions that hold in s [CGP00; BK08].

Two states s and s′ are said to be consecutive in K, if there is a transition from s to s′,
i.e., (s, s′) ∈ R. A path in K is a finite or infinite sequence of consecutive states. A state
s′ is said to be reachable from another state s in K, if there exists a finite path s . . . s′
starting in s and ending in s′. A state s ∈ S is said to be reachable if it is reachable from
an initial state s0 ∈ I0. The reachable states of K is the set of all reachable states.

In the context of this dissertation, the states of a Kripke structure are represented
by valuation functions s : V→ D over finite sets V = {v0, . . . , vn} of variables, where
each variable vi ∈ V has an associated finite domain Dvi . The range of a state s is
D =

∪
v∈VDv. The whole state space S is the set of all valuation functions s : V→ D

for which s(v) ∈ Dv for all v ∈ V. The equality relation (=) between states is defined
by the equality of mathematical functions as follows: two states s and s′ are equal –
denoted by s = s′ – iff every variable v ∈ V is evaluated to the same value in s and s′,
i.e.,

(s = s′) ≡
(∧
v∈V

s(v) = s′(v)
)

(2.1)
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For a proposition ϕ over free variables inV, we use ϕ(s) to denote the proposition
obtained by replacing every occurrence of v ∈ V in ϕ by the value s(v). A proposition
ϕ over free variables in V is said to hold in a state s ∈ S, denoted as s |= ϕ, iff ϕ(s)
holds. An invariant in K is a proposition that holds in all reachable states of K.

With the above definition, the set of initial states I0 can be represented in
propositional form as a proposition I over free variables in V such that

I0 = {s0 ∈ S | I(s0)} (2.2)

The transition relation R ⊆ S× S can also be represented in propositional form as a
proposition Φ over free variables in V∪V′ such that

R = {(s, s′) ∈ S× S | Φ(s, s′)} (2.3)

where V′ = {v′ | v ∈ V} is a duplicate of V used to representing the next state, and
Φ(s, s′) is the proposition Φ with every occurrence of v ∈ V replaced by the value
s(v), and every occurrence of v′ ∈ V′ replaced by the value s′(v).

A finite path sn.sn+1 . . . sn+k−1 of length k through the model K, starting in an
arbitrary state sn (may or may not be reachable), is identified by a solution to the
satisfiability of the following proposition.

π(sn, . . . , sn+k−1) ≡
k−1∧
i=1

Φ(sn+i−1, sn+i) (2.4)

An acyclic path of length k is a finite path sn.sn+1 . . . sn+k−1 in which there does
not exist a pair of states in the path that are equal. Such a path is characterized by a
solution to the satisfiability of the following proposition.

π=(sn, . . . , sn+k−1) ≡ π(sn, . . . , sn+k−1) ∧
∧

n≤i<j≤n+k−1

(si ̸= sj) (2.5)

2.11.2 k-Induction

As explained in Section 2.8, although BMC can be used to verify global properties, it
is often not feasible in practice due to many transition steps need to be unrolled to
reach the recurrence diameter. To remedy this obstacle in verifying global properties,
k-induction – a technique that combines BMC and inductive reasoning – is used.

A Complete k-Induction Scheme. In order to prove a proposition ϕ is an invariant
in a Kripke structure K, a complete k-induction scheme [SSS00; MRS03] based on
acyclic paths can be applied. The scheme consists of the following two steps.
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(1) Base Step: prove that ϕ holds in every state of every acyclic path s0.s1 . . . sk−1 of
length k > 0, starting from every initial state s0 ∈ I0, i.e., the following holds,
where⇒ is logical implication.

(I(s0) ∧ π=(s0, . . . , sk−1))⇒
k−1∧
i=0

ϕ(si) (2.6)

(2) Induction Step: prove that if ϕ holds in every state of an acyclic path sn.sn+1 . . . sn+k−1
of length k > 0, starting from an arbitrary state sn, then ϕ will also hold in every
(k+ 1)th state sn+k. In other words, the following holds(

π=(sn, . . . , sn+k) ∧
k−1∧
i=0

ϕ(sn+i)
)
⇒ ϕ(sn+k) (2.7)

Transformation to Bounded Model Checking Problems. Both base step and in-
duction step can be transformed to bounded model checking problems of finding
witnesses for the violations. Violations of the base step are identified by the negation
of Formula 2.6 as shown in the following.

I(s0) ∧ π=(s0, . . . , sk−1) ∧ ¬
k−1∧
i=0

ϕ(si) (2.8)

A solution, if found, for Formula 2.8 identifies an execution of the system in which
ϕ does not hold in at least one state within the vicinity of k transition steps from
the initial state s0. Likewise, violations of the induction step are identified by the
negation of Formula 2.7 as shown in the following.

π=(sn, . . . , sn+k) ∧
k−1∧
i=0

ϕ(sn+i) ∧ ¬ϕ(sn+k) (2.9)

A solution, if found, for Formula 2.9 shows an execution of length (k+ 1) of the
system where ϕ holds for the first k states, but not in the last one. If no violation is
found for the base step or induction step, then ϕ is an invariant in K.

Strengthening Invariants. As pointed out in [MRS03], when ϕ is not strong enough
to be inductive, counter-examples are found for the induction case. If ϕ is indeed
an invariant in K, then these counter-examples are spurious, i.e., they start from an
unreachable state and do not correspond to any actual run of the considered system.
In order to make ϕ inductive, it is strengthened with an extra invariant ψ, i.e., one
should prove ϕ∧ψ instead ϕ. ψ is called the strengthening invariant, which eliminates
the spurious counter-examples.
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2.11.3 Input/Output State Transition Systems
Kripke structures are used to model closed systems, in the sense that for every
interface, both communication parties (readers and writers) are parts of the model.
Consequently, there are no explicit notions of input or output: the whole system
evolves according to the transition relation. However, in hardware/software inte-
gration testing, the SUT is stimulated by a test engine simulating the operational
environment of the SUT and observing the SUT’s reaction to the stimulations. There-
fore, input/output state transition system semantics are employed in formalising test
models. Input/output state transition system semantics is related to Kripke structure
semantics but streamlined for testing purposes [Tre08; Tre96b; Pel13; HP15; Tre11;
Tre96a] as explained in the following.

A State Transition System (STS) is a triple TS = (S, I0,R) with state space S, a set
of initial states I0 ⊆ S, and transition relation R ⊆ S× S. For testing purposes, we
need to stimulate the SUT via its certain input interfaces, and observe its reaction via
its output interfaces. Therefore, we focus on STSs possessing the notion of variable
valuations, input, and output. Additionally, the SUT may have some internal state
variables that can not be observed during black-box testing. This focused class of
STSs are referred as input/output state transition systems.

An Input/Output State Transition System (IOSTS) [Tre96b; HP15; Tre08] TS ∈ T S ,
where T S is the domain of IOSTSs, is an STS where states s ∈ S are valuation
functions s : V → D as introduced in Section 2.11.1 for Kripke structures, except
that the set of variables representing the state space can be partitioned into three
disjoint sets of input variables I = {x1, . . . , xt}, output variables O = {y1, . . . , yq},
and (internal) model variables M = {m1, . . . ,mp}, that is

V = I∪M∪O (2.10)

Furthermore, as in Kripke structures described in Section 2.11.1, the initial states I0
and the transition relation R can also be presented in the propositional forms by a
proposition I and Φ, respectively. Paths in an IOSTS are defined in the same way as
in Equation 2.4 and Equation 2.5 for paths in a Kripke structure.

The restriction of a state s to variables from a set U ⊆ V, denoted by s |U, is a
function that has domain U and coincides with s on this domain. An IOSTS can be
naturally extended to a Kripke structure by defining a set of atomic propositions AP
as a subset of

A(V) = {p | p is an atomic proposition with free variables in V} (2.11)

The labelling function L is then specified as a function mapping from a state s ∈ S to
L(s) as specified in the following.

L(s) = {p ∈ AP | p(s)} (2.12)

Since safety-critical systems are highly recommended to be deterministic, thus we
only consider deterministic IOSTSs. An IOSTS is called deterministic if identical input
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sequences lead to identical output sequences, i.e., for every pair of paths – similar to
the paths in a Kripke structure defined in Section 2.11.1 – with equal length s0.s1 . . . sn
and s0.s′1 . . . s′n, the following holds [HP15].

(s0 |I).(s1 |I) . . . (sn |I) = (s0 |I).(s′1 |I) . . . (s′n |I)⇒
(s0 |O).(s1 |O) . . . (sn |O) = (s0 |O).(s′1 |O) . . . (s′n |O)

(2.13)

Two states of an IOSTS are called I/O-equivalent if applying the same sequence of
inputs to them results in the same sequence of outputs. Two IOSTSs are I/O-equivalent
if their initial states are [HP15; Tre96b; Tre08].

Let DI denotes the Cartesian product of the domain of input variables, i.e., DI =
Dx1 × . . .×Dxt ; DM and DO are defined analogously. Using IOSTS semantics, a test
case can be characterized by an input sequence ι ∈ D∗I and a corresponding output
sequence ρ ∈ D∗O of the same length as ι specifying the expected outputs when
applying ι to the initial state.
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This chapter gives an overview of the main contribution of this dissertation: a holistic
method – in other words, a recipe – for development, validation and verification of
safety-critical railway control systems that have product line characteristics. First, the
motivation is presented in Section 3.1. The elements of the method – the ingredients
of the recipe – are given in Section 3.2, and Section 3.4 describes the development,
verification, and validation work flow. The application of the proposed method to
railway interlocking systems are presented in Section 3.7.

3.1 Motivation

As in other domains, software and hardware systems in the railway domain are
growing in their complexity and criticality. It follows naturally that formal methods
are strongly recommended by CENELEC 50128:2011 standard for railway appli-
cations with highest safety integrity level (SIL4). However, for many reasons,
formal methods have not been widely employed in the industry. One among these
reasons is that railway signalling engineers are not familiar with formal methods.
Therefore, there is a need for a user-friendly interface to formal methods for domain
engineers. Domain-specific approaches address this need by encapsulating the use
of formal methods with familiar concepts and notions of the considered domain.
Thus, in this dissertation, we propose a method that is a combination of domain-
specific approaches and formal methods. Such combination would give a better
understanding of the domain and better development and verification results.
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3.2 Ingredients

In this dissertation we propose a method for efficient Verification and Validation
(V&V) of safety-critical systems with the product line characteristics described in
Section 2.6. The method is based on of the following elements.

(a) A domain-specific language for specifying configuration data.

(b) A domain-specific language for specifying generic applications (behavioural models,
properties*, test objectives) that is built based on the DSL for configuration data.

(c) A DSL specification editor and static checker for configuration data.

(d) A DSL specification editor and static checker for generic applications.

(e) A model generator that takes a DSL specification of a generic behavioural model
and a wellformed DSL specification of concrete configuration data as input, and
produces a concrete behavioural model as output.

(f) A property generator that takes a DSL specification of generic properties and
a wellformed DSL specification of concrete configuration data as input, and
produces concrete properties as output.

(g) A test generator that takes a DSL specification of generic test objectives and
a wellformed DSL specification of configuration data as input, and produces
concrete test objectives as output.

(h) A bounded model checker that can perform k-induction.

(i) An MBT framework that supports automated test generation and execution.

3.3 Why Two Domain-specific Languages?

It is a novelty in our method to have two domain-specific languages (a) and (b) as
explained in the following.

Domain-specific approach has been well-adopted to encapsulate the use of formal
methods in formal development and verification of railway interlocking systems, e.g.,
see [JR14; Hax14; Mew10; Cao+11; Jam14]. In these works, there exists a single DSL
which is mainly used for specifying the configuration data. Generic applications
are specified in a GPL in which the configuration data is represented, showing how
configuration data is manipulated and transformed into underlying formal models.
There are few drawbacks with this approach:

*These include generic safety properties and generic strengthening invariants used for k-induction
scheme described in Section 2.11.2
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• Generic application specifications contain extra technical details due to the use of
GPL constructs. Thus, they are not so readable and not easy to understand for
domain engineers.

• Generic application specifications may be error-prone, as it is difficult for domain
engineers to review the specifications.

• Generic applications are often difficult to change as changing them requires
sufficient technical understanding.

To address these drawbacks, in our method, a DSL is dedicated for specifying generic
applications besides a DSL for specifying configuration data. Having two domain-
specific languages offers the following advantages:

• Readability. DSL descriptions of generic applications are more readable and easy
for domain expert to understand as the tedious technical details are stripped out
thanks to the dedicated DSL.

• Reduce errors. It is easier for domain engineers to review generic applications
specifications.

• Ease to use/change. Domain engineers can change the generic applications with ease
as the constructs are intuitive and familiar.

• Different levels of abstraction. The two DSLs offer two different levels of abstraction
for different groups of users. While the DSL (a) is suitable for engineers from
the customer side, e.g., Banedanmark, the DSL (b) is suitable for engineers from
the supplier side, e.g., Thales. The customer-side engineers can focus on the
configuration of each individual application, while it is assured that the generic
component is the same across these individual applications. Specifications in these
two DSLs can serve as unambiguous communication devices between customer-
side engineers and supplier-side engineers.

3.4 Verification and Validation Flow

This section describes how the proposed method coordinates the ingredients in
Section 3.2 in an efficient work flow for verification and validation of safety-critical
systems with product line characteristics. The V&V flow consists of the following
steps, as illustrated in Figure 3.1.

First, for a product line, the generic applications are created and validated by the
following steps.

(1) A DSL specification of a generic behavioural model, generic properties, and
generic test objectives are created in the language (b) using the specification editor
described in (d).
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(2) The static checker in (b) verifies that the created generic behavioural model,
generic properties, and generic test objectives are statically wellformed according
to the static semantics of the language (b).

Then, for each individual system in the above product line:

(3) A DSL specification of configuration data is created in the language (a) using the
specification editor described in (c).

(4) The static checker in (c) verifies that the created configuration data is statically
wellformed according to the static semantics of the language (a).

(5) Based on the dynamic semantics of the DSLs, the model generator (e) instantiates
the generic model with the configuration data, resulting in a model instance.

(6) Similarly, the property generator (f) instantiates the generic properties (safety
properties and strengthening invariants) with the given configuration data, re-
sulting in concrete safety properties and strengthening invariants.

(7) The model instance generated in step (5) is then checked against the concrete
properties using the combination of BMC and inductive reasoning supported
by the bounded model checker (h). If the generated model does not satisfy
the properties, counter-examples will be generated. The counter-examples are
represented in the DSL level for debugging purposes.

(8) If the model instance generated in step (5) satisfies all the concrete properties,
then the test generator (g) instantiates the generic test objectives with the given
configuration data, resulting in concrete test objectives.

(9) The model instance generated in step (5) is used as the test model to generate a test
suite for the concrete test objectives. The generated test suite can automatically be
executed in the MBT framework (i) during integration testing. The test results are
summarised into test reports that can be used as evidence for safety certification.

3.5 Remarks on Development Models

One may ask where software development comes into the diagram shown in Fig-
ure 3.1. The answer to this question varies depending on the organizational struc-
ture. A preferred organizational structure for SIL4 systems according to CENELEC
50128:2011 standards is shown in Figure 3.2. As can be seen, software development
(performed by RQM, DES, IMP) and software V&V (performed by INT, TST, VER,
VAL) are performed by different teams. Therefore, there are two possible scenarios:
the same model is used for both development and V&V, or different models are used.
In the former scenario, the software implementation may be derived (manually or
automatically) from the verified behavioural model after step (7) in the flow described
in Section 3.4. While in the latter scenario, both models are derived from the same



36 3 Method Overview

set of signalling rules and requirements, and the flow in Section 3.4 can be used for
independent V&V activities.

EN 50128:2011 - 18 - 
 

 

Figure 2 – Illustration of the preferred organisational structure 

NOTE Figure 2 is only illustrative for the preferred organisational structure. 
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Figure 3.2: Preferred organizational structure for development of SIL3 & SIL4
systems according to CENELEC 50128:2011 [CEN12]

3.6 4-step Verification and Validation

With the V&V flow in Section 3.4, the verification and validation of an individual
system are performed in the following 4-step approach.

VV-1 Generic Application Validation: The wellformedness of the generic applications
is validated by the static checker in step (2).

VV-2 Configuration Data Validation: The wellformedness of the given configuration
data is validated by the static checker in step (4).

VV-3 Model Verification: The safety properties are verified in step (7).

VV-4 Integration Testing: The conformance of the implementation of the system to
the test model is checked in step (9).

This 4-step V&V approach allow revealing errors in the generic applications, the
configuration data, the model instance, the concrete properties, or the concrete test
objectives as early as possible in the development life-cycle. Consequently, this
reduces the development cost. Additionally, these steps would allow isolating the
errors, if there is any, hence making it easier for debugging.

3.7 Application to the Danish Interlocking Systems

For the case of the forthcoming Danish interlocking systems, the following V&V
environment has been developed, following the recipe described in Section 3.2 and
Section 3.4.
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Ingredients. The ingredients for developing the Danish interlocking systems are
shown in Figure 3.3. The ingredients here are suffixed with the numbering of their
corresponding ingredients described in Section 3.2. For example, DK:a corresponds
to (a) in Section 3.2. The ingredients are elaborated in the following.

DK:a Interlocking Configuration Language (ICL) – a DSL for specifying interlocking
configuration data. Chapter 4 explains in detail the abstract syntax and
semantics of ICL.

DK:b Interlocking Dynamic Language (IDL) – a DSL for specifying generic interlock-
ing applications (behavioural models, safety properties, and test objectives).
The syntax and semantics of IDL are elaborated in Chapter 5.

DK:c A specification editor and static checker for ICL. A graphical specification editor
has been implemented by a master’s student as an Eclipse† plug-in [Fol15].
The static semantics of ICL is presented in Chapter 4.

DK:d A specification editor and static checker for IDL. IDL has a textual concrete syntax
which can be edited using any text editor. Due to the limited time frame, the
static checker for IDL has not been fully implemented yet. At the current
stage, only syntax and some sanity checks are performed. The sanity checks
are done on-the-fly during generation of concrete behavioural model, safety
properties, and test objectives as explained in the subsequent steps in this
work flow.

DK:e A model generator that takes a wellformed generic interlocking model in IDL
and wellformed interlocking configuration data in ICL as input, and produces
a concrete interlocking model in the form of a Kripke structure as output. The
generation is based on the semantics of ICL and IDL as described in Chapter 4
and Chapter 5.

DK:f A property generator that takes generic safety properties specified in IDL and
wellformed interlocking configuration data as input, and produces concrete
safety properties in the form of invariants in the Kripke structure generated
in step DK:e. The generation is based on the semantics of ICL and IDL as
described in Chapter 4 and Chapter 5.

DK:g A test generator that takes generic test objectives specified in IDL and well-
formed interlocking configuration data in ICL as input, and produces con-
crete test objectives. The generation is based on the semantics of ICL and IDL
as described in Chapter 4 and Chapter 5.

DK:h RT-Tester: an MBT framework and a bounded model checker that can perform
k-induction [Pel13; Ver15]. RT-Tester has been selected because (1) it is
an integrated model-based testing and BMC tool, and (2) its Satisfiability

†https://eclipse.org



38 3 Method Overview

Modulo Theories (SMT) solver also supports floating point arithmetic. The
first property is crucial for us, because our objective is to complement the
model verification with HW/SW integration tests. The second capability is
vital, because we also plan to extend the model by real-time aspects, such as
train velocity and braking curves.

DK:i RT-Tester is also chosen as the MBT framework.

V&V Flow. The V&V flow as described in Section 3.4 when adapted to the Danish
interlocking systems results in the flow depicted in Figure 3.3. The steps are suffixed
with the numbering of their corresponding steps in Section 3.4. For example,
step DK:3 corresponds to step (3) in Section 3.4. The steps are explained in the
following.

First, for a product line of the Danish interlocking systems, the generic applica-
tions are created and validated by the following steps.

DK:1 The specification of a generic behavioural model, safety properties, and test
objectives of the Danish interlocking systems in IDL are created. Chapter 6
describes the model and safety properties in detail, while the generic test
objectives are presented in Chapter 7.

DK:2 The generic model, safety properties, and test objectives are syntactically
checked during parsing. They are further checked on-the-fly during the
generation process described in steps DK:5 to DK:8.

Then, for each individual interlocking system:

DK:3 The specification of interlocking configuration data – consisting of a network
layout and its corresponding interlocking table – in ICL is created. The
specification is given in an eXtensible Markup Language (XML) representa-
tion [VHP14a]. Alternatively, the specification can be created in a graphical
editor implemented by Foldager as an Eclipse plug-in in his master’s thesis
[Fol15]. As an option the user may not provide an interlocking table, but
instead have an interlocking table created automatically from the network
layout by an Interlocking Table Generator (ITG) [VHP14a].

DK:4 The static checker verifies whether the configuration data is statically well-
formed according to the static semantics of ICL.

DK:5 The model generator instantiates the generic model created in step DK:1 with
the well-formed configuration data created in step DK:3. This results in a
model instance in the form of a Kripke structure.

DK:6 Similarly, the property generator instantiates the generic safety properties.
This results in concrete safety properties expressed as state invariants in the
Kripke structure generated in step DK:5.
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DK:7 The model instance generated in step DK:5 is then checked against the
concrete properties generated in step DK:6 using a combination of BMC
and inductive reasoning in RT-Tester. The bounded model checker in RT-
Tester uses the SONOLAR SMT solver [PVL11] to compute counter-examples
showing the violations of the base step or induction step of k-induction. If
the model instance does not satisfy the properties, counter-examples will be
generated. An interface for visualizing the counter-examples at the DSL level
is integrated into the editor in Eclipse. Depending on whether the bugs are
in the configuration data or the generic model, one shall go back to step DK:3
or step DK:1, respectively, to fix the issues and start the process over. The
verification strategy is presented in Chapter 6.

DK:8 If the generated model satisfies all safety properties in step DK:7, the test
generator instantiates the generic test objectives with the configuration data,
resulting in the concrete test objectives for the corresponding system.

DK:9 The model instance in step DK:5 is used as test model for generating a test
suite for the concrete test objectives generated in step DK:8 using the RT-Tester
framework. This test suite can then be used for integration testing. Chapter 7
explains the generation in detail.

3.8 Prototype Implementation

Table 3.4 lists the specification and implementation of a prototype of the associated
toolchain of the method. The first column describes the name of the components,
while the second column describes the technologies used for implementing that
component. The last column describes the status of the components. A status of
New means that the component has been developed as part of this PhD project. A
status of Reused denotes that the component already existed (made by others), and
was reused in this PhD project. A status of Extend denotes that the component has
been developed as part of this PhD project by extending an existing framework with
new features. A status of MSc. student indicates that the component was developed
by a student whose master’s thesis was co-supervised by the author.
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This chapter presents a formal specification of Interlocking Configuration Language
(ICL) – a DSL for describing the configuration data of interlocking systems that are
compatible with ETCS Level 2. ICL is the ingredient DK:a – the first of the two
DSLs described in Section 3.7. The second language – IDL – for specifying generic
components will be elaborated in the next chapter, Chapter 5. The advantages of
having two different DSLs has been explained in Section 3.3. Additionally, this
chapter describes also an Interlocking Table Generator (ITG) that generates automat-
ically a wellformed interlocking table from a wellformed railway network layout.
This chapter elaborates in more detail the contribution published in [VHP14a] for
which the authors have won the Best Paper award at the 10th Symposium on
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Formal Methods for Automation and Safety in Railway and Automotive Systems –
FORMS/FORMAT 2014, Braunschweig, Germany.

[VHP14a] – Linh H. Vu, Anne E. Haxthausen, and Jan Peleska. “A Domain-
Specific Language for Railway Interlocking Systems”. In: FORMS/FOR-
MAT 2014 - 10th Symposium on Formal Methods for Automation and Safety in
Railway and Automotive Systems. Edited by Eckehard Schnieder and Géza
Tarnai. Best paper award. Institute for Traffic Safety and Automation
Engineering, Technische Universität Braunschweig., 2014, pages 200–209.
isbn: 978-3-9816886-6-5

The abstract syntax of ICL, its static semantics, and the ITG are formally specified
in RSL [Gro92]. The abstract syntax is specified as data types in RSL while the static
semantics and the ITG are specified as predicates over the data types specifying the
abstract syntax. The full specification of ICL in RSL can be found in Appendix A, or
can be obtained at http://l.dtu.dk/3f52.

The remainder of this chapter is organised as follows: the abstract syntax of ICL
is presented in Section 4.1, while Section 4.2 describes the static semantics of ICL.
Section 4.3 and Section 4.4 elaborate in detail how route protection and conflicting
routes, respectively, are automatically checked in the static checker. Section 4.5
presents the ITG. The dynamic semantics is briefly presented in Section 4.6 and
further explained in the next chapter along with the semantics of IDL. Section 4.7
explains how RSL specifications of ICL, its static checker, and the ITG can be executed
directly, and the benefits of that. Section 4.8 and Section 4.9 describe implementation,
and related work, respectively.

4.1 Abstract Syntax

The abstract syntax of the language is formally specified as data types in RSL [Gro92].
An excerpt of paper [VHP14a, Section 2] describing the abstract syntax of ICL is
adopted and presented in the following.

A description of an interlocking system in ICL consists of a railway network layout
and an interlocking table. In the following two subsections, the abstract syntaxes of
network layouts and interlocking tables are specified as types in RSL.

4.1.1 Railway Network Layouts

A railway network layout* is a description of the topology of a railway network. Each
element in a network layout is given a unique id. Therefore, we introduce types for
ids of track sections and marker boards, respectively.

*In the remaining of this dissertation, the terms network, network layout, railway network layout are used
interchangeably.

http://l.dtu.dk/3f52
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SecId = Id,
MbId = Id,
Id = Text

A network layout is represented as a record consisting of three maps – one for
each kind of element – mapping the ids of the elements into geographical information
about these elements.

NetworkLayout ::
linears : SecId →m Linear
points : SecId →m Point
marker_boards : MbId →m MarkerBoard

The information recorded about a linear section is composed of information about
its neighboring sections and its length. A linear section may have up to two neighbors:
one at the down end and at the up end†.

Linear ::
neighbors : LinearEnd →m SecId
length : Distance,

Direction == DOWN | UP,
LinearEnd = Direction,
Distance = Nat

For each point section similar information is recorded. In this case there are up
to three neighboring sections: one at the stem end, one at the plus end, and one at the
minus end. The length of a point section is the distance from the stem tip to the plus
(or minus) tip.

Point ::
neighbors : PointEnd →m SecId
length : Distance,

PointEnd == NB_STEM | NB_PLUS | NB_MINUS

The information recorded about a marker board includes: the id of the section
along which it is placed, the travel direction (up or down) that it is intended for, and
the distance from the location where it is placed to the tip of the section in the marker
board’s travel direction, as illustrated in Figure 4.1.

section(m)
distance(m)

mdir (m)
DOWN UP

Figure 4.1: A marker board m and its associated geographical information.

†In Denmark up and down denote the directions in which the distance from a certain reference location
is increasing and decreasing, respectively.
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MarkerBoard ::
section : SecId
dir : Direction
distance : Distance

4.1.2 Interlocking Tables
In order to guide trains safely through a railway network, the interlocking system
reserves exclusively a fraction of the network, called a route, for a train at a time.
Contrary to legacy systems, in ETCS Level 2, there are no physically signals (along
the tracks), but virtual signals‡. A virtual signal is associated with a marker board, and
has the same geographical information as the marker board. The aspects of virtual
signals are used to calculate the movement authorities determining how far forward
trains are allowed to move [ERT14]. A route is defined as a path from a source signal
to (another) destination signal. Both signals are in the direction (up or down) of the
route. A route is said to be elementary if there does not exist a signal which is placed
between the source and the destination of the route and which has the same direction
as the route.

An interlocking table specifies the elementary routes in a given network and the
specification for setting these routes. A specification of a route includes: (i) the list of
the sections in the path from the source to the destination, (ii) the list of the sections
used as the overlap, (iii) a map from pointsused by the route to their required positions
(PLUS or MINUS), (iv) a set of protecting signals, and (v) a set of routes that are in conflict
with the route, and therefore must not be set at the same time as the given route.

An interlocking table is naturally represented as a map from the id of each route
into a record containing the specification of the route.
InterlockingTable = RouteId →m Route,
Route ::

source : MbId
dest : MbId
path : SecId∗
overlap : SecId∗
points : SecId →m PointPos
signals : MbId-set
conflicts : RouteId-set,

RouteId = Text,
PointPos == PLUS | MINUS

4.2 Static Semantics

The static semantics of the DSL presented in Section 4.1 are specified by predicates in
RSL. An interlocking configuration data specified in ICL is wellformed if it satisfies

‡The term virtual signal is abbreviated to signal in the remaining of the dissertation.
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all of the following.

I-01 Its network layout is wellformed.

I-02 Its interlocking table is wellformed w.r.t. its network layout.

is_wf : Interlocking → Bool
is_wf( ixl ) ≡

let n = track_layout(ixl ), rt = interlocking_table( ixl ) in
/* I−01) network layout is wellformed */
L.is_wf(n) ∧
/* I−02) interlocking table is wellformed w.r. t . the network */
is_wf_rt( rt , n) end

The conditions to be wellformed for network layouts and interlocking tables are
explained in detail in subsequent subsections.

4.2.1 Railway Network Layouts
A network layout n is wellformed if all of the following requirements are fulfilled.

N-01 All n’s elements – linear sections, points, marker boards – have unique identi-
fiers.

N-02 All linear sections in n are wellformed.

N-03 All points in n are wellformed.

N-04 All marker boards in n are wellformed.

N-05 Orientation is consistent in the network layout. This checks that starting from
any border section, we must always go through linear sections in a consistent
direction (up or down).

N-06 n has to be cycle-free (optional).

N-07 n has to satisfy assumptions about the boundary configuration (optional).
Boundary configuration assumptions are discussed in further detail in subse-
quent paragraphs.

The following predicate in RSL checks if a network layout is wellformed.
is_wf : NetworkLayout→ Bool
is_wf(n) ≡

let ls = linears(n), ps = points(n), ms = marker_boards(n) in
/* N−01) all elements have unique identifiers */
unique_identifiers(n) ∧
/* N−02) all linears are wellformed */
(∀i : SecId • i ∈ ls ⇒ is_wf_l(i, n)) ∧
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/* N−03) all points are wellformed */
(∀i : SecId • i ∈ ps ⇒ is_wf_p(i, n)) ∧
/* N−04) all marker boards are wellformed */
(∀i : MbId • i ∈ ms⇒ is_wf_m(i, n)) ∧
/* N−05) the orientation is consistent */
orientation_is_correct (n) ∧
/* N−06) cycle−free ( optional ) */
no_cycles(n) ∧
/* N−07) boundary configuration assumption */
boundary_configuration(n) end

The wellformedness conditions for each kind of element are described in the
subsequent paragraphs.

Linear Sections. A linear section l is wellformed if it satisfies all of the following
requirements.

L-01 No self-neighbouring, i.e., l is not a neighbour of itself.

L-02 The linear section is not isolated, i.e., it must have at least a neighbour, and has
at most two neighbours and its neighbours have to be distinct.

L-03 All neighbours exist and the neighbouring relationship is mutual, i.e., if t is a
neighbour of l, then l must also be a neighbour of t.

L-04 The section has maximum two marker boards installed along it, one per
direction (up, down), and they must be distinct (this is implied from the
wellformedness of marker boards, cf. M-02).

L-05 The length of the section has to be at least the minimum length as required by
engineering rules [Ban12]. This minimum length is specified by the constant
MIN_SECTION_LENGTH in the RSL specification. This requirement is optional.

is_wf_l : SecId × NetworkLayout ∼→ Bool
is_wf_l( i , n) ≡

let l = get_linear( i , n), nbs = neighbors(l) in
/* L−01) no self−neighboring */
( i ̸∈ rng nbs) ∧
/* L−02) 1 <= no. neighbors <= 2 and distinct */
(card dom nbs ≥ 1) ∧ (card dom nbs = card rng nbs) ∧
/* L−03) all neighbors exist and are mutual neighboring */
(∀j : SecId •

j ∈ rng nbs⇒ s_exists(j , n) ∧ i ∈ get_neighbors(j, n)) ∧
/* L−04) all signals are distinct and no. of signals <= 2 ( i . e .
max. one signal per direction , and they must be distinct ) −> implied
from is_wf_m, thus dont need to check here */
/* L−05) length is greater than minimum */
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(length(l ) > MIN_SECTION_LENGTH) end
pre l_exists ( i , n)

Points. A point section p is wellformed if it satisfies all of the following require-
ments.

P-01 No self-neighbouring, i.e., p is not a neighbour of itself.

P-02 A point must have three neighbours§.

P-03 All neighbours of p are distinct.

P-04 Similarly to linear sections, all neighbours of a point section must exist, and the
neighbouring relationship is mutual.

P-05 The length of the section has to be at least the minimum length as required by
engineering rules [Ban12]. This requirement is optional.

is_wf_p : SecId × NetworkLayout ∼→ Bool
is_wf_p(i, n) ≡

let p = get_point(i, n), nbs = neighbors(p) in
/* P−01) no self−neighboring */
( i ̸∈ rng nbs) ∧
/* P−02) no. neighbors == 3 (no border point ) */
(card dom nbs = 3) ∧
/* P−03) neighbors are distinct */
(card rng nbs = 3) ∧
/* P−04) all neighbors exist and are mutual neighboring */
(∀j : SecId •

j ∈ rng nbs⇒ s_exists(j , n) ∧ i ∈ get_neighbors(j, n)) ∧
/* P−05) length is greater than minimum */
(length(p) > MIN_SECTION_LENGTH) end

pre p_exists( i , n)

Marker Boards. Marker boards can be installed both along linear and point sections.
However, for simplicity, we put a restriction that marker boards can only be installed
along linear sections. A marker board installed along a point section can be converted
to satisfy this restriction by adding an artificial linear section and moving the point
there. A marker board m is wellformed if all of the following hold.

M-01 The section where the marker board installed along exists and is a linear
section.

§For simplicity, we only allow linear sections to be at the border of the network, hence a point section
has always three neighbours. If a point section is at the border, an artificial linear section can be added to
ensure this property
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M-02 There does not exist another marker board that is installed along the same the
section and direction where m is installed.

M-03 The distance from the location wherem is installed to the tip of the section that
m is installed along in the travel direction that m is intended for has to be less
than the length of the section itself.

is_wf_m : MbId × NetworkLayout ∼→ Bool
is_wf_m(i, n) ≡

let m = get_maker_board(i, n), si = section(m), d = dir(m) in
/* M−01) the section exists and is a linear */
l_exists ( si , n) ∧
/* M−02) there does not exist another marker board that is installed
along the same section in the same direction */
¬ (∃j : MbId •

j ∈ marker_boards(n) \ {i} ∧
let

m′ = get_maker_board(j, n), si ′ = section(m′), d′ = dir(m′)
in

si ′ = si ∧ d′ = d
end) ∧

/* M−03) distance is less than the section ’ s length */
let l = get_linear(si , n) in distance(m) < length(l) end end

pre m_exists(i , n)

Boundary Configuration Assumptions. At the border of an interlocking system,
the virtual signals and their associated marker boards are configured as shown in
Figure 4.2. For example, for IXL1, signal mb21 controls the entry movement from
IXL2 to IXL1, while mb12 controls the exiting movement from IXL1 to IXL2. The
roles of mb12 and mb21 are exchanged for IXL2. Signal mb12 is controlled by IXL2,
while mb21 is controlled by IXL1. For borders between an interlocked area and a
non-interlocked area (e.g., a shunting area) the layout is similar, even though there
are more details (e.g., both virtual signals are controlled by the interlocking and
operations by shunting staff is involved as well). For borders between an ETCS
interlocking and an external (non-ETCS) legacy interlocking, the configuration is
more complicated. In our work, we assume that all layout has the configuration as
shown in Figure 4.2 at their boundary sections.

boundary_configuration : NetworkLayout→ Bool
boundary_configuration(n) ≡
let bs = get_boundaries(n) in

(∀i : SecId • i ∈ bs ⇒ boundary_configuration_l(i, n))
end

boundary_configuration_l : SecId × NetworkLayout→ Bool
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mb12

mb21
IXL1 IXL2

Figure 4.2: Configuration of marker boards at the boundary

boundary_configuration_l(i, n) ≡
let l = get_linear( i , n), nbs = neighbors(l), j = hd rng nbs in

l_exists ( j , n) ∧
if UP ∈ nbs
then dom signals(i, n) = {UP} ∧ DOWN ∈ signals(j, n)
else dom signals(i, n) = {DOWN} ∧ UP ∈ signals(j, n)
end

end
pre is_boundary(i, n)

Train movement across an interlocking border is handled transparently w.r.t. the
boundary between two interlockings. Route setting, signalling and route release
are done as within one interlocking, fulfilling the same functionality with a few
simplifications. This is done by means of messages exchanged between the two
interlockings (the protocol is an internal protocol part of the interlocking software).
Such message exchange allows IXL1 to change the aspect of mb12 although mb12 is
not controlled by IXL1, i.e., IXL1 can change the aspect of mb12 by delegating the task
to IXL2. For example, IXL1 can ask IXL2 to set mb12 to CLOSED aspect in order to
protect a route begins from mb21 and goes into IXL1. At the abstract level, we can
assume that IXL1 can control mb12 as it can control mb21 or any other virtual signals
under its control. Other movements e.g., shunting movement is more simplified.

4.2.2 Interlocking Tables
An interlocking table tb is wellformed w.r.t. a network layout n if it satisfies all of the
following.

T-01 Route identifiers are unique and differ from the identifiers of elements in n.

T-02 All route specifications are distinct.

T-03 All route specifications are wellformed.

T-04 A route is not conflicting with itself.

T-05 Conflicting is mutual: if r is in conflict with r′ then r′ is also in conflict with r.
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T-06 All pairs of routes that are physically in conflict must be specified as conflicting
in tb. This check is described in detail in Section 4.4.

is_wf_rt : InterlockingTable × L.NetworkLayout→ Bool
is_wf_rt(tb , n) ≡
/* T−01) routes identifiers are unique (ensure by the map) and differs
from identifiers of elements in network layout */
let

js =
(dom tb) ∩

(dom L.linears(n) ∪ dom L.points(n) ∪
dom L.marker_boards(n))

in
js = {}

end ∧
/* T−02) routes are distinct */
(card dom tb = card rng tb) ∧
/* T−03) all routes are wellformed */
routes_are_wellformed(tb, n) ∧
/* T−04) no self conflicting */
no_self_conflicting (tb) ∧
/* T−05) conflicts are mutual */
conflicts_are_mutual(tb) ∧
/* T−06) conflicting routes information is correct */
conflicts_are_correct (tb , n) pre L.is_wf(n)

Routes. A route r is wellformed w.r.t. a network layout n if the following conditions
hold.

R-01 The source signal and destination signal exist in n and their are intended for
the same travel direction as r’s direction.

R-02 All protecting signals used by r exist in n, and the set of protecting signals does
not contain the source and destination signals.

R-03 All points used by the route exist in n.

R-04 All elements in the route’s path and overlap exist in n.

R-05 All points in the route’s path and overlap must be listed with the same required
positions in the map of required points points(r).

R-06 The route’s path must have minimum length of one (section).

R-07 The safety distance must be sufficient according engineering rules defined
based on safety regulations. The safety distance is the total length of the overlap
plus the distance from the destination signal to the tip of the section along
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which it is installed. In Denmark, the safety distance must be at least 50m
according to [Ban12], otherwise the last section in r’s path is a boundary section.

R-08 The source signal has to be installed in the same direction as r along the section
preceding the first section of r’s path.

R-09 The destination signal has to be installed in the same direction as r along the
last section of r’s path.

R-10 The route has to be an elementary route, i.e., there are no signals in the same
direction as the route direction in between the source and destination signals.

R-11 The route’s full path, i.e., including path and overlap, must be connected and
acyclic.

R-12 The route must not go through a point via its plus-minus.

R-13 The route must have proper protection to prevent interfering traffic. The
route protection needed for the route is automatically calculated from the
network layout. Then we check if the route protection provided by the route
specification in the interlocking table covers the calculated route protection.
Section 4.3 explains the route protection calculation and coverage check in
detail.

is_wf_r : Route × L.NetworkLayout→ Bool
is_wf_r(r , n) ≡
/* R−01) source and destination signals exist and agree on their
direction */
signals_exist_and_agree(r, n) ∧
/* R−02) protecting signals exist , do not contain source and destination
signals */
protecting_signals_exist (r , n) ∧
/* R−03) all points exist */
points_exist (r , n) ∧
/* R−04) all elements in the path and overlap exist */
elems_in_path_and_ovs_exist(r, n) ∧
/* R−05−−12) conditions on the path*/
route_path_cnd(r, n) ∧
/* R−13) the route has proper protection */
has_proper_protection(r, n) pre L.is_wf(n)

4.3 Automatic Checking of Route Protection

This section describes how the route protection for a route can automatically be
calculated from the network layout. Afterwards, it explains how the check for
condition R-13 in Section 4.2.2 is automatically performed. The check is formally
specified in RSL function has_proper_protection in Appendix A.
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4.3.1 Preliminaries

This section introduces briefly route protection and some preliminary concepts
which are used in subsequent sections to explain the route protection calculation
and checking process.

Route Protection. The purpose of route protection is to prevent interfering traffic
from entering the route. The interfering traffic would collide with the traffic in the
route, or derail due to a point is required to be in different positions by the interfering
traffic and the traffic in the route.

There are two kinds of protection: flank protection and front protection [TVA09].
Flank protection prevent traffic from entering on the side of the route, while front
protection prevent the incoming traffic from entering the route. The protection can
be done using protecting signals and/or protecting points. In the former, protecting
signals are set to CLOSED aspect, disallowing trains from entering the route. In the
latter, protecting points are switched to a position that diverts traffic away from the
route.

Figure 4.3 shows an example of flank protection using protecting points. The
point t20 is switched to PLUS (straight) position, diverting traffic away from the route
r. Figure 4.4 shows an example where flank protection for the route r is provided by

mb11

t10 t11 t12

mb20

t20 t21

r mb13

Figure 4.3: Flank protection by protecting point

the signal mb20 by setting mb20 to CLOSED aspect.
Figure 4.5 and Figure 4.6 show examples where front protection for route r is

provided by a protecting point t12 or a protecting signal mb12, respectively.

Protection Transfer. Protection can be transferred from a protecting point to a
protecting signal for operational reasons [TVA09]. Let us take an example in
Figure 4.7 to illustrate protection transfer.

Figure 4.7 shows how protection is transferred from protecting point t20 to a
protecting signal mb20. In order to prevent traffic from t21 and t31 from interfering
with traffic in r1, t20 is required to PLUS (straight) position to divert the interfering
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t10 t11

mb11

mb10

t12

t20

mb20

mb13r

Figure 4.4: Flank protection by protecting signal

t11

mb10 mb11

t10

r
t12

Figure 4.5: Front protection by protecting point

t12

mb12

t11

mb10 mb11

t10

r

Figure 4.6: Front protection by protecting signal

traffic away. Similarly, t20 is required to be in MINUS (siding) position to divert
interfering traffic away from route r2. Although t20 is the closest protection available
for r1 and r2 in this case, there are many drawbacks in using t20 as protecting point:

(a) Due to different required position for t20, r1 and r2 are in conflict (cf. Section 4.4).
Therefore, they cannot be set at the same time, even though that is clearly
possible as seen in Figure 4.7.

(b) If the majority of traffic passes through r1 and r2, i.e., two tracks on the sides,
and little traffic goes through the middle track (t20, t21), then the point t20 will
constantly be switched from one position to another without actually having
traffic passing through it. This results in extra maintenance for t20 and delay in
setting r1 and r2.
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In order to overcome these drawbacks, protection for r1 and r2 is transferred to the
further protecting signal mb20. Consequently, both r1 and r2 can be set at the same
time, and no constant switching of t20 is needed.

mb11

t10 t11 t12

mb13

mb20

t20 t21

t32
mb31

t30 t31

r1

r2 mb32

t33

mb30

Figure 4.7: Protection transfer illustration

4.3.2 Protection Suites

A protection suite is a set of protecting signals and a map from protecting points to
their required positions.

ProtectionSuite ::
signals : MbId-set
points : SecId →m PointPos

For a given route r, the following function returns the associated protection suite.

protection : Route→ ProtectionSuite
protection(r) ≡

mk_ProtectionSuite(signals(r), points(r) \ elems path(r))

We defined the following operations and relations on protection suites.

(1) Covered by: A protection suite sa is said to be covered by another protection suite
sb, denoted as sa ⊆ sb, if

(a) sa’s protecting signals are in the set of sb’s protecting signals, and
(b) all the protecting points in sa are also in sb, and they are required to be in the

same positions in both sa and sb.
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⊆ : ProtectionSuite × ProtectionSuite→ Bool
sa ⊆ sb ≡

signals(sa) ⊆ signals(sb) ∧
let psa = points(sa), psb = points(sb) in
(∀i : SecId • i ∈ psa⇒ i ∈ psb ∧ psb(i) = psa(i))

end

(2) Conflicting: Two protection suites sa and sb are said to be conflicting, denoted as
sa # sb, if there exists a point p that is in both sa and sb, and sa and sb require p to
be in different positions.
# : ProtectionSuite × ProtectionSuite→ Bool
sa # sb ≡

let psa = points(sa), psb = points(sb), cs = dom psa ∩ dom psb in
(∃p : SecId • p ∈ cs ∧ psa(p) ̸= psb(p))

end

(3) Union: The union of two protection suites sa and sb, denoted as sa ∪ sb, is a
protection suite that contains the protecting signals and protecting points from
both sa and sb. Note that it is a precondition that sa and sb are not conflicting, i.e.,
¬ (sa # sb).
union : ProtectionSuite × ProtectionSuite→ ProtectionSuite
sa ∪ sb ≡

let
sigs = signals(sa) ∪ signals(sb),
psa = points(sa),
psb = points(sb),
cs = dom psa ∩ dom psb,
ps =

(psa \ cs) ∪
[ i 7→ psa(i) | i : SecId • i ∈ psa ∧ i ̸∈ cs ] ∪
[ i 7→ psb(i) | i : SecId • i ∈ psb ∧ i ̸∈ cs ]

in
mk_ProtectionSuite(sigs, ps)

end
pre ¬ (sa # sb)

(4) Subtraction: The subtraction of a protection suite sa by a protection suite sb,
denoted as sa \ sb, is specified as in the following.
\ : ProtectionSuite × ProtectionSuite→ ProtectionSuite
sa \ sb ≡

let
sigs = signals(sa) \ signals(sb),
psa = points(sa),
psb = points(sb),
ps =
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[ i 7→ psa(i) |
i : SecId • i ∈ psa ∧ ( i ̸∈ psb ∨ psa(i) ̸= psb(i)) ]

in
mk_ProtectionSuite(sigs, ps)

end

Basically, sa \ sb returns a new protection suite that comprises the protecting
signals in sa but not in sb, and points in sa that are not in sb, or are required to
be in different positions than the ones required by sb. The subtraction is used to
calculate an alternative protection suite in which protecting points are replaced
by protecting signals.

4.3.3 Protection Calculation
Algorithm 1 shows the pseudo-code for the algorithm to find a protection suite that
protects a section i from the traffic coming from a neighbouring section j in a network
layout n. There are two cases:

(1) j is a linear section: if j has a signal m in the direction toward i, then a protection
suite that has m as a protecting signal, and no protecting points is returned.
Otherwise, j cannot provide protection for i, hence we continue looking for
further protection, i.e., the protection for j from the section k ̸= iwhich is another
neighbour of j. If we reach the border of the network before we find a protection
suite, then an empty protection suite is returned.

(2) j is a point section: if i is plus (minus) neighbour of j, then a protecting suite
that has no protecting signals and [j 7→ MINUS] ([j 7→ PLUS]) as a protecting
point is returned. On the other hand, if i is the stem neighbour of j, then j cannot
provide protection for i, hence we continue looking for further protection, i.e.,
the protection for j from both j’s plus and minus neighbours. If these protection
suites are found, the union of them will be returned as a protection suite for i.

The algorithm is formally specified in RSL by the function find_protection .

4.3.4 Protection Transfer Calculation
Algorithm 2 shows how protection transfer is calculated. Basically, for a given
protecting point p of a route r, the algorithm calculates a protection suite s that protect
p from traffic that is not coming from r. Since p is a protecting point of r, p can only
be connected to r via its plus or minus end. Therefore, if p is connected to r via its
plus (minus) end, then s is a protection suite protecting p from traffic from its stem
and minus (plus) ends. If s is not empty and contains only protecting signals and
no protecting points, then these signals can alternatively be used in the place of p
to protect r. On the other hand, if s is empty or contains protecting points, then no
protection transfer is possible for p. The algorithm is formally specified in RSL by the
function find_replacing_signals .
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Algorithm 1 Finding a protection suite for i to prevent traffic coming from j
1: function find_protection(i, j, n)
2: if j is a linear section then
3: if j has a signal m in the direction toward i then
4: return ({m}, []) ▷ m as a protecting signal
5: else if j is not a boundary section then
6: return find_protection(j, k, n) where k ∈ neighbors(j,n) ∧ k ̸= i
7: else ▷ j is a boundary section
8: return ({}, []) ▷ an empty protecting suite
9: end if

10: else ▷ j is a point
11: if i = plus(j,n) then
12: return ({}, [j 7→ MINUS]) ▷ j as a protecting point
13: else if i = minus(j,n) then
14: return ({}, [j 7→ PLUS]) ▷ j as a protecting point
15: else ▷ i = stem(j, n)
16: find_protection(j, plus(j,n), n) ∪
17: find_protection(j, minus(j, n), n) ▷ union two protection suites
18: end if
19: end if
20: end function

Algorithm 2 Calculate protection transfer for a point p
1: function find_replacing_signals(p, r,n)
2: ps← find_protection(p, stem(p,n), n)
3: if j is connected to r via plus(p, n) then
4: os← find_protection(p, minus(p, n), n)
5: else ▷ j is connected to r via minus(p, n)
6: os← find_protection(p, plus(p, n), n)
7: end if
8: if ps † os then ▷ two protection suites are conflicting
9: return {} ▷ transfer is not possible

10: end if
11: s← ps∪ os ▷ union two protection suites
12: if points(s) = [] ∧ signals(s) ̸= {} then
13: return signals(s)
14: else
15: return {} ▷ transfer is not possible
16: end if
17: end function
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4.3.5 Route Protection Check
A given route r is protected properly by its protection suite specified in the interlock-
ing table if all of the following hold.

PC-01 All the points in the full path of r, including its path and overlap, have flank
protection. We do not need flank protection for linear sections as no traffic
can enter the route from the side at a linear section.

PC-02 The last section of the full path of r has front protection to protect them from
incoming traffic.

PC-03 All the signals installed along the sections in the full path of r in the opposite
direction of r have to be in r’s set of protecting signals.

It is trivial to check PC-03. The check for PC-01 and PC-02 are performed by the
Algorithm 3. Let us assume that the section that needs to be protected is i, then the
main steps of the algorithm are listed in the following.

(1) The protection suite sr = protection(r) is calculated from the specification of r
in the interlocking table.

(2) A preliminary protection suite s for i is calculated from the network layout using
Algorithm 1.

(3) If s is found, and s ⊆ sr then i is properly protected by the specification of r in the
interlocking table.

(4) If there exists a protecting signal in s that is not in sr, then i is not protected
properly by the specification of r in the interlocking table.

(5) An alternative protecting suite s′ is obtained by replacing the points that are
in s but are not in sr by their corresponding protecting signals as described in
Algorithm 4. If s′ ⊆ sr, then i is properly protected by the specification of r in the
interlocking table. Otherwise, i is not protected properly by the specification of r
in the interlocking table. The check is finished.

4.4 Automatic Checking of Conflicting Routes

This section explains how condition T-06 in Section 4.2.2 can automatically be
performed. The check is formally specified in RSL function conflicts_are_correct
in Appendix A. The following rules are used to determine whether two routes are in
conflict from the network layout and compared with the route specifications.

CR-01 If two routes share one or more detection sections in their paths or overlap
then they are in conflict.
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Algorithm 3 Check if i is properly protected from traffic coming from j by r’s
specification

1: function has_proper_protection(r, i, j,n)
2: sr ← protection(r)
3: s← find_protection(i, j,n)
4: if s ⊆ sr then ▷ s is covered by sr
5: return true
6: end if
7: d← (s \ sr) ▷ subtraction s by sr
8: if d = empty∨ signals(d) ̸= {} then
9: return false

10: end if
11: s′ = find_alt(s, points(d), r,n)) ▷ find an alternative suite s′
12: return s′ ̸= empty∧ s′ ⊆ sr
13: end function

Algorithm 4 Find an alternative protection suite for s by replacing the points in ps
with their transfer protecting signals

1: function find_alt(s, ps, r,n)
2: ps′ ← points(s) \ ps ▷ remove ps from s
3: sigs′ ← signals(s)
4: for p ∈ ps do
5: sigs← find_replacing_signals(p, r, n)
6: if sigs = {} then ▷ p cannot be transferred
7: return empty
8: else
9: sigs′ ← sigs′ ∪ sigs

10: end if
11: end for
12: return (sigs, ps′) ▷ return the alternative protection suite
13: end function

CR-02 An exception to CR-01: two routes r1, r2 are not in conflict if all of the
following hold.

• r1 and r2 are two concatenated routes, i.e., the destination signal of r1 is the
source signal of r2, or the source signal of r1 is the destination signal of r2,
as shown in Figure 4.8. In such cases, r2 is referred as a next route of r1,
while r1 is referred as a previous route of r2.

• r1 and r2 do not share any detection section in their paths¶.

CR-03 If two routes share a point, they are in conflict, with the following exception.
¶Usually, concatenated routes do not share any detection in their paths, unless two routes form a cycle

in the network.
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mb01r1

t01 t02 t03

mb02
r

t04

r2

Figure 4.8: Concatenated routes: r1 and r2 are a previous route and a next route of r,
respectively

mb01

mb11r1

r2

Figure 4.9: Two opposing routes r1 amd r2 that do not have overlap, and their
destination signals are back-to-back

• If two routes require the shared point to be in the same position, and the
shared point is a protecting point of at least one of the two routes (recall
that the points used by a routes include points in the route’s path, and
protecting points which are outside of the route’s path), then two routes
are not in conflict.

CR-04 If two routes are in opposite directions, and their destination signals are back-
to-back, then we have two cases:

(a) If at least one of the two routes has an overlap, then the routes share at least
a detection section in their paths or overlap. Thus, they are in conflict
according to CR-01.

(b) If both of the two routes have no overlap as depicted in Figure 4.9. In
such case, the distances from the destination signals (e.g., mb10 or mb11
in Figure 4.9) to the joint of two detection sections shall be enough for
the train to stop before the joint of two detection sections when it might
accidentally overrun the destination signal. Therefore, it is not unsafe
to set two routes r1 and r2 together, meaning that r1 and r2 are not in
conflict‖.

‖However, in practice, using both routes at the same time may cause a deadlock situation where
neither of two trains can move forwards, at least one of them have to change direction, or reverse.
Nevertheless, such two routes might be useful in some cases, e.g., in a station in which the track at a long
platform is divided in two sections that can be occupied by two short trains, in order to accommodate
more incoming trains.
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mb01

mb11

r1

r2 r3

mb12

t01 t02 t03

Figure 4.10: Two opposing routes r1 amd r2 whose source signals are back-to-back

CR-05 Two routes are in opposite directions, and their source signals are back-to-
back as two routes r1 and r2 in Figure 4.10. In such cases, allowing them to be
set at the same time will not result in any danger due to the restriction posed
by other rules. Let us consider all possible cases:

(a) If a train is occupying t02 and requesting r2 to be set, then r1 will not be
set, because t02 is not vacant.

(b) If r2 is requested to be set for a train that is on t03 then the train can
approach r2 only if r3 is set. Since r1 and r3 are in conflict, due to CR-01,
they will not be set together. Thus, we have two sub-cases:
• If r3 is set then r1 cannot be set.
• If r1 is set then r3 cannot be set; the train cannot approach r2, hence

there is no danger if r2 and r1 are set together.

Thus, two routes in such situations are not in conflict.

CR-06 Implicit conflicting routes: In practice, two routes may be marked as conflicting
routes due to operational reasons even though they are not really in conflict in
the network track layout, based on the above rules. These routes are referred
as implicitly conflicting routes. Implicitly conflicting routes cannot be calculated
from the network layout.

The conditions for two routes to be in conflict are specified formally in RSL as follows

are_physically_in_conflict : Route × Route × L.NetworkLayout ∼→ Bool
are_physically_in_conflict (r1, r2 , n) ≡

let
path1 = elems path(r1),
path2 = elems path(r2),
ovs1 = elems overlap(r1),
ovs2 = elems overlap(r2),
secs1 = path1 ∪ ovs1,
secs2 = path2 ∪ ovs2,
ps1 = points(r1),
ps2 = points(r2),
protecting_points1 = dom ps1 \ secs1,
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protecting_points2 = dom ps2 \ secs2,
shared_pps =

(protecting_points1 ∩ dom ps2) ∪
(protecting_points2 ∩ dom ps1)

in
/* not consecutive routes , overlapping paths or overlap */
(¬ are_concatenated_routes(r1, r2, n) ∧ secs1 ∩ secs2 ̸= {}) ∨
/* share a point , the shared point is a protecting point for at
least one of the routes and two routes require the points in different
positions */
(∃i : SecId • i ∈ shared_pps ∧ ps1(i) ̸= ps2(i)) ∨
/* entry signal of one route is a protecting
* signal of the other route */
(source(r1) ∈ signals(r2 )) ∨ (source(r2) ∈ signals(r1 ))

end
pre L.is_wf(n) ∧ is_wf_r(r1, n) ∧ is_wf_r(r2, n)

are_concatenated_routes : Route × Route × L.NetworkLayout ∼→ Bool
are_concatenated_routes(r1, r2, n) ≡

source(r1) = dest(r2) ∨ dest(r2) = source(r1)
pre L.is_wf(n) ∧ is_wf_r(r1, n) ∧ is_wf_r(r2, n)

4.5 Interlocking Table Generation

Given a wellformed network layout n, the ITG generates an interlocking table with
all the possible routes that can be derived from the network layout. The generation
is performed in two phases.

ITG-01 We construct a preliminary interlocking table containing all routes with their
closest protection suite, i.e., protection transfer is not considered.

ITG-02 For each route r in the preliminary interlocking table constructed from ITG-
01, we generate all alternative routes by transferring a subset of r’s protecting
points to protecting signals. In the end, we obtain an interlocking table with
all possible routes in the given network layout.

These two phases are explained in detail in Section 4.5.1 and Section 4.5.2, re-
spectively. The generation is formally specified by RSL function mk_table in
Appendix A.

4.5.1 Preliminary Interlocking Table Construction

The basic idea of the algorithm for constructing the preliminary interlocking table
is that for each marker board s in the given network layout n, we construct the
specification of routes starting from s by performing a depth first search starting
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with the first section right after s. At each section i in n that we traverse during
the search, we collect the specification of the route related to that section. The
collecting procedure depends on whether i is a linear section or a point as shown in
Algorithm 5. The subsequent paragraphs explain the collecting procedure for linear
sections and points sections, respectively. Preliminary interlocking construction is
formally specified in RSL function gen_routes in Appendix A.

Algorithm 5 Collect specifications for a route r at a section i
1: function collect_route(i, r,n)
2: if i is a linear section then
3: return collect_route_on_linear(i, r, n)
4: else ▷ i is a point
5: return collect_route_on_point(i, r,n)
6: end if
7: end function

Linear Sections. The collecting procedure on a linear section l is shown in Algo-
rithm 6. If the destination signal of r has not been found, then we add l to the
path, otherwise we add l to the overlap. If l has a signal sig in the same direction
as s and the destination signal of r has not been found, we mark sig as destination
signal. Signals installed along l in the opposite direction of r are added to the
set of r’s protecting signals. If the destination signal of r has been found and the
safety distance is sufficient as specified in Section 4.2, then the route specification is
returned. Otherwise we start a new iteration with the neighbour j of i which is not
in r’s path or overlap.

Points. The collecting procedure on a point p is shown in Algorithm 7. If the
destination signal of r has not been found, then we add p to the path, otherwise we
add p to the overlap. We have the following cases.

(1) p is connected to r’s path by its plus (minus): we add [i 7→ PLUS] ([i 7→ MINUS])
to points(r). Using the procedure described in Section 4.3, we calculate the
protection suite sm (sp) for p from its minus (plus) neighbour, and merge it with
the r’s protection suite. If the destination signal of r has been found, and the
safety distance is sufficient, then we merge the protection suite ss for p from its
stem neighbour (front protection) and return the route specification. Otherwise,
we start a new iteration with the stem neighbour of p.

(2) p is connected to the current route path by its stem: we add [i 7→ PLUS]
([i 7→ MINUS]) to points(r) and merge protection suites sm (sp) and ss for p from
its minus (plus) and stem neighbours, respectively, to r’s protection suite. Then
we start a new iteration with p’s plus (minus) neighbour. Then we return the
concatenated list of the routes returned by these two iterations (one for plus and
one for minus).
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Algorithm 6 Collect specification for a route r at a linear section l
1: function collect_route_on_linear(l, r,n)
2: sig← the signal installed along l in the direction of r
3: osig← the signal installed along l in the opposite direction of r
4: if osig exists then
5: signals(r)← signals(r) ∪ {osig} ▷ add osig as a protecting signal
6: end if
7: if dest(r) found then
8: overlap(r)← overlap(r)⌢ ⟨l⟩
9: else

10: path(r)← path(r)⌢ ⟨l⟩
11: if sig exists then
12: dest(r)← sig
13: end if
14: end if
15: if l is a boundary section then
16: if dest(r) assigned then
17: return ⟨r⟩
18: else
19: return ▷ ignore, no specification found
20: end if
21: else
22: j← l’s neighbour where j ̸∈ path(r) ∪ overlap(r)
23: dist← distance(dest(r),n) + total length of overlap(r) ▷ safety distance
24: if dest(r) assigned and dist is sufficient then
25: s← find_protection(l, j,n) ▷ calculate front protection
26: points(r)← points(r) ∪ points(s)
27: signals(r)← signals(r) ∪ signals(s)
28: return ⟨r⟩
29: else
30: return collect_route(j, r, n) ▷ continue collecting
31: end if
32: end if
33: end function
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4.5.2 Alternative Routes Generation

The procedure for generating alternative routes after obtaining the preliminary
interlocking table from phase ITG-01 is described in Algorithm 8. Alternative routes
generation is formally specified in RSL function mk_alt_routes in Appendix A.
For each route r in the preliminary interlocking table, the following procedure is
performed.

(1) Find the set P0 of r’s protecting points.

(2) For each subset Pi ⊆ P0, i.e., Pi ∈ P(P0), we replace all protecting points in Pi
with their protecting signals sigs. Then we replace Pi with sigs in r’s protection
suite to obtain an alternative route specification.

In the end, we will obtain an interlocking table with all possible routes in the given
network layout.

4.6 Dynamic Semantics

The dynamic semantics of a description in ICL of interlocking configuration data
describes the model of the behaviours in the form of a Kripke structure, a global
property expressed in the form of a proposition that needs to be proved (conjunction
of safety properties), and a number of test objectives for the interlocking system
associated with the given configuration data. The denotational semantic function
of ICL has the following signature.

J−KΣ : Σ ∼→ ∆ ∼→ (K× Prop× TestObj∗)

where

• J−KΣ is the semantic function for descriptions in ICL;

• Σ = Interlocking is the domain of interlocking configuration data in ICL where
Interlocking is defined in Section 4.1;

• ∆ is the domain of generic applications specified in IDL which will be described
in detail in Chapter 5;

• K is the domain of Kripke structures defined in Section 2.11.1; and

• Prop and TestObj are the domains of propositions and test objectives, respectively.
They will be explained further in Chapter 5.

The semantics of interlocking configuration data depends on the chosen generic
applications in ∆. The semantic function J−KΣ is defined in detail in Chapter 5.
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Algorithm 7 Collect specification for a route r at a point p
1: function collect_route_on_point(p, r, n)
2: prev← neighbour of p that is in r
3: if dest(r) found then
4: overlap(r)← overlap(r)⌢ ⟨p⟩
5: else
6: path(r)← path(r)⌢ ⟨p⟩
7: end if
8: dist← distance(dest(r),n) + total length of overlap(r) ▷ safety distance
9: done← dest(r) assigned and dist is sufficient

10: sp ← find_protection(p, plus(p,n),n)
11: sm ← find_protection(p, minus(p, n), n)
12: ss ← find_protection(p, stem(p, n), n)
13: if prev = plus(p,n) then
14: if done then
15: points(r)← points(r) ∪ points(ss) ∪ points(sm) ∪ [p 7→ PLUS]
16: signals(r)← signals(r) ∪ signals(ss) ∪ signals(sm)
17: return ⟨r⟩
18: else
19: points(r)← points(r) ∪ points(sm) ∪ [p 7→ PLUS]
20: signals(r)← signals(r) ∪ signals(sm)
21: return collect_route(stem(p), r, n)
22: end if
23: else if prev = minus(p, n) then
24: if done then
25: points(r)← points(r) ∪ points(ss) ∪ points(sp) ∪ [p 7→ MINUS]
26: signals(r)← signals(r) ∪ signals(ss) ∪ signals(sp)
27: return ⟨r⟩
28: else
29: points(r)← points(r) ∪ points(sp) ∪ [p 7→ MINUS]
30: signals(r)← signals(r) ∪ signals(sp)
31: return collect_route(stem(p), r, n)
32: end if
33: else ▷ prev = stem(p, n)
34: if done then return ⟨r⟩
35: else
36: rp ← r
37: points(rp)← points(rp) ∪ points(sm) ∪ [p 7→ PLUS]
38: signals(rp)← signals(rp) ∪ signals(sm)
39: rm ← r
40: points(rm)← points(rm) ∪ points(sp) ∪ [p 7→ MINUS]
41: signals(rm)← signals(rm) ∪ signals(sp)
42: return collect_route(plus(p, n), rp, n)⌢
43: collect_route(minus(p, n), rm,n)
44: end if
45: end if
46: end function
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Algorithm 8 Make alternative route specifications for a route r
1: function mk_alt_routes(r,n)
2: s← protection(r) ▷ r’s protection suite
3: P0 ← points(r)
4: pool← P(P0) ▷ powerset of points in s
5: rs← ⟨r⟩
6: for Pi ∈ pool do
7: sigs← {}
8: for p ∈ Pi do
9: sigs← sigs∪ find_replacing_signals(p, r,n)

10: end for
11: r′ ← r ▷ replace Pi in r with protecting signals
12: points(r′)← points(r′) \ Pi
13: signals(r′)← signals(r′) ∪ sigs
14: rs← rs⌢ ⟨r′⟩
15: end for
16: return rs
17: end function

4.7 Executable RSL Specifications

The RSL specifications of ICL, its static checker, and the ITG can be executed using
the RAISE rsltc tool [Geo08; Geo02; Geo+95; Geo04]. Executable specifications offer
a number of advantages:

• A specification can be considered an early prototype which can be tested before
implementing. The specification can later serve as the base for implementation.

• The specification is much more readable than the implementation. Therefore, a
mistake in the specification is less likely to be overlooked than in the implementa-
tion.

As an example, it is explained in the following how the ITG can be executed. The
static checker can be executed in a similar way. Let us consider an example of a typical
network with two tracks as shown in Figure 2.2. This network can be specified in RSL
as a value n of type NetworkLayout as shown in the following.

n : NetworkLayout = mk_NetworkLayout(
[”t20” 7→mk_Linear([UP 7→ ”t13”, DOWN 7→ ”t11”], 100),
”b14” 7→mk_Linear([DOWN 7→ ”t14”], 100),
”t14” 7→mk_Linear([UP 7→ ”b14”, DOWN 7→ ”t13”], 100),
”t12” 7→mk_Linear([UP 7→ ”t13”, DOWN 7→ ”t11”], 100),
”t10” 7→mk_Linear([DOWN 7→ ”b10”, UP 7→ ”t11”], 100),
”b10” 7→mk_Linear([UP 7→ ”t10”], 100)],
[”t13” 7→
mk_Point(



70 4 A Domain-specific Language for Interlocking Configuration Data

[NB_MINUS 7→ ”t20”, NB_PLUS 7→ ”t12”, NB_STEM 7→ ”t14”], 100),
”t11” 7→
mk_Point(

[NB_MINUS 7→ ”t20”, NB_PLUS 7→ ”t12”, NB_STEM 7→ ”t10”], 100)],
[”mb21” 7→mk_MarkerBoard(”t20”, UP, 50),
”mb20” 7→mk_MarkerBoard(”t20”, DOWN, 50),
”mb15” 7→mk_MarkerBoard(”b14”, DOWN, 50),
”mb14” 7→mk_MarkerBoard(”t14”, UP, 50),
”mb13” 7→mk_MarkerBoard(”t12”, UP, 50),
”mb12” 7→mk_MarkerBoard(”t12”, DOWN, 50),
”mb11” 7→mk_MarkerBoard(”t10”, DOWN, 50),
”mb10” 7→mk_MarkerBoard(”b10”, UP, 50)])

Executing the RSL term mk_table(n) results in a value of type InterlockingTable
in RSL.

[”01a” 7→mk_Route(”mb11”, ”mb13”, ⟨”t10”, t11”, ”t12”⟩, ⟨⟩,
[”t13” 7→MINUS, ”t11” 7→ PLUS],
{”mb11”, ”mb20”, ”mb12”}, {},
{”01b”, ”02a”, ”02b”, ”03”, ”04”, ”05a”, ”05b”, ”06b”, ”07”}),

... content skipped ... ]

As it can be seen one of the generated routes has id 01a, goes from mb11 to mb13 via
two sections t10,t11,t12, and has no overlap. It requires point t11 (on its path)
to be in PLUS position and point t13 (outside its path) to be in MINUS position (as a
protecting point). The route has also mb11, mb20, mb12 as protecting signals, and is
in conflict with the routes 01b, 02a, 02b, 03, 04, 05a, 05b, 06b, 07.

4.8 Implementation

ICL and the described ITG are implemented as a front-end of RT-Tester [Pel13; Ver15]
for constructing and validating descriptions of networks and interlocking tables.
Interlocking configuration data can be provided in XML format (which can be easily
exported from computer-aided design tools). Errors are reported together with
suggestions how to fix them, e.g., missing protecting signals, points, or conflicting
routes can be suggested to be added to the table. A graphical editor for ICL has been
developed as part of the master’s thesis by Foldager [Fol15].

4.9 Related Work

Applications of formal methods to the railway domain have been investigated by
numerous research groups. The ultimate goal is to produce methods for developing
railway control systems efficiently while ensuring safety. A general overview of the
trends can be found in [Fan14; FFM12; Fer+13; Fan12b].

DSLs for the railway domain have been proved to be efficient for describing
interlocking data for other kinds of interlocking systems [HCD04; Mew10; Hax14;
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JR14]. For example, Railway Control Systems Domain Language (RCSD) [Mew10]
is a domain-specific language for specifying railway control systems. The language
incorporates the domain knowledge into its semantics to validate the wellformedness
of a given specification. Furthermore, Mewes proposed also a generic testing
strategy that can exercise the important aspects of models in RCSD. Another DSL is
proposed in [Jam14] for specifying interlocking configuration data which can then be
translated to formal model in ModalCasl for verification. A more complete domain-
specific framework for development and verification of railway control systems from
the specification in a DSL to model generation and verification, and object code
generation is presented in [Hax14]. Our work goes along the same line, but we have
special focus on interlocking systems which are compatible with ETCS Level 2, e.g.,
we include notions such as marker boards and virtual signals instead of physical
signals.

Several other research groups [Win+06; Win12; BFG05; HPK11; Cao+11; MY09;
Jam+14] have also investigated interlocking systems having interlocking tables as
design specifications. They also translate the interlocking tables into execution/de-
sign models which are then formally verified to satisfy high-level safety require-
ments. In some cases [Cao+11; MY09] that verification step is also used for data
validation. However, inspired by the work in [HPK11], we follow a 4-step approach
for V&V as described in Section 3.6. The second step in this 4-step approach –
configuration data validation – is performed by the static semantics checker (described
in Section 4.2 to Section 4.4 of this chapter) in order to ensure the wellformedness
of the interlocking configuration data that is used for instantiating behavioural
models, safety properties, and test objectives which will be described in Chapter 6
and Chapter 7. Furthermore, in our method, there is a second DSL for specifying
generic applications besides the DSL for specifying configuration data – ICL in the
work presented here – as explained in Section 3.3. This second DSL would increase
the readability, reduce errors, make it easy to change the generic applications, and
provide different levels of abstraction suitable for different user groups. The second
DSL – Interlocking Dynamic Language (IDL) – will be described in detail in Chapter 5.

A few ITGs have been proposed in previous research, e.g., in [MY09; Cao+11], but
they have not been formally specified as our ITG. These ITGs generate tables having
data similar to a subset of our data, also by traversing the given network layout.
However, the ITG in [Cao+11] does not generate any data concerning flank and front
protection. In [MY09], the ITG does not generate the collection of route conflicts and
items for flank and front protection, but instead in a second phase (after the table
generation) they employ model checking to derive these data which are then added
manually. Our ITG is – to our best knowledge – the only ITG that is able provide
completely automated generation of protecting points and signals directly from the
network layout.
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This chapter specifies Interlocking Dynamic Language (IDL) – a DSL for specifying the
generic applications of interlocking systems including generic behavioural models,
safety properties, and test objectives. IDL is the ingredient DK:b – the second of
the two DSLs described in Section 3.7. The first language – ICL for specifying
configuration data – has been described in the previous chapter, Chapter 4. The
advantages of having two different DSLs has been explained in Section 3.3.

Generic behavioural models, safety properties, and test objectives specified in IDL
can be instantiated with configuration data specified in ICL presented in Chapter 4,
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resulting in a concrete behavioural model of the interlocking system configured by
the given configuration data, and its associated concrete safety properties and test
objectives.

Unlike the specification of ICL in Chapter 4, in this chapter, the concrete syntax
of IDL is presented instead of its abstract syntax as the concrete syntax of IDL
is used in the next chapters, Chapter 6 and Chapter 7, to describe the generic
behavioural model, generic safety properties, and generic test objectives for the case
study of the forthcoming Danish interlocking systems. Furthermore, for simplicity,
the denotational semantics of IDL in a RSL-like notation is given.

The remainder of the chapter is organised as follows. The syntax of IDL is
described in Section 5.1. Section 5.2 presents the denotational semantics of IDL,
which is then used to elaborate further the dynamic semantics of ICL that was briefly
described in Section 4.6. Section 5.3 and Section 5.4 describe the implementation of
IDL in our toolchain and some related work, respectively.

5.1 Syntax

This section describes the BNF grammar for the concrete syntax of IDL, and explains
informally the meaning of different constructs in IDL. The syntax of IDL is inspired by
a subset of RSL-SAL [PG07] and its extension in [Han15]. For simplicity, the following
conventions are employed in the BNF grammar.

⟨term-list⟩ A term suffixed with -list denotes a sequence of ⟨term⟩ separated by a
comma, i.e.,

⟨term-list⟩ ::= ⟨term-list⟩ , ⟨term⟩
| ⟨term⟩

⟨term-string⟩ A term suffixed with -string denotes a sequence of ⟨term⟩ separated by
white-spaces, i.e.,

⟨term-string⟩ ::= ⟨term-string⟩ ⟨term⟩
| ⟨term⟩

⟨[term]⟩ A term enclosed by squared brackets denotes an optional appearance of
⟨term⟩, i.e.,

⟨[term]⟩ ::= ⟨term⟩ | ⟨empty⟩

⟨empty⟩ ::=

These conventions can be nested, e.g., ⟨[term-string]⟩ denotes an optional appearance
of a sequence of ⟨term⟩ separated by white-spaces.

The full BNF grammar of the concrete syntax of IDL is listed in Appendix B. The
subsequent subsections outline the essence of the language syntax.
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5.1.1 Specification

A specification in IDL describes a generic behavioural model, generic safety prop-
erties, and generic test objectives of a product line of interlocking systems. This
specification when instantiated with configuration data will result in a Kripke
structure modelling the behaviours of the concrete interlocking system, a proposition
expressing the concrete safety properties, and a list of concrete test objectives. This
will be explained in detail in Section 5.2.

A specification in IDL has a name and consists of a sequence of declarations of
different types:

• Encoding declarations

• Initial state declarations

• Module declarations

• Macro declarations

• Transition relation declarations

• Invariant declarations

• Test objective declarations

These different types of declarations will be explained in detail in subsequent
subsections.

⟨specification⟩ ::= kripke ⟨ident⟩ ⟨decl-string⟩ end

⟨decl⟩ ::= ⟨encoding-decl⟩
| ⟨macro-decl⟩
| ⟨initial-decl⟩
| ⟨transrel-decl⟩
| ⟨module-decl⟩
| ⟨invariant-decl⟩
| ⟨test-obj-decl⟩

5.1.2 Encoding Declarations

An encoding declaration contains a list of encodings. An encoding ⟨encoding⟩
describes for an element of a given type (e.g., a section, a signal, or a route) which
variables should be generated to represent the states of the element. The states of each
element of a type ⟨elem-type⟩ are encoded by a number of variables. Each variable
⟨variable⟩ contains the following information:

(a) a symbol ⟨symbol⟩,
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(b) a symbol type ⟨sym-type⟩ of input, local, or output,

(c) a target type ⟨target-type⟩,

(d) a range of its value from ⟨low⟩ to ⟨high⟩, and

(e) an initial value ⟨ival⟩.

Note that ⟨sym-type⟩ is used to tag a variable as an input, local, or output variable, so
that we can consider a behavioural model as an IOSTS defined in Section 2.11 during
test generation. This is explained further in Chapter 7. The ⟨target-type⟩ is bound
to the primitive types supported by RT-Tester. If another bounded model checker
or MBT framework is used, this shall be changed accordingly. Furthermore, ⟨low⟩
and ⟨high⟩ are also RT-Tester-specific: they help the bounded model checker running
more effectively.

⟨encoding-decl⟩ ::= encoding ⟨encoding-list⟩

⟨encoding⟩ ::= ⟨elem-type⟩ :: ⟨variable-list⟩

⟨variable⟩ ::= ⟨symbol⟩→ [ ⟨sym-type⟩ , ⟨target-type⟩ , ⟨ival⟩ , ⟨low⟩ , ⟨high⟩ ]

⟨elem-type⟩ ::= Linear | Point | Section | Signal | Route

⟨sym-type⟩ ::= INPUT | LOCAL | OUTPUT

⟨target-type⟩ ::= ” ⟨primitive-type⟩ ”

⟨primitive-type⟩ ::= int | unsigned int | long | unsigned long | long long
| unsigned long long | float | double | clock

⟨ival⟩ ::= ⟨literal⟩

⟨low⟩ ::= ⟨literal⟩

⟨high⟩ ::= ⟨literal⟩

As an example, the following encoding declaration specifies that a point p in the
configuration data is encoded by the following variables:

• an input variable p.POS that has initial value of 0, and its value range is [0, 2];

• a local variable p.MODE that has initial value of 0, and its value range is [0, 2];

• an output variable p.CMD that has initial value of 0, and its value range is [0, 1];
and
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• three input variables p.S2PM, p.P2S, and p.M2S that have initial value of 0, and
their value range is [0, 7]. These three variables represent the occupancy status of
the point p as explained further in Section 6.2.1.

All these variables have target type of ”unsigned int”.

encoding
Point ::

POS→ [INPUT,”unsigned int”,0,0,2]
MODE→ [LOCAL,”unsigned int”,0,0,2]
CMD→ [OUTPUT,”unsigned int”,0,0,1]
S2PM→ [INPUT,”unsigned int”,0,0,7]
P2S→ [INPUT,”unsigned int”,0,0,7]
M2S→ [INPUT,”unsigned int”,0,0,7]

When a generic application containing this encoding declaration is instantiated
with configuration data, for each point p in the configuration data, six variables
p.POS, p.MODE, p.CMD, p.S2PM, p.P2S, and p.M2S with the specified value do-
mains will be generated in the resulting Kripke structure modelling the interlocking
system associated with the given configuration data.

5.1.3 Macro Declarations

In order to facilitate the specification process, macros can be defined in a macro
declaration. A macro is a shortcut for an expression. A macro has a name and zero
or more parameters. If a macro has no parameters, the parentheses can be omitted
from the macro definition.

⟨macro-decl⟩ ::= macro ⟨macro-list⟩

⟨macro⟩ ::= def ⟨ident⟩ ( ⟨[ident-list]⟩ ) = ⟨expr⟩
| def ⟨ident⟩ = ⟨expr⟩

For example, the macro vacant_point(p) shown in the following defines a shortcut
to an expression denoting whether a point p is vacant, i.e., not occupied by a train,
where p.S2PM, p.P2S, and p.M2S are the variables representing the occupancy
status of a point p as specified by the example encoding in Section 5.1.2.

macro
def vacant_point(p) = (p.S2PM + p.P2S + p.M2S = 0)

5.1.4 Initial State Declarations

An initial state declaration describes the proposition representing the initial states I
of the resulting Kripke structure. In other words, it specifies a list of invariants that
must hold in the initial states. Invariants are explained in detail in Section 5.1.7.
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⟨initial-decl⟩ ::= init ⟨invariant-list⟩

An initial state declaration example is shown in the following. It specifies that in
the initial states, all routes in the given interlocking table have to be in FREE mode.
init
[ init_all_route_are_free ]
(∀r : Route • r .MODE = FREE)

The above declaration, when instantiated with concrete configuration data, for
each route in the configuration data, r will be replaced by the identifier of the route,
resulting in a concrete invariant. The proposition representing initial states is then
the conjunction of these concrete invariants.

Note that the initial state declaration is optional in the specification. If initial state
declarations are not specified, the initial states of the target Kripke structure will
consist of a single state where all the variables are set to their corresponding initial
value as specified in the encoding declarations. On the other hand, if an initial state
declaration is specified, then it will take the precedence, and the initial values in
the encoding declaration will be ignored. If multiple initial state declarations are
specified, the initial states of the target Kripke structure will be represented by the
conjunction of all the propositions.

5.1.5 Transition Relation Declarations
There must be exactly one transition relation declaration in the specification. Other-
wise, an error will be raised. The transition relation declaration, as the name suggests,
describes the global transition relation of the resulting Kripke structure modelling
the behaviours of interlocking systems.

⟨transrel-decl⟩ ::= transrel ⟨transrel⟩

⟨transrel⟩ ::= [ ⟨ident⟩ ] ⟨simple-expr⟩−→ ⟨next-expr⟩
| [ ⟨ident⟩ ]
| [ ⟨ident⟩ ( ⟨[expr-list]⟩ ) ]
| ⟨transrel⟩ [=] ⟨transrel⟩
| ⟨transrel⟩ [>] ⟨transrel⟩
| ( [=] ⟨ident⟩ : ⟨elem-type⟩ • ⟨transrel⟩ )

The transition relation is composed of transitions of different types:

(1) Atomic transitions of the following form
[name] guard −→ update

where name is a unique name to identify the transition, guard is a simple expres-
sion, and update is a next expression. Simple expressions and next expressions
are explained in Section 5.1.9. When guard holds, then the transition can be taken,
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consequently change the states as specified in update. An example of atomic
transition is shown in the following.

[ctrl_nocmd_to_dispatch] (r.CTRL = NOCMD) −→ (r.CTRL′ = DISPATCH)

The above transition means that, when a route r has no pending commands, then
the route can be commanded to be dispatched.
When instantiated with specific configuration data, an atomic transition of the
above form will be transformed into its corresponding propositional form as in
the following.

guard ∧ update ∧ others_unchanged

where others unchanged is a proposition expressing that all variables other than
the ones that are updated in proposition update are unchanged in the next state,
i.e., their values in the next state are the same as their values in the current state.

(2) Module application transitions with or without parameters where module decla-
rations are explained in Section 5.1.6. Some examples of module application
transitions are shown in the following.

[moduleA]
[=]
[moduleB(p1,p2)]

The above module application transitions, when instantiated with a concrete
configuration data, will be replaced by the actual transition relation of the
modules with their actual parameters.

(3) Quantified transitions allow us to specify transitions over a class of elements of a
given type, e.g.,

([=] r : Route • [route_marking] r.MODE = FREE −→ r.MODE′ = MARKED)

The above quantified transition, when instantiated with concrete configuration
data, for each route in the configuration data, r will be replaced by the identifier
of the route, resulting in a concrete transition.

(4) Composition of transitions: transitions can be combined by one of the following
operators.

• Non-deterministic operator [=]: A [=] B means that transition A has the same
priority as transition B.

• Priority operator [>]: A [>] B means that transitionA has a higher priority than
transition B. The priority operator [>] is invented by Hansen in his master’s
thesis [Han15]. The operator has been adopted into IDL.
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If two transitions having different priorities are enabled at the same time, the
one with higher priority should be taken. On the other hand, transitions with
the same priority should be chosen nondeterministically, if they are enabled at
the same time. In propositional forms, if transitions represented by propositions
Φa and Φb have the same priority, their combined behaviour is described by the
proposition Φa ∨ Φb. On the other hand, if the transitions represented by Φa has
higher priority than the ones represented by Φb, then their combined behaviour
is described by Φa ∨ (¬ga ∧Φb), where ga is the condition for at least one of the
transitions represented by Φa to be enabled.

Note that [=] is left-associative, while [>] operator is right-associative, i.e.,

A [=] B [=] C ≡ ((A [=] B) [=] C)

A [>] B [>] C ≡ (A [>] (B [>] C))

5.1.6 Module Declarations

A module specifies the behaviours of a part of the given system such as the system
under consideration or the environment. A module can be parameterised and
instantiated multiple times in the global transition relation. Note that variables
specified in the encoding declaration as described in Section 5.1.2 are shared among
all modules.

⟨module-decl⟩ ::= module ⟨ident⟩ ⟨transrel⟩
| module ⟨ident⟩ ( ⟨[ident-list]⟩ ) ⟨transrel⟩

An excerpt from a module named ET specifying the behaviours of track elements
is shown in the following.

/* =========================
* TRACK ELEMENT TRANSITIONS
* =========================*/

module ET
/* Start switching */
([=] p : Point •
[point_switch_1] p.POS ̸= p.CMD ∧ p.POS ̸= INTER −→ p.POS′ = INTER)
[=]

/* Move in the commanded position */
([=] p : Point • [point_switch_2] p.POS = INTER −→ p.POS′ = p.CMD)
[=]
...
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5.1.7 Invariant Declarations
An invariant declaration describes global properties that need to be proved in the
Kripke structure. In case of the Danish interlocking systems, these properties are
the safety properties and strengthening invariants as described in Chapter 6. An
invariant is expressed by a simple expression, and is uniquely identified with a name.
Simple expressions are explained further in Section 5.1.9.

⟨invariant-decl⟩ ::= invariant ⟨invariant-list⟩

⟨invariant⟩ ::= [ ⟨ident⟩ ] ⟨simple-expr⟩

Some examples of invariants are shown in the following.
invariant
/* *
* ============================
* HIGH−LEVEL SAFETY PROPERTIES
* ============================
*/
[no_head_to_head_collision_linear]
(∀l : Linear • (¬is_boundary_sec(l))⇒ (l.D2U * l.U2D = 0)),

[no_train_follows_another_collision_linear]
(∀l : Linear •
(¬is_boundary_sec(l))⇒
( l .D2U * (1 − (l .D2U & 1)) + l.U2D * (1 − (l .U2D & 1)) = 0)),
...

5.1.8 Test Objective Declarations
A test objective declaration describes a list of test objectives that need to be generated
for a target system. LTL is used for specifying test objectives. The syntax for test
objectives and LTL formulas are presented in the following.

⟨test-obj-decl⟩ ::= test_obj ⟨test-obj-list⟩

⟨test-obj⟩ ::= [ ⟨ident⟩ ] ⟨ltl-formula⟩
| ( [=] ⟨ident⟩ : ⟨elem-type⟩ • ⟨test-obj⟩ )

Test cases can be one of the following types:

(1) Elementary test objectives: an elementary test objective has a unique name, and
is described by an LTL formula over the free variables of the resulting Kripke
structure, e.g.,
[TO_route_marked] F [r1.DSPL = MARKED]
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(2) Quantified test objectives: A quantified test objective specifies a test objective for
a class of elements, i.e., upon being instantiated by a given configuration, a
quantified test objective will result in a number of test objectives, a test objective
for each element of the specified element type, e.g.,

([=] r : Route • [TO_route_in_use] F [r.DSPL = OCCUPIED])

LTL Formulas. LTL formulas are used to specify requirements and test objectives.
State formulas are enclosed in squared brackets. The supported LTL operators are
globally G, next X, finally F, until U, and exists E. Release operator R is not supported.
Logical operator and ∧, or ∨, and implication ⇒ are supported. The bounded
semantics of LTL introduced by Biere et al. in [Bie+99a; Bie+06] is implemented in
IDL. The same semantics is implemented in RT-Tester’s bounded model checker and
MBT framework.

⟨ltl-formula⟩ ::= [ ⟨simple-expr⟩ ]
| G ⟨ltl-formula⟩
| X ⟨ltl-formula⟩
| F ⟨ltl-formula⟩
| ¬ ⟨ltl-formula⟩
| E ⟨ident⟩ : ⟨ltl-formula⟩
| ⟨ltl-formula⟩ U ⟨ltl-formula⟩
| ⟨ltl-formula⟩ ∧ ⟨ltl-formula⟩
| ⟨ltl-formula⟩ ∨ ⟨ltl-formula⟩
| ⟨ltl-formula⟩⇒ ⟨ltl-formula⟩

5.1.9 Expressions

The syntax of an expression in IDL is shown in the following.

⟨expr⟩ ::= ⟨ident⟩
| ⟨literal⟩
| ⟨elem-type⟩
| ⟨symbol-expr⟩
| ⟨uop⟩ ⟨expr⟩
| ⟨expr⟩ ⟨bop⟩ ⟨expr⟩
| ⟨macro-ex-expr⟩
| ⟨domain-expr⟩
| ⟨quantified-expr⟩
| ⟨if-then-else-expr⟩
| ⟨case-expr⟩
| ⟨let-expr⟩
| ⟨index-expr⟩
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There are different types of expressions supported by IDL as explained in the
following.

(a) Identifiers. An identifier can contains any alphanumeric characters and under-
scores. Identifiers must start with a letter or an underscore and are not identical
to any of the reserved keywords. Identifiers can be the identifiers of elements
in interlocking configuration data, quantified variable in quantified expressions,
parameters for macros, or local variables in the assignments of let expressions.

⟨ident⟩ ::= [_a-zA-Z][_a-zA-Z0-9]*

(b) Literals. Literal natural values* can be specified in IDL in decimal, hexadecimal
(prefixed with 0x), or binary (prefixed with 0b).

⟨literal⟩ ::= [0-9]+ | 0b[01]+ | 0x[0-9a-fA-F]+

(c) Type Expressions. A type expression represents the set of identifiers of the
elements of a certain type τ in a given interlocking configuration data. For
instance, type expression Linear represents the set of linear sections in a given
interlocking configuration data.

⟨elem-type⟩ ::= Linear | Point | Section | Signal | Route

(d) Prefix Expressions. Logical negation operator ¬ is supported.

⟨expr⟩ ::= ⟨uop⟩ ⟨expr⟩

⟨uop⟩ ::= ¬

(e) Infix Expressions. The supported infix operators are listed in the following.

• Comparison: ≤, <, >, ≥, =, ̸=
• Logical: and ∧, or ∨, xor ⊕, implication ⇒. Logical expressions are evaluated

lazily.
• Arithmetic: addition +, subtraction −, multiplication ∗, division /, modulo %

• Bit-wise: bitwise and &, bitwise or |, arithmetic bit shift left ≪, arithmetic bit
shift right ≫

Associativity and precedence of these operators are similar to their associativity
and precedence in C/C++.

⟨expr⟩ ::= ⟨expr⟩ ⟨bop⟩ ⟨expr⟩

*In the current version of the language, literals are only non-negative integers. However, they can be
extended to contain floats or other types if needed.
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⟨bop⟩ ::= ≤ | < | > | ≥ | = | ̸=
| ∧ | ∨ | ⊕ | ⇒
| + | − | ∗ | / | %
| & | | | ≪ | ≫

(f) Symbol Access Expressions: A symbol access expression describes a symbol
variable in the resulting Kripke structure. A symbol access expression consists
of three parts:

• the name of an element whose status the variable represents;
• the symbol; and
• the version of the variable. The version of a variable can be either current

(specified by ⟨empty⟩) or next state (specified by ⟨’⟩).

⟨symbol-expr⟩ ::= ⟨expr⟩ . ⟨ident⟩ ⟨version⟩

⟨version⟩ ::= ’ | ⟨empty⟩

For example, r .MODE denotes the variable encoding the mode of the route r in
the current state, while r .MODE′ denotes the variable encoding the mode of the
route r in the next state.

(g) Macro Expansion Expressions: A macro expansion expression describes the appli-
cation of a defined macro on the given parameters. Parentheses can be omitted
if the macro does not have any parameters.

⟨macro-ex-expr⟩ ::= ⟨ident⟩ ( ⟨[expr-list]⟩ )
| ⟨ident⟩

For example, vacant_point(p1) expands the macro example vacant_point(p) in Sec-
tion 5.1.3 for point section p1 by replacing all occurrences of p in the expression
defined by the macro by p1.

(h) Domain Functions and Operators: A number of domain functions and operators
are supported by IDL to facilitate the access of data in the given interlocking
configuration. For example, the domain function down when applied on a linear
section l will return its neighbour in the down end in the given interlocking
configuration data. The meaning of the domain functions and operators are
listed in Section B.3.

⟨domain-expr⟩ ::= ⟨domain-func⟩ ( ⟨expr-list⟩ )
| ⟨domain-uop⟩ ⟨expr⟩
| ⟨expr⟩ ⟨domain-bop⟩ ⟨expr⟩
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⟨domain-func⟩ ::= down | up | down_sig | up_sig
| stem | plus | minus
| dir | track
| src | dst | first | last
| path | overlap | points | signals | conflicts
| prev | next | prevs | nexts | req
| conn_end
| entry | exit

⟨domain-uop⟩ ::= elems | hd | tl | dom | rng | len

⟨domain-bop⟩ ::= ∈ | ∪ | ∩ | \

(i) Quantified Expressions: A quantified expression allows us to reason over a class of
elements such as linears or routes. There are three different types of quantified
expressions: all ∀, exists ∃, and unique ∃!. Their meaning is the same as their
mathematical meaning.

⟨quantified-expr⟩ ::= ( ⟨quan-op⟩ ⟨ident⟩ : ⟨elem-type⟩ • ⟨expr⟩ )

⟨quan-op⟩ ::= ∀ | ∃ | ∃!

(j) If-then-else Expressions: Both the usual if-then-else expressions and their ternary
forms are supported. Note that both then and else branches are required in an
if-then-else expression.

⟨if-then-else-expr⟩ ::= if ⟨expr⟩ then ⟨expr⟩ else ⟨expr⟩ end
| ⟨expr⟩ ? ⟨expr⟩ : ⟨expr⟩

(k) Case Expressions: A case expression specifies different outcomes for different
cases. If the considered expression is evaluated to the same value as a condition,
then the corresponding outcome will be returned and the evaluation stops. If no
cases match, then the default branch denoted by the ⟨wildcard⟩ will be chosen.

⟨case-expr⟩ ::= case ⟨expr⟩ of ⟨case-branch-list⟩ end
| case ⟨expr⟩ of ⟨case-default⟩ end
| case ⟨expr⟩ of ⟨case-branch-list⟩ , ⟨case-default⟩ end

⟨case-branch⟩ ::= ⟨expr⟩→ ⟨expr⟩

⟨case-default⟩ ::= ⟨wildcard⟩→ ⟨expr⟩

⟨wildcard⟩ ::= _

(l) Let Expressions: A let expression allows us to assign some local variables to be
used in an expression.
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⟨let-expr⟩ ::= let ⟨assign-list⟩ in ⟨expr⟩ end

⟨assign⟩ ::= ⟨ident⟩ = ⟨expr⟩

(m) Indexing Expressions: An indexing expression allows us to access items of a list by
indices, or items of a map by keys. The list index can be either a natural number,
or a range of number, while a map index is an object. Lists are 0-indexed, i.e.,
their indices start from 0.

⟨index-expr⟩ ::= ⟨expr⟩ [ ⟨expr⟩ ]
| ⟨expr⟩ [ ⟨expr⟩ : ⟨expr⟩ ]

Simple Expressions vs. Next Expressions. Simple expressions and next expres-
sions have the same syntax, the only difference is that only variables representing
the current state of the Kripke structure, i.e., variables in the set V introduce in
Section 2.11.1, can appear in a simple expression. On the other hand, in a next
expression, both variables presenting current state and next state, i.e., variables in
the set V∪V′, see Section 2.11.1, are allowed.

⟨simple-expr⟩ ::= ⟨expr⟩

⟨next-expr⟩ ::= ⟨expr⟩

5.1.10 Comments
Line comments and block comments in C-like style can be added anywhere in the
specification.

5.2 Semantics

This section describes the formal semantics of specifications in IDL. In other words,
it describes how a specification in IDL can be instantiated with a specification of
interlocking configuration data to produce a concrete behavioural model in the
form of a Kripke structure, concrete safety properties, and concrete test objectives
associated with the behavioural model. The semantics of specifications in IDL is
then used to elaborate further the semantics of specifications of configuration data
in ICL which has been briefly introduced in Section 4.6.

5.2.1 Syntactic and Semantic Domains
We define the following syntactic domains.

• For brevity, Σ is used as an alias for Interlocking, the domain of interlocking
configuration data in ICL as defined in Chapter 4, i.e., Σ = Interlocking.

• ∆ is the domain of specifications in IDL.
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The semantic domains used to describe the semantics of ICL and IDL are listed in the
following.

• N is the domain of non-negative integers (i.e., natural numbers).

• B = {true, false} is the domain of boolean values.

• V is the domain of variables. A variable is a non-empty string of alphanumeric
characters, or underscore, and starts by a letter or an underscore. Each variable
v ∈ V is associated with a finite domain Dv ⊂N.

• K is the domain of Kripke structures defined in Section 2.11.1.

• T S is the domain of IOSTSes defined in Section 2.11.3.

• Prop is the domain of propositions over free variables in V . In other words, Prop
is the set of syntactic objects constructed by the following formation rules where
⟨Prop⟩ stands for any proposition, ⟨lit⟩ stands for a literal value in N, and ⟨var⟩
stands for a variable in V .

⟨Prop⟩ ::= ⟨lit⟩ | ⟨var⟩ | ⟨uop⟩ ⟨Prop⟩ | ⟨Prop⟩ ⟨bop⟩ ⟨Prop⟩

⟨uop⟩ ::= ¬

⟨bop⟩ ::= ≤ | < | > | ≥ | = | ̸=
| ∧ | ∨ | ⊕ | ⇒
| + | − | ∗ | / | %
| & | | | ≪ | ≫

⟨var⟩ ::= [_a-zA-Z][_a-zA-Z0-9]*

⟨lit⟩ ::= [0-9]+ | 0b[01]+ | 0x[0-9a-fA-F]+

Note that the conversion between integral values and boolean values are done
implicitly in Prop as explained in Section 5.2.2. The meaning of prefix operators
⟨uop⟩ and infix operators ⟨bop⟩ are similar to the meaning of the prefix operators
and infix operators in IDL, see Section 5.1.9.

• TestObj is the domain of concrete test objectives. A concrete test objective is
expressed by an LTL formula over propositions in Prop. In other words, TestObj
is the set of syntactic objects constructed by the following formation rules where
⟨TestObj⟩ stands for any test objective, and ⟨Prop⟩ stands for a proposition in Prop
defined above. LTL state formulas are enclosed in squared brackets. G, X, F, E, U,
¬, ∧, ∨, ⇒ are LTL and logical operators as explained in Section 5.1.8.

⟨TestObj⟩ ::= [ ⟨prop⟩ ]
| G ⟨TestObj⟩
| X ⟨TestObj⟩
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| F ⟨TestObj⟩
| ¬ ⟨TestObj⟩
| E ⟨ident⟩ : ⟨TestObj⟩
| ⟨TestObj⟩ U ⟨TestObj⟩
| ⟨TestObj⟩ ∧ ⟨TestObj⟩
| ⟨TestObj⟩ ∨ ⟨TestObj⟩
| ⟨TestObj⟩⇒ ⟨TestObj⟩

• Section = Linear ∪ Point is the domain of detection sections where Linear and
Point are defined in Section 4.1.

• Elem = Section ∪MarkerBoard ∪ Route is the domain of interlocking elements
where markerboard and route are defined in Section 4.1.

• Val is the domain of denotational values of expressions.

Val = Id∪ Id-set∪ Id∗ ∪ (Id →m N) ∪N-set∪N∪ Prop

where S-set is an RSL-like notion denoting the powerset of a set S as explained
in Section 5.2.2. Syntactically, Prop is a superset of Id, so the union absorbs Id.
However, Id is still shown in the above formula for readability.

5.2.2 Auxiliary Functions and Notions
In order to facilitate the specification of the semantics of IDL, we define the following
functions and notions.

(1) S-set is an RSL-like notion denoting the powerset of a set S.

(2) Term replacement: e[t/i] denotes a term (expression/transition relation/test case)
where all the appearances of i in the term e is replaced by the term t.

(3) Conversion between booleans and naturals: The conversion is done implicitly as in
C/C++ in the subsequent subsections by two functions:

• η : B→N converts a boolean value b ∈ B to a natural value η(b)

η(b) ≜
{

1 if b = true
0 otherwise

• β : N→ B converts a natural value n ∈N to a boolean value β(b).

β(n) ≜ n ̸= 0

(4) κ : T S → K is a function that transforms an IOSTS to a Kripke structure. Such
transformation has been explained in Section 2.11.
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(5) written : Prop → V-set is a function that returns the set of variables that are
written to in a proposition ϕ, i.e., their values in the next state are updated in ϕ.

(6) RSL builtin functions and functions that are defined in the specification of ICL
in Chapter 4, when referred in this section, are typed in regular monospace font
face, e.g., hd or down. The following RSL functions are used [Gro92].

• dom returns the domain of a given map.
• rng returns the range of a given map.
• elems returns the set of elements of a given list.
• hd returns the first element of a given list, or a random element from a given

set.
• tl returns the remaining of a given list after removing the first element.
• len returns the length of a given list.
• card returns the cardinality of a given set.

Functions that are defined in the specification of ICL can be found in Chapter 4
and Appendix A.

(7) elems : Σ ∼→ (Id →m Elem) is a function that returns a map from identifiers to the
corresponding interlocking elements.

elems(σ) ≜ linears(N) ∪ points(N) ∪ marker_boards(N) ∪ I

where N = track_layout(σ), and I = interlocking_table(σ). Functions
linears, points, marker_boards, track_layout, interlocking_table are de-
fined in the RSL specification of ICL in Section 4.1.

(8) dom : Σ ∼→ Id-set returns the set of identifiers of all elements in a given
interlocking configuration data σ.

dom(σ) ≜ dom elems(σ)

(9) Membership operator denotes whether an element with id i belongs to a given
interlocking configuration data σ.

∈: Id× Σ→ B

i ∈ σ ≜ i ∈ dom(σ)

(10) Subscript operator returns an element with id i from a given wellformed interlock-
ing data σ. Note that subscript operator is injective because identifiers of elements
in σ are unique as described in the wellformedness conditions of interlocking
configuration data in Chapter 4.

[−] : Σ× Id ∼→ Elem
σ[i] ≜ elems(σ)[i] if i ∈ σ
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(11) Type function: Γ(e) where e ∈ σ returns the element type, e.g., Linear or Point, of
the given element e. For example, Γ(l) where l is a linear section will give Linear.

(12) Restriction: σ |τ where τ is an element type, e.g., Linear or Point, denotes the
set of identifiers of the elements in the given configuration data σ which have
the element type of τ. For example, σ |Linear is the set of identifiers of all linear
sections in σ.

σ |τ ≜ {i | i ∈ dom(σ) ∧ Γ(σ[i]) = τ}

5.2.3 Semantics Overview

IDL Specification Semantics. A specification δ = (Eδ, Iδ,Rδ,Pδ,TCδ) ∈ ∆ with
encoding declaration Eδ, initial declaration Iδ, transition relation Rδ, invariant decla-
ration Pδ, and test case declaration TCδ when instantiated with configuration data
σ ∈ Σ, will result in a corresponding IOSTS TS modelling the behaviours of the
interlocking systems, a safety invariant ϕ, and a list of symbolic test cases TC.

J−K∆ : ∆ ∼→ Σ ∼→ (K× Prop× TestObj∗)JδK∆σ ≜ (κ(TS), ϕ,TC)

where

• κ is the function that transforms an IOSTS to a Kripke structure described in
Section 5.2.2.

• TS = (S, I,R) ∈ T S is an IOSTS with

– the state space S represented by the set of variables V = JEδKVσ;

– the set of initial states I = {s | (JIδKIσ)(s)} if Iδ is specified in δ, otherwise
I = {s0} where s0 is the state in which v = v0 for all variable v ∈ V where v0 is
the initial value of v as specified in the encoding Eδ; and

– the transition relation R = {(s, s′) | (JRδKRσ)(s, s′)}.

• ϕ = JPδKIσ ∈ Prop is a proposition over free variables in V.

• TC = JTCδKT σ ∈ TestObj∗ is the list of symbolic test cases in TS.

The semantic functions J−KV , J−KR, J−KI , and J−KT of encodings, transition
relation, invariants, and test cases, respectively, are explained in detail in the
subsequent subsections.
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ICL Specification Semantics. Then the semantics of a given interlocking configu-
ration data σ corresponding to a given generic model δ is derived as in the following.

JσKΣδ ≜ JδK∆σ (5.1)

Throughout the rest of this chapter, for readability, syntactic objects in IDL are
represented by their corresponding formation rules in BNF from which these objects
are constructed. For example, an if-then-else expression in IDL is represented in the
semantics by its corresponding formation rule as in the following.

if c then t else e end

5.2.4 Encoding Semantics

The semantic function J−KV of encodings allow us to instantiate the encoding decla-
ration Eδ ∈ Enc of a generic specification δ with a given interlocking configuration σ,
resulting in a set of variables V ∈ V-set representing the state space.

J−KV : Enc ∼→ Σ ∼→ V-set

Jτ :: s1 → [t1, v1, i1, l1, h1], . . . , sn → [tn, vn, in, ln, hn]KVσ ≜∪
e∈JτKEσ

{var(e, s1, t1, v1, i1, l1, h1), . . . , var(e, sn, tn, vn, in, ln, hn)}

Je1, . . . , enKVσ ≜ Je1KVσ ∪ · · · ∪ JenKVσ

where var(e, s, t, v, i, l, h) returns a variable of symbol type t, target type v, correspond-
ing to the symbol s of the element e that has the low bound of l and high bound of h
and initial value of i. It can formally be defined as in the following.

var(e, s, t, v, i, l, h) ≜ v ∈ V

where

• v = e⌢ ζ ⌢ s with ζ is a predefined delimiter, e.g., an underscore;

• Dv = {l..h} ⊂N; and

• v0 = i.

5.2.5 Expression Semantics

The semantic function J−KE maps an expression in Expr to its denotation, i.e., a value
in Val, as defined in the following.

J−KE : Expr ∼→ Σ ∼→ Val

The semantics of different types of expressions are described in detail in the
following paragraphs.
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Identifiers.

JvKEσ ≜ v ∈ dom(σ) if v ∈ σ

Literals.

JnKEσ ≜ n ∈N

Type Expressions.

JτKEσ ≜ σ |τ ∈ Id-set

Symbol Access Expressions.

Jo.sym vKEσ ≜ (JoKEσ)⌢ ζ ⌢ sym⌢ v ∈ Prop if JoKEσ ∈ σ

where ζ is the predefined delimiter described in Section 6.2.1.

Prefix Expressions.

Juop eKEσ ≜ uop JeKEσ ∈ Prop if JeKEσ ∈ Prop

Infix Expressions.

Je1 bop e2KEσ ≜ Je1KEσ bop Je2KEσ ∈ Prop if Je1KEσ ∈ Prop and Je2KEσ ∈ Prop

Macro Expansion Expressions.

Jm(e1, . . . , en)KEσ ≜ Jexpr(m)[Je1KEσ/p1, . . . , JenKEσ/pn]KEσ

where expr(m) returns the expression defined by the macro m which has p1, . . . , pn
as formal parameters.

Domain Functions and Operators. The semantics of domain functions and oper-
ators in IDL are given in the following. The functions in IDL are in roman bold
face, e.g., down, while the functions in monospace face, e.g., down, denotes the
corresponding functions defined in the ICL in Chapter 4 or predefined functions in
RSL.

Jelems e1KEσ ≜ elems Je1KEσ ∈ Id-set if Je1KEσ ∈ Id∗Jdom e1KEσ ≜ dom Je1KEσ ∈ Id-set if Je1KEσ ∈ Id →m NJrng e1KEσ ≜ rng Je1KEσ ∈N-set if Je1KEσ ∈ Id →m N
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Jhd e1KEσ ≜ hd Je1KEσ ∈ Id

if Je1KEσ ∈ (N-set∪ Id-set) and card Je1KEσ > 0

or Je1KEσ ∈ Id∗ and len Je1KEσ > 0Jtl e1KEσ ≜ tl Je1KEσ ∈ Id∗

if Je1KEσ ∈ (N-set∪ Id-set) and card Je1KEσ > 0

or Je1KEσ ∈ Id∗ and len Je1KEσ > 0

Jlen e1KEσ ≜


len Je1KEσ ∈N if Je1KEσ ∈ Id∗

card Je1KEσ ∈N if Je1KEσ ∈ Id-set
card dom Je1KEσ ∈N if Je1KEσ ∈ Id →m N

Jdown(e1)KEσ ≜ down(Je1KEσ, σ) ∈ σ |Section if Je1KEσ ∈ σ |LinearJup(e1)KEσ ≜ up(Je1KEσ, σ) ∈ σ |Section if Je1KEσ ∈ σ |LinearJdown_sig(e1)KEσ ≜ down_sig(Je1KEσ, σ) ∈ σ |MarkerBoard if Je1KEσ ∈ σ |LinearJup_sig(e1)KEσ ≜ up_sig(Je1KEσ, σ) ∈ σ |MarkerBoard if Je1KEσ ∈ σ |Linear

Jstem(e1)KEσ ≜ stem(Je1KEσ, σ) ∈ σ |Section if Je1KEσ ∈ σ |PointJplus(e1)KEσ ≜ plus(Je1KEσ, σ) ∈ σ |Section if Je1KEσ ∈ σ |PointJminus(e1)KEσ ≜ minus(Je1KEσ, σ) ∈ σ |Section if Je1KEσ ∈ σ |Point

Jdir(e1)KEσ ≜ dir(Je1KEσ, σ) ∈N if Je1KEσ ∈ σ |MarkerBoardJtrack(e1)KEσ ≜ track(Je1KEσ, σ) ∈ σ |Linear if Je1KEσ ∈ σ |MarkerBoard

Jsrc(e1)KEσ ≜ src(Je1KEσ, σ) ∈ σ |MarkerBoard if Je1KEσ ∈ σ |RouteJdst(e1)KEσ ≜ dst(Je1KEσ, σ) ∈ σ |MarkerBoard if Je1KEσ ∈ σ |RouteJfirst(e1)KEσ ≜ first(Je1KEσ, σ) ∈ σ |Section if Je1KEσ ∈ σ |RouteJlast(e1)KEσ ≜ last(Je1KEσ, σ) ∈ σ |Section if Je1KEσ ∈ σ |RouteJpath(e1)KEσ ≜ path(Je1KEσ, σ) ∈ (σ |Section)
∗ if Je1KEσ ∈ σ |RouteJoverlap(e1)KEσ ≜ overlap(Je1KEσ, σ) ∈ (σ |Section)

∗ if Je1KEσ ∈ σ |RouteJpoints(e1)KEσ ≜ points(Je1KEσ, σ) ∈ σ |Point→m N if Je1KEσ ∈ σ |RouteJsignals(e1)KEσ ≜ signals(Je1KEσ, σ) ∈ (σ |MarkerBoard)-set if Je1KEσ ∈ σ |RouteJconflicts(e1)KEσ ≜ conflicts(Je1KEσ, σ) ∈ (σ |Route)-set if Je1KEσ ∈ σ |Route
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Jprev(e1, e2)KEσ ≜ prev(Je1KEσ, Je2KEσ, σ) ∈ σ |Section

if Je1KEσ ∈ σ |Route and Je2KEσ ∈ σ |SectionJnext(e1, e2)KEσ ≜ next(Je1KEσ, Je2KEσ, σ) ∈ σ |Section

if Je1KEσ ∈ σ |Route and Je2KEσ ∈ σ |SectionJprevs(e1, e2)KEσ ≜ prevs(Je1KEσ, Je2KEσ, σ) ∈ (σ |Section)
∗

if Je1KEσ ∈ σ |Route and Je2KEσ ∈ σ |SectionJnexts(e1, e2)KEσ ≜ nexts(Je1KEσ, Je2KEσ, σ) ∈ (σ |Section)
∗

if Je1KEσ ∈ σ |Route and Je2KEσ ∈ σ |SectionJentry(e1, e2)KEσ ≜ entry(Je1KEσ, Je2KEσ, σ) ∈N

if Je1KEσ ∈ σ |Route and Je2KEσ ∈ σ |SectionJexit(e1, e2)KEσ ≜ exit(Je1KEσ, Je2KEσ, σ) ∈N

if Je1KEσ ∈ σ |Route and Je2KEσ ∈ σ |SectionJreq(e1, e2)KEσ ≜ req(Je1KEσ, Je2KEσ, σ) ∈N

if Je1KEσ ∈ σ |Route and Je2KEσ ∈ σ |Point

Jconn_end(e1, e2)KEσ ≜ conn_end(Je1KEσ, Je2KEσ, σ) ∈N

if Je1KEσ ∈ σ |Section and Je2KEσ ∈ σ |Section

Je1 ∈ e2KEσ ≜ (Je1KEσ ∈ Je2KEσ) ∈ B

if Je1KEσ ∈ Id and Je2KEσ ∈ Id-setJe1 ∪ e2KEσ ≜ (Je1KEσ ∪ Je2KEσ) ∈ Id-set

if Je1KEσ ∈ Id-set and Je2KEσ ∈ Id-setJe1 ∩ e2KEσ ≜ (Je1KEσ ∩ Je2KEσ) ∈ Id-set

if Je1KEσ ∈ Id-set and Je2KEσ ∈ Id-setJe1 \ e2KEσ ≜ (Je1KEσ \ Je2KEσ) ∈ Id-set

if Je1KEσ ∈ Id-set and Je2KEσ ∈ Id-set

Quantified Expressions.

J∀ v : τ • pKEσ ≜
∧

c∈JτKEσ

Jp[c/v]KEσ ∈ B if Jp[c/v]KEσ ∈ B for all c ∈ JτKEσ

J∃ v : τ • pKEσ ≜
∨

c∈JτKEσ

Jp[c/v]KEσ ∈ B if Jp[c/v]KEσ ∈ B for all c ∈ JτKEσ
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J∃!v : τ • pKEσ ≜ ∑
c∈JτKEσ

η(Jp[c/v]KEσ) = 1 ∈ B if Jp[c/v]KEσ ∈ B for all c ∈ JτKEσ

If-then-else Expressions.

Jif c then t else e endKEσ ≜
{JtKEσ if JcKEσJeKEσ otherwise

if JcKEσ ∈ B

Let Expressions.

Jlet p1 = e1, . . . , pn = en in e endKEσ ≜ Je[Je1KEσ/p1, . . . , JenKEσ/pn]KEσ

Case Expressions.

Jcase e of c1 → e1, . . . , cn → en, → ed endKEσ ≜


Je1KEσ if JeKEσ = Jc1KEσ

. . .JenKEσ if JeKEσ = JcnKEσJedKEσ otherwise

List Indexing Expressions. List indexing expressions allow us to extract a single
element from a list of elements by an index, or a list of elements using a range of
indices.

Je[i]KEσ ≜ JeKEσ(JiKEσ) ∈ Id if JeKEσ ∈ Id∗ and JiKEσ ∈N

Je[i : j]KEσ ≜ ⟨JeKEσ(k) | JiKEσ ≤ k < JjKEσ⟩ ∈ Id∗

if JeKEσ ∈ Id∗, JiKEσ ∈N, and JjKEσ ∈N

Map Indexing Expressions.

Je[i]KEσ ≜ JeKEσ[JiKEσ] ∈N if JeKEσ ∈ Id →m N and JiKEσ ∈ JeKEσ

5.2.6 Transition Relation Semantics

The semantic function J−KR returns a proposition corresponding to a transition
relation specified in IDL instantiated in an environment σ.

J−KR : TransRel ∼→ Σ ∼→ Prop

Jg −→ uKRσ ≜ JgKEσ ∧ JuKEσ ∧
∧

v∈V\written(JuKEσ)

(v′ = v) if JgKEσ, JuKEσ ∈ Prop
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Jl [=] rKRσ ≜ JlKRσ ∨ JrKRσJl [>] rKRσ ≜ JlKRσ ∨ (¬Jguard(l)KEσ ∨ JrKRσ) if Jguard(l)KEσ ∈ Prop

J[=]v : τ • trKRσ ≜
∨

c∈JτKEσ

Jtr[c/v]KRσ

JM(e1, . . . , en)KRσ ≜ Jtransrel(M)[Je1KEσ/p1, . . . , JenKEσ/pn]KEσ

where

written(JuKEσ) returns a set of variables that are written to in JuKEσ as defined in
Section 5.2.2;

guard(l) is the disjunction of the guard of all atomic transitions in l;

transrel(M) returns the transition relation of the module M, which has p1, . . . , pn as
formal parameters.

5.2.7 Test Case Semantics.

In order to specify the semantics of test cases specified in IDL, we first describe the
semantics of LTL formulas.

LTL Formulas.

J−KF : LTLFormula ∼→ Σ ∼→ TestObj

J[a]KFσ ≜ [JaKEσ] if JaKEσ ∈ PropJG fKF ≜ G JfKFσJX fKF ≜ X JfKFσJF fKF ≜ F JfKFσJ¬fKF ≜ ¬JfKFσJE v : fKF ≜ E v : JfKFσJf1 U f2KF ≜ Jf1KFσ U Jf1KFσJf1 ∧ f2KF ≜ Jf1KFσ ∧ Jf1KFσJf1 ∨ f2KF ≜ Jf1KFσ ∨ Jf1KFσJf1 ⇒ f2KF ≜ Jf1KFσ ⇒ Jf1KFσ
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Test Cases.

J−KT : TestCase ∼→ Σ ∼→ TestObj∗

JfKT σ ≜ ⟨JfKFσ⟩

Jtc1, . . . , tcnKT σ ≜ Jtc1KT σ ⌢ . . . ⌢ JtcnKT σ

J[=] v : τ • tcKT σ ≜ Jtc[c1/v]KT σ ⌢ . . . ⌢ Jtc[cn/v]KT σ

where {c1, . . . , cn} = JτKEσ

5.2.8 Invariant Semantics

J−KI : Invariant ∼→ Σ ∼→ Prop

JeKIσ ≜ JeKEσ if JeKEσ ∈ PropJe1, . . . , enKIσ ≜ Je1KIσ ∧ · · · ∧ JenKIσJ[=] v : τ • eKIσ ≜
∧

c∈JτKEσ

Je[c/v]KIσ

5.3 Implementation

A parser for IDL is implemented in our toolchain using Flex and GNU Bison. The
semantics of IDL is implemented quite straightforward in C++ and integrated into
RT-Tester. The implementation inherits the implementation of ICL described in
Chapter 4.

5.4 Related Work

The idea with IDL is similar to Object Constraint Language (OCL)† and Schematron‡.
OCL is a language for specifying constraints and object query expressions on any
Meta-Object Facility (MOF) meta-model, including Unified Modelling Language
(UML) models. Schematron is an ISO/IEC standard, a language for making as-
sertions about the presence or absence of patterns in XML documents. Although
Schematron is a markup language, the way it manipulates XML elements is similar to

†http://www.omg.org/spec/OCL/
‡http://www.schematron.com/

http://www.omg.org/spec/OCL/
http://www.schematron.com/
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the way IDL works on different elements of interlocking configuration data specified
in ICL. IDL differs itself from languages like OCL or Schematron by its narrow
focus on a specific class of railway applications. Furthermore, IDL provides a more
simplified and user-friendly interface in order to support the users coming from
different areas of expertise other than computer science.

European Railway Interlocking Specification (EURIS) [BMS93; Dij+98] is a domain-
specific, modular language/method for specifying interlocking logics. A specifica-
tion of an interlocking system in EURIS is constructed by interconnecting generic
building blocks representing different types of elements such as signals or points.
These building blocks exchange telegrams in order to reach a consensus about
reserving a fraction of a railway network for a train. Though both EURIS and IDL
allow describing the generic behaviours of interlocking systems, EURIS is more
appropriate for specifying geographical-based interlockings, while IDL is more
appropriate for route-based interlockings.

Furthermore, having IDL as a second DSL for specifying generic applications
in our method beside ICL – a DSL for specifying configuration data presented in
Chapter 4 – offers a number of advantages as elaborated in Section 3.3. This is a
novelty as it has not been done – to the best of the author’s knowledge – in any
previously proposed methods for specification, verification and validation of railway
interlocking systems.
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This chapter elaborates how the forthcoming Danish interlocking systems are mod-
elled and verified by applying our proposed method as outlined in Section 3.7.
First, a generic behavioural model, and generic high-level safety properties created
in step DK:1 of the V&V flow for the forthcoming Danish interlocking systems
are described. The generic test objectives for the forthcoming Danish interlocking
systems will be described in Chapter 7. The generic behavioural model and generic
safety properties are formalised in IDL – the DSL for describing generic interlocking
applications – presented in Chapter 5. The model generator and the property
generator (ingredients DK:e and DK:f, respectively, introduced in Section 3.7)
instantiate generic behavioural model and safety properties, respectively, with con-
crete configuration data specified in ICL – the DSL for describing interlocking
configuration data – presented in Chapter 4. Following the semantics of ICL and
IDL described in Chapter 4 and Chapter 5, this instantiation results in a concrete
behavioural model in the form of a Kripke structure, and concrete safety properties
in the form of invariants in the resulting Kripke structure. A verification strategy
using BMC and inductive reasoning is used to verify the satisfiability of concrete
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safety properties on concrete systems as described in step DK:7 of the V&V flow in
Section 3.7. Experimental results on the Early Deployment Line (EDL) of the Danish
Signalling Programme and comparison with nuXmv are also presented. This chapter
elaborates in more detail the contribution published in [VHP15] and in a journal
article [VHPss] which is under review process.

[VHP15] – Linh H. Vu, Anne E. Haxthausen, and Jan Peleska. “Formal
Modeling and Verification of Interlocking Systems Featuring Sequential
Release”. English. In: Formal Techniques for Safety-Critical Systems. Edited
by Cyrille Artho and Peter Csaba Ölveczky. Volume 476. Communications
in Computer and Information Science. Springer International Publishing,
2015, pages 223–238. isbn: 978-3-319-17580-5. doi: 10.1007/978-3-319-
17581-2_15. url: http://dx.doi.org/10.1007/978-3-319-17581-2_15

[VHPss] – Linh H. Vu, Anne E. Haxthausen, and Jan Peleska. “Formal
Modeling and Verification of Interlocking Systems Featuring Sequential
Release”. In: Science of Computer Programming - Special Issue: Formal
Techniques for Safety-Critical Systems (Under minor revision process)

The remainder of the chapter is organised as follows. First, some modelling
assumptions are listed in Section 6.1. Section 6.2 specifies in detail a generic
behavioural model of the forthcoming Danish interlocking systems in IDL. The
generic high-level safety properties corresponding to this generic behavioural model
are specified in Section 6.3. Section 6.4 presents our verification strategy which is
a combination of BMC and inductive reasoning. The experimental results of our
method and toolchain on the EDL of the Danish Signalling Programme are presented
in Section 6.5. Section 6.6 compares these results with other verification techniques.
Section 6.7 concludes the chapter with some related work.

6.1 Modelling Assumptions

This section summarises the assumptions that have been made in our model. The
assumptions describe cases that we do not consider in our model.

MA-01 We do not consider shunting movements* in our model.

MA-02 When a train stops at a closed signal at the end of a route, the whole train
lies within the last detection sections before the signal, called the destination area of
the route. For simplicity, we consider only destination area of length one (detection
section) in our model. This implies that trains are not longer than the length of the
last detection section of a route.

*Shunting movements are movements (usually manual and not supervised by interlocking systems)
of trains at low speed in the parking/maintenance area or at the platforms in stations in order to
couple/decouple trains or move trains in/out of the parking/maintenance area [TVA09].

http://dx.doi.org/10.1007/978-3-319-17581-2_15
http://dx.doi.org/10.1007/978-3-319-17581-2_15
http://dx.doi.org/10.1007/978-3-319-17581-2_15
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MA-03 Communication channels are perfect: communication between the interlock-
ing system and trains, detection sections, points is perfect, i.e., there is no message
loss, and the delay is admissible.

MA-04 There is no faulty equipments, e.g., no faulty point machines, or faulty
detection sections.

6.2 Generic Behavioural Model

This section describes a generic behavioural model of the new Danish interlocking
systems created in step DK:1 of the development and V&V flow described in
Chapter 3. The generic model is specified in IDL, which has been presented in
Chapter 5. Through the rest of this chapter, for readability, named constants and
their corresponding integral values are used interchangeably. We use the notation
name(integral-value) to mean that name is the name of a constant having the value
integral-value. For instance, PLUS(0) denotes a constant PLUS having the value of 0.
Furthermore, integral values prefixed with 0b are written in their binary forms, e.g.,
0b110 is the binary value 110 (which is 6 in decimal).

The remainder of this section is organised as in the following. First, the state space
of the Kripke structure modelling the forthcoming Danish interlocking systems are
presented in Section 6.2.1. The initial state and the transition relation are elaborated
in Section 6.2.2 and Section 6.2.3, respectively. Section 6.2.4 to Section 6.2.7 describe
the detail of different parts of the transition relation.

6.2.1 State Space

As described in Chapter 2, the state space S is the set of all valuation functions s :
V→ ∪

v∈VDv for which s(v) ∈ Dv for all v ∈ V, where V is a set of variables used to
represent the status of different components, such as track elements and routes, in the
given interlocking system. Each variable v ∈ V has an associated finite domainDv ⊂
N0. The subsequent paragraphs present the set of variables V and their associated
value domains Dv.

Occupancy Status. As mentioned in Chapter 2, trains can travel in any physically
possible direction on a section. Thus, for each section in the network, we use, a
variable for each physically possible travel direction to keep track of the occupancy
status of that section in that possible travel direction.

For each linear section l there are two variables recording its occupancy status.

• l.U2D – recording the occupancy status of l in the direction from its up end to its
down end, and

• l.D2U – recording the occupancy status of l in the direction from its down end to
its up end.



102 6 Formal Modelling and Verification of the Danish Interlocking Systems

Similarly, for each point p, there are three variables recording its occupancy status.

• p.S2PM – recording the occupancy status from its stem end to its plus/minus end,

• p.P2S – recording the occupancy status from its plus end to its stem end, and

• p.M2S – recording the occupancy status from its minus end to its stem end.

The movement of trains through a given network are reflected by state transitions
of the occupancy status variables of the sections in the network. This is specified in
detail in Section 6.2.7 below.

The occupancy status of a section in a given travel direction is encoded using
the three least significant bits HTO of a non-negative integer variable as shown in
Figure 6.1. The value 1 of the bits H, T, O indicate: (H) the head of the train is within the
section, (T) the tail of the train is within the section, and (O) the section is occupied,
respectively. Note that in some cases the encoding contains redundant information,
e.g., a section is obviously occupied when the head of a train is inside the section.
However, the O bit is necessary for modelling the case where a train is occupying the
section, but the head and the tail are outside the section, as it is the case for section
t3 in Figure 6.2.

This occupancy status encoding offers two advantages: (a) the encoding can cover
the case where a train occupies more than one section (e.g., when it is crossing the
joint between two sections), and (b) the safety properties can be expressed efficiently
using arithmetic operations on integer variables as shown in Section 6.3.

012

… H T O

Figure 6.1: A variable recording occupancy status of a section.

Figure 6.2 shows some examples of how different values of occupancy status
variables reflect how trains occupy sections. Let us assume that the trains are
traveling in the direction down-to-up (left-to-right in the figure). Section t1 is
occupied by the whole train, thus its occupancy status variable t1.D2U is 0b111
indicating that all three bits H, T, and O are set. t2 is occupied by the tail of a train,
thus its occupancy status variable is t2.D2U = 0b011, t3 is occupied without a head
or a tail of a train in it – i.e., the train is long enough to cover the whole section, thus
t3.D2U = 0b001. Lastly, t4 is occupied by a head of a train, therefore its occupancy
status variable is t4.D2U = 0b101.

t1 t2 t3 t4

Figure 6.2: Examples of the values of occupancy status variables.
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A section is vacant when all of its occupancy status variables are evaluated to zero.
For example, a linear section l is vacant when both l.D2U and l.U2D are evaluated
to zero. Since all occupancy status variables are non-negative, we can define the
following macro in IDL to determine whether a linear section l is vacant.

def vacant_linear(l ) =
( l .D2U + l.U2D = 0)

An analogous macro can be defined for a point p as in the following.

def vacant_point(p) =
(p.S2PM + p.P2S + p.M2S = 0)

Grouping these two macros together forms the following macro in IDL for determin-
ing whether a section e is vacant.

def vacant(e) =
(e ∈ Linear) ? vacant_linear(e) : vacant_point(e)

Lockable Elements. In order to accommodate sequential release feature described
in Section 2.5 in our model, we consider a linear or point section as a lockable
element. For each lockable element e in the network layout, there are two variables
for representing the status of e:

• e.MODE – recording the mode of the element, and

• e.PREV – recording whether the previous section in the route has been released.

The possible values of e.MODE are: AVAIL(0) (the element is not exclusively locked
by a route, or used by any train), EXLCK(1) (the element is exclusively locked for a
route), or USED(2) (the element has been used, i.e., occupied, by a train after it was
exclusively locked for a route). The possible values of e.PREV are: PENDING(0) (the
previous section in the same route has not been released) and RELEASED(1) (the
previous section in the same route has been released).

Point Positions. For each point p in the network layout, there are two variables:

• p.POS – for representing the actual position of the point, and

• p.CMD – for representing the point position commanded by the interlocking.

The possible values of p.POS are: PLUS(0), MINUS(1), and INTER(2) – the position
where the point is switching from plus (minus) to minus (plus). The possible values
of p.CMD are only PLUS(0) and MINUS(1), as the interlocking cannot command a
point to switch to the INTER position.
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Signal Aspects. For each virtual signal s in the network layout, there are two
variables:

• s.ACT – for representing the actual aspect of the signal as “seen” by the train, and

• s.CMD – for representing the aspect of the signal as commanded by the interlock-
ing system.

The possible values of these variables are: OPEN(1) and CLOSED(0). The values of
these two variables may differ due to the delay in the communication between the
interlocking system and the onboard computers in the trains.

Routes. For each route r in the interlocking table, there are three variables recording
its status.

• r.CTRL – for representing the current command for the route.

• r.MODE – for representing the current mode of the route, and

• r.DSPL – for representing the current mode of the route displayed to the output
interfaces.

The following commands can be issued (manually by a signalman or automatically by
a traffic management system) for a route: NOCMD(0), DISPATCH(1), or CANCEL(2).
A route can be in one of the following modes: FREE(0), MARKED(1), ALLOCAT-
ING(2), LOCKED(3), or OCCUPIED(4).

Specification in IDL. The state space is specified in by the following encoding
declaration in IDL.
encoding

Linear::
D2U→ [INPUT,”unsigned int”,0,0,7]
U2D→ [INPUT,”unsigned int”,0,0,7]
MODE→ [LOCAL,”unsigned int”,0,0,2]
PREV→ [LOCAL,”unsigned int”,0,0,1],

Point ::
S2PM→ [INPUT,”unsigned int”,0,0,7]
P2S→ [INPUT,”unsigned int”,0,0,7]
M2S→ [INPUT,”unsigned int”,0,0,7]
CMD→ [OUTPUT,”unsigned int”,0,0,1]
POS→ [INPUT,”unsigned int”,0,0,2]
MODE→ [LOCAL,”unsigned int”,0,0,2]
PREV→ [LOCAL,”unsigned int”,0,0,1],
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Signal::
ACT→ [INPUT,”unsigned int”,0,0,1]
CMD→ [OUTPUT,”unsigned int”,0,0,1],

Route::
CTRL→ [INPUT,”unsigned int”,0,0,2]
MODE→ [LOCAL,”unsigned int”,0,0,4]
DSPL→ [OUTPUT,”unsigned int”,0,0,4]

6.2.2 Initial State
The initial state s0 is the state in which all sections are in AVAIL mode and vacant (i.e.,
there are no trains in the network), the commanded and actual aspects of all signals
are CLOSED, all routes are in FREE mode, and the commanded and actual positions
of all points are PLUS. Our encodings in Section 6.2.1 are deliberately chosen so that
s0 is the state in which all variables are evaluated to 0. In our generic behavioural
model for the Danish interlocking systems, the initial state declaration is omitted
from the IDL specification. Instead, the initial values from the encoding declaration
are assigned to variables in the initial state.

One can also use the following initial declaration in IDL to specify the initial
states.
init

[ initial_state_linear ]
(∀l : Linear • vacant(l ) ∧ l .MODE = AVAIL ∧ l.PREV = PENDING),

[ initial_state_point ]
(∀p : Linear •
(vacant(p) ∧ p.MODE = AVAIL ∧ p.PREV = PENDING) ∧
(p.CMD = PLUS ∧ p.POS = PLUS)),

[ initial_state_signal ]
(∀s : Signal • s .CMD = CLOSED ∧ s.ACT = CLOSED),

[ initial_state_route ]
(∀r : Route • r .CTRL = NOCMD ∧ r.MODE = FREE ∧ r.DISP = FREE)

6.2.3 Transition Relation
This section describes the generic transition relation modelling the behaviours of the
Danish interlocking systems. The generic transition relation is specified in IDL using
the following principles.

(a) Atomic events are specified in IDL using atomic transitions as described in
Section 5.1.
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(b) Different types of events/transitions are assigned priorities because different
types of events in interlocking systems occur at significantly different speed, and
we prefer to avoid introducing time into the model.

(c) Transitions for atomic events are combined according to their relative priorities.
If two transitions have different priorities then they are combined using the
prioritized choice operator [>]. On the other hand, if two transitions have the
same priority, they are combined using the non-deterministic choice [=]. These
operators and their meaning have been explained in Chapter 5.

Overview of Transitions and their Priorities. We group the transitions of atomic
events of an interlocking system into four types, such that the transitions of each type
have the same priority and they can be combined using the [=] operator to represent
the combined behaviour of the transitions of that type. For readability, each type
of transitions is specified by a module in the IDL specification. The types and their
corresponding modules are as follows:

(0) DP – modelling route dispatching transitions. This module is described in detail
in Section 6.2.4.

(1) SUT – modelling interlocking controller transitions, e.g., setting the mode of a
route. This module is explained in Section 6.2.5.

(2) ET – modelling track element transitions, e.g., switching a point, or communicat-
ing a signal aspect to a train. This module is explained in Section 6.2.6.

(3) TM – modelling train movement transitions. This module is explained in
Section 6.2.7.

Transitions of type (0) are not prioritized, i.e., they can be taken nondeterministically
whenever they are enabled, independently from other transitions. On the other hand,
transitions of types (1), (2), and (3) are prioritized in the descending order that they
appear in the list, i.e., transitions of type (1) have the highest priority and transitions
of type (3) have the lowest. This priority of transitions is based on the intuition
that in practice, the events in the interlocking controller occur at significantly higher
speed than the ones occurring in a track element. For example, a cycle of a route
controller occurs within a hundred milliseconds, while switching a point from one
position to another may take a few seconds. An analogous argument applies to
events related to track elements compared to events related to train movements. For
instance, switching a point may take a few seconds, while it may take a train minutes
to pass a section.

With this grouping, SUT models the behaviours of the system under consider-
ation – the interlocking controller; while DP , ET , and TM model the behaviours
of the operational environment that interacts with the interlocking controller. The
interlocking system is a closed system that evolves according to the combined
transition relation as specified in IDL as in the following.
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[DP] [=] ( [SUT] [>] [ET] [>] [TM])

The route dispatching transitions DP is given the same priority as the priority
given to the combined transition relation specifying all the other transitions in
order to allow routes to be dispatched arbitrarily. If route dispatching transitions
were given higher priority than the one given to any of the other transitions, all
routes which could be dispatched would have to be dispatched before interlocking
controller, track elements, or trains could make any transitions. On the other hand,
if route dispatching were given lower priority than any of the other transitions, then
a route could not be dispatched, if another route is processed by the interlocking
controller, or a track element or a train could make a transition.

In the subsequent subsections, we explain in detail of the transitions of each type.
For readability, the informal explanation of a transition is described first, followed by
the formal specification in IDL.

6.2.4 Route Dispatching Transitions

The route dispatching transitions of a given interlocking system, specified by the
module DP , model how routes are dispatched and cancelled as the results of manual
requests from signalmen or automatic requests from a traffic management system.
Figure 6.3 shows different control commands for a route r, i.e., the different values of
the variable r .CTRL, and the transitions from one command to another. In the initial
state, there are no commands for r, i.e., r.CTRL = NOCMD. Signalmen or traffic
management systems can then command to dispatch r, i.e., r.CTRL = DISPATCH.
When the command has been acknowledged by the interlocking controller, and the
route has been dispatched accordingly, r.CTRL is set back to NOCMD. Cancellation
of a route can be commanded at any time, unless a cancellation has been issued. Once
cancellation command is issued, the command remains until the route becomes free.

NOCMD DISPATCH

CANCEL

dispatch

processed

cancel

cancelcancelled

Figure 6.3: Route dispatching transitions: how the value of r .CTRL is changed.
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Route Dispatch. A route r can be dispatched arbitrarily whenever its mode is
FREE and has not been already dispatched. This means that multiple routes can
be dispatched before any of them are processed by the interlocking controller, and
routes can be dispatched when other routes are being processed. Upon dispatching,
the route’s control command changes from NOCMD to DISPATCH.

Guard A route r can be dispatched if all of the following hold

• Its mode is FREE(0).
• It has not been already dispatched, i.e., its control command is NOCMD(0).

Update

• The variable r.CTRL is set to DISPATCH(1).

The transition is specified in IDL as in the following.

([=] r : Route •
[ctrl_nocmd_to_dispatch] (r.CTRL = NOCMD ∧ r.DSPL = FREE) −→
(r .CTRL′ = DISPATCH))

Once the route is dispatched and it is processed by the interlocking controller the
control command for the route can be reset.

Guard

• The route’s current command is DISPATCH(1)
• The route’s mode is not FREE(0)

Update

• The route’s control command is set to NOCMD(0)

The transition is specified in IDL as in the following.

([=] r : Route •
[ctrl_dispatch_to_nocmd] (r.CTRL = DISPATCH ∧ r.DSPL ̸= FREE) −→
(r .CTRL′ = NOCMD))

Route Cancellation. A route r that is processed by the interlocking controller can
be commanded to be cancelled if the route is not used yet.

Guard

• r’s mode is one of the following: MARKED(1), ALLOCATING(2), or LOCKED(3)
• There is not a pending cancellation command for the same route, i.e., its control

command is not CANCEL(2)
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Update

• r’s control command is changed to CANCEL(2)

([=] r : Route •
[ ctrl_to_cancel ]
(r .CTRL ̸= CANCEL ∧
(r .DSPL = MARKED ∨ r.DSPL = ALLOCATING ∨ r.DSPL = LOCKED))
−→ (r.CTRL′ = CANCEL))

The cancellation command is reset when the route’s mode is back to FREE(0) and
its source signal’s actual aspect is CLOSED(0).

Guard

• r’s control command is CANCEL(2)
• r’s mode is FREE(0) and its source signal’s actual aspect is CLOSED(0)

Update

• r’s control command is reset to NOCMD(0)

([=] r : Route •
[ctrl_cancel_to_nocmd]
(r .CTRL = CANCEL ∧ r.DSPL = FREE ∧ src(r).ACT = CLOSED)
−→ (r.CTRL′ = NOCMD))

6.2.5 Interlocking Controller Transitions
The interlocking controller transitions of a given interlocking system, represented
by SUT, model the internal behaviours of the interlocking controller. In particular,
they model how the status of routes and lockable elements change in response to the
changes in the environment. The subsequent paragraphs describe the transitions in
detail.

Life-cycle of a Route. Figure 6.4 shows the life-cycle of a route, i.e., its different
modes and the transitions from one mode to another. The life-cycle shown in
Figure 6.4 reflects the procedure for setting and sequentially releasing a route r as
described in Section 2.5. The transitions labelled (1), (2), (3), (4), (5c), and (6) in
Figure 6.4 correspond to items (1) – (6) in the procedure presented in Section 2.5.2 for
setting and releasing a route. Transitions (5a) and (5b) model the sequential release
that can take place while the route stays in OCCUPIED mode: as the train moves
along the route, its elements are used (5a) when the train enters them, and then
they are released sequentially (5b) as soon as the train has passed them. Transition
(2) is adapted to sequential release: allocating resources for a given route r is now
also allowed even if a conflicting route r′ is in the OCCUPIED mode, given that the
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elements shared between r and r′ have been sequentially released. The transitions
are elaborated in the subsequent paragraphs.

FREE

MARKED ALLOCATING

LOCKEDOCCUPIED

(1)
marking

(6)
cancellation

(2)
allocation

(6)
cancellation

(3)
lock

(4)
occupation

(6)
cancellation

(5b)
sequential release

(5a)
element used

(5c)
release

Figure 6.4: Life-cycle for route r, showing how the value of r .MODE is changed.

Route Marking. A route r is marked as requested when its control command is
DISPATCH and it is in FREE mode.

Guard

• r’s control command is DISPATCH(1)

• r’s mode is FREE(0)

Update

• r’s mode is changed to MARKED(1)

([=] r : Route •
[route_marking] (r.CTRL = DISPATCH ∧ r.MODE = FREE) −→
(r .MODE′ = MARKED ∧ r.DSPL′ = MARKED))
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Route Allocation.

Guard A route r can be allocated if

• It is in MARKED(1) mode.
• None of the conflicting routes are in ALLOCATING(2) or LOCKED(3) modes.
• All detection sections in the route’s path and overlap are vacant†.
• All elements in r’s path are in AVAIL(0) mode.
• None of the elements in r’s overlap is in USED(2) mode‡.
• All protecting points are in AVAIL(0) mode or they are already in the positions

as required by the route r.

Update

• The mode of the route is updated to ALLOCATING(2) and
• The interlocking starts allocating the resources for r by

– commanding points to switch to required position
– commanding protecting signals to switch to CLOSED(0)
– lock exclusively all elements in r’s path, settings their modes to EXLCK(1)

([=] r : Route •
[route_allocating ]
(r .MODE = MARKED) ∧
/* none of the conflicting routes in ALLOCATING(2) or LOCKED(3) modes
*/

(∀cr : Route •
(cr ∈ conflicts (r )) ⇒ (cr.MODE ̸= ALLOCATING ∧ cr.MODE ̸= LOCKED)) ∧
/* all detection sections in the path and overlap are vacant */
(∀e : Section •
e ∈ (elems path(r) ∪ elems overlap(r))⇒ vacant(e)) ∧
/* all elements in route ’ s path are in AVAIL mode */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = AVAIL)) ∧
/* all elements in route ’ s overlap are not in USED mode */
(∀e : Section • e ∈ overlap(r) ⇒ (e.MODE ̸= USED)) ∧
/* all protecting points are in AVAIL mode,
* or are already in the correct position */
(∀e : Point •
e ∈ (dom points(r) \ elems path(r))⇒
(e.MODE = AVAIL ∨ e.POS = req(r,e)))
−→

†This check is needed as the route and its elements may all have been released, but the train is in the
standstill position on the last detection section of the route, at the closed signal. In such cases, the route
must not be allocated.

‡The elements in the overlap can be in EXLCK(1) mode for a successive route.
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(r .MODE′ = ALLOCATING) ∧ (r.DSPL′ = ALLOCATING) ∧
/* command points */
(∀p : Point • p ∈ points(r) ⇒ (p.CMD′ = req(r,p))) ∧
/* command signals */
(∀s : Signal • s ∈ signals(r) ⇒ (s.CMD′ = CLOSED)) ∧
/* lock exclusively all elements in the route ’ s path */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE′ = EXLCK)))

Route Lock.

Guard A route r can be locked if the following conditions are fulfilled:

• The route’s mode is ALLOCATING(2)
• The route is allocated

– All protecting signals’ actual aspect are CLOSED(0)
– All points’ actual positions are as required by r
– All elements in the r’s path and overlap are vacant
– All elements in r’s path are locked exclusively for r

Update

• the route is set to LOCKED(3) mode, and
• its source signal is commanded to be OPEN(1).

([=] r : Route •
[route_lock]
r .MODE = ALLOCATING ∧
/* protecting signals ’ actual aspects are as required */
(∀s : Signal • s ∈ signals(r) ⇒ (s.ACT = CLOSED)) ∧
/* points ’ actual positions are as required */
(∀p : Point • p ∈ points(r) ⇒ (p.POS = req(r,p))) ∧
/* all detection sections in the path and overlap are vacant */
(∀e : Section •
e ∈ (elems path(r) ∪ elems overlap(r))⇒ vacant(e)) ∧
/* all elements in the route ’ s path are locked exclusively */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = EXLCK))
−→ r.MODE′ = LOCKED ∧ r.DSPL′ = LOCKED ∧ src(r).CMD′ = OPEN)

Route Occupation.

Guard The route r is occupied if

• the route is in LOCKED(3) mode
• the route is first occupied by the train, i.e., the first detection section right after

the source signal becomes occupied.
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Update

• The route’s mode is set to OCCUPIED(4)
• The first element’s mode is set to USED(2)
• The source signal is also commanded to be CLOSED(0)§.

([=] r : Route •
[route_in_use]
/* the first element of the route is occupied */
let e = first (r) in

r .MODE = LOCKED ∧ ¬vacant(e)
end
−→
r .MODE′ = OCCUPIED ∧ r.DSPL′ = OCCUPIED ∧ src(r).CMD′ = CLOSED ∧
first (r ). MODE′ = USED)

Sequential Release. Figure 6.5 depicts the life-cycle of a lockable element e within
the network controlled by a given interlocking system. Each node in the diagram in
Figure 6.5 is labelled with the following information about the status of the element
e, the information changes in each transition is marked red.

• vacant(e) – indicating whether the element is vacant where vacant(e) is a formula
over occupancy status variables of e as shown in Section 6.2.1;

• its current mode – i.e., the value of e.MODE as described in Section 6.2.1; and

• the value of the e.PREV variable indicating whether the previous element prev(r, e)
of e in the route r has been released

The life-cycle of a lockable element can be summarised as in the following where the
numbering of the items corresponds to the labels of transitions in Figure 6.5.

(0) An element e is initially in a state where it is vacant, in AVAIL(0) mode, and its
PREV variable is PENDING(0).

(1) When the interlocking controller is allocating a route r whose path contains e,
e.MODE is set to EXLCK(1), meaning that e is locked exclusively for r.

(2) The element becomes occupied, i.e., ¬vacant(e), as a train enters.

(3) The interlocking controller detects the change in the occupancy status of e,
consequently sets e.MODE to USED(2).

§In practice, the interlocking has a “memory circuit” which ensures that the source signal will not be
opened again for the same route until the route is released. However, in our model, the source signal is
only set to OPEN in the transition from ALLOCATING to LOCKED, and is never set again when the route
is in the USED mode. Additionally, trains are not allowed to reverse in our model, thus this guarantees
that the source signal will not be open again for the same route until the route is released.
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𝑣𝑎𝑐𝑎𝑛𝑡(𝑒)
FREE

¬PREV

𝑣𝑎𝑐𝑎𝑛𝑡(𝑒)
EXLCK
¬PREV

¬𝑣𝑎𝑐𝑎𝑛𝑡(𝑒)
EXLCK
¬PREV

¬𝑣𝑎𝑐𝑎𝑛𝑡(𝑒)
USED

¬PREV

¬𝑣𝑎𝑐𝑎𝑛𝑡(𝑒)
USED
PREV

𝑣𝑎𝑐𝑎𝑛𝑡(𝑒)
USED
PREV

(1)
allocate 𝑟

(2)
train enters 𝑒

(3)
𝑒 in use

(4)
seq. release 𝑝𝑟𝑒𝑣(𝑟, 𝑒)

(5)
train leaves 𝑒

(6)
seq. release 𝑒
𝑛𝑒𝑥𝑡(𝑟, 𝑒).𝑃𝑅𝐸𝑉′ = 𝑅𝐸𝐿𝐸𝐴𝑆𝐸𝐷

Figure 6.5: A life-cycle of a lockable element e in a route r

(4) When the train leaves the previous element prev(r, e) of e in the route r, prev(r, e)
is released, and it informs e by setting the variable e.PREV to RELEASED(1).

(5) When the train leaves e, the element becomes vacant again.

(6) The interlocking controller again detects the change, releases e and informs
the next element next(r, e) in the same route by setting next(r, e).PREV to
RELEASED(1).

(1) has been specified in route allocation transition. (2) and (5) will be specified in
train movement transitions in Section 6.2.7. (3) and (6) are specified by (SR-1) and
(SR-2), respectively, in the following. (4) is specified for prev(r, e) analogously to (SR-
2).

(SR-1) Element in Use: For each element e in the route’s path (except the first element) we
have the following transition:

Guard an element e is in use when
• The route is in OCCUPIED(4) mode
• The element is in EXLCK(1) mode
• the train starts occupying the element
• the previous element of e in r, prev(r, e), is in USED(2) mode.
• if e is a point, its actual position should be as required by r
• if e is not the last element of the route, i.e., e ̸= last(r), the next element of e should

be in EXLCK(1) mode.
Update
• the element changes to USED(2) mode
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([=] r : Route •
([=] e : Section •
[element_in_use]
e ∈ path(r) ∧ e ̸= first (r) ∧ prev(r,e ). MODE = USED ∧
r .MODE = OCCUPIED ∧ e.MODE = EXLCK ∧ not vacant(e) ∧
((e ∈ Point) ⇒ e.POS = req(r,e)) ∧
(e ̸= last(r) ⇒ next(r,e).MODE = EXLCK)
−→ e.MODE′ = USED))

(SR-2) Sequential Release of Elements: For each element e that is in the route’s path and is not
the last element, we have the following transitions:

Guard an element e is released when
• the route is in OCCUPIED(4) mode
• the element is in USED(2) mode
• the train has passed the element, i.e., e is vacant
• the previous element of e in r must have been released if e is not the first element

in the route r
• the next element of e in r:

– is in USED(2) mode
– must have PREV = PENDING(0).
– if it is a point, it should be in correct position as required by r
– it should have the tail of the train on it¶, i.e., the T bit of the HTO variable is

1.
• if e is a point, it must be in the correct position as required by the route‖

Update
• the element e’s mode changes to AVAIL(0) and e.PREV is reset to PENDING(0).
• inform the next element of e that it can be released whenever the train passes it,

i.e., set the next element’s PREV to RELEASED(1).

([=] r : Route •
([=] e : Section •
[sequential_release_e]
e ∈ path(r) ∧ e ̸= last(r) ∧ r.MODE = OCCUPIED ∧
e.MODE = USED ∧ vacant(e) ∧ (e ̸= first(r)⇒ e.PREV = RELEASED) ∧
let nx = next(r,e) in

nx.PREV = PENDING ∧ nx.MODE = USED ∧ (_T_(hto(nx,r,0)) ̸= 0) ∧
((nx ∈ Point)⇒ nx.POS = req(r,nx))

end ∧ ((e ∈ Point) ⇒ e.POS = req(r,e))
−→ e.MODE′ = FREE ∧ e.PREV′ = PENDING ∧ next(r,e).PREV′ = RELEASED))

¶This to make sure we are informing the next element correctly.
‖This condition ensures we are releasing the element of the right route.
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Route Release. With sequential release, the route r is released when the last
element e = last(r) of the route is released. The route can be released by one of
the following transitions.

(RR-1) Sequential Release the Last Element. When r’s next route is locked and the train moves
towards the first section of the next route. The current route r and its last section e
will be released when the train has completely left e.

Guard
• the route r is in OCCUPIED(4) mode
• the element e is in USED(2) mode
• the train has passed the element e, i.e., it is vacant
• the previous element of e in r must have been released if e is not the first element.
• if e is a point, it must be in the position required by r.
Update
• the element e’s mode changes to AVAIL(0), and its PREV variable is reset to

PENDING.
• the route is released, i.e., its mode is set to FREE(0)

([=] r : Route •
[sequential_release_last_elem]
r .MODE = OCCUPIED ∧
let e = last(r) in

e.MODE = USED ∧ vacant(e) ∧ (e ̸= first(r)⇒ e.PREV = RELEASED) ∧
((e ∈ Point) ⇒ e.POS = req(r,e))

end
−→
last (r ). MODE′ = AVAIL ∧ last(r).PREV′ = PENDING ∧ r.MODE′ = FREE ∧
r .DSPL′ = FREE)

(RR-2) Pseudo Timer. Alternatively, when the train occupies the last section e = last(r) of the
route r, a timer is started. The last section e and the route r are released when the
timer expires. The timer ensures that the train has come to a standstill in front of the
destination signal**. We do not have time in our model, thus we just release the last
section when the train comes to standstill within the last section.

Guard
• the route r is in OCCUPIED(4) mode
• the last element e is in USED(2) mode
• the whole train is in the last section e, i.e., the HTO variable has all three bits set.

**in this case, the whole train is contained within the last detection section, cf. Assumption MA-02 in
Section 6.1
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• the destination signal’s actual aspect is CLOSED(0)
• the previous element of e in r has been released if e is not the first element of r.
Update
• the element e is released, i.e., its mode changes to AVAIL(0) and its PREV variable

is set to PENDING(0).
• the route r is released, i.e., its mode is set to FREE(0)

([=] r : Route •
[release_last_elem_pseudo_timer]
r .MODE = OCCUPIED ∧
let e = last(r) in

e.MODE = USED ∧ hto(e,r,0) = 0b111 ∧ dst(r).ACT = CLOSED ∧
(e ̸= first (r) ⇒ e.PREV = RELEASED)

end
−→
last (r ). MODE′ = AVAIL ∧ last(r).PREV′ = PENDING ∧ r.MODE′ = FREE ∧
r .DSPL′ = FREE)

Route Cancellation.

Guard

• r’s control command is CANCEL(2)
• One of the following holds:

– r’s mode is MARKED(1)
– r’s mode is ALLOCATING(2), and all the points p required by r are not

switching, i.e., p.POS = p.CMD
– r’s mode is LOCKED(3)††, and all sections in r’s path and overlap are vacant.

Update

• r’s mode is set to FREE(0)
• close r’s source signal if r’s mode was LOCKED(3)
• cancel all commands to points if r’s mode was ALLOCATING(2)
• unlock all elements in r’s path if r’s mode was ALLOCATING(2) or LOCKED(3)

([=] r : Route •
[cancel_marked_route] (r.CTRL = CANCEL ∧ r.MODE = MARKED) −→
(r .MODE′ = FREE ∧ r.DSPL′ = FREE))

††this implies all the points required by r are not switching
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([=] r : Route •
[cancel_allocating_route]
(r .CTRL = CANCEL ∧ r.MODE = ALLOCATING ∧
/* no points are switching , if there is a point switching , we wait until the
* next cycle when the point is already done switching and then cancel the
* route */
(∀p : Point • p ∈ points(r) ⇒ p.POS = req(r,p)))
−→
/* free the route */
(r .MODE′ = FREE) ∧ (r.DSPL′ = FREE) ∧
/* canceling the command to points, we don’t canceling the protecting point
* because it may be used by other routes */
(∀p : Point • p ∈ path(r) ⇒ (p.CMD′ = p.POS)) ∧
/* and unlock all sections in the route ’ s path */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE′ = AVAIL)))

([=] r : Route •
[cancel_locked_route]
(r .CTRL = CANCEL ∧ r.MODE = LOCKED ∧
/* can only be canceled if the route has not been used, i . e ., all the
* route ’ s path and overlap are still vacant */
(∀e : Section •
e ∈ (elems path(r) ∪ elems overlap(r))⇒ vacant(e)))

−→
/* free the route */
(r .MODE′ = FREE) ∧ (r.DSPL′ = FREE) ∧
/* close the source signal */
(src(r ). CMD′ = CLOSED) ∧
/* and unlock all sections in the route ’ s path */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE′ = AVAIL)))

6.2.6 Track Element Transitions
The track elements transitions of a given interlocking system, represented by ET,
models the behaviour of track-side elements in the railway network under control,
i.e., how points are switched and how signal aspects are communicated from the
interlocking controller to the onboard computer in a train.

Switching Points. A point p can be switched if it is commanded to be switched to a
position p.CMD that is different from its current position p.POS. The point switching
process occurs in two steps, first the point moves from its current position to the
intermediate position, and then the point is switched from the intermediate position to
the requested position. Figure 6.6 illustrates the point switching steps from PLUS
position to MINUS position.

For each point p, there are two transition rules for switching the point as described
in the following.
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Figure 6.6: Point switching steps from PLUS to MINUS

(PS-1) The point moves from its current position to the intermediate (INTER) position, in
other words it is switching toward a new position

Guard
• the commanded position is different from the actual position of the point, and
• the actual position of the point is not INTER(2).
Update
• The point’s actual position changes to INTER(2)

([=] p : Point •
[point_switch_1] p.POS ̸= p.CMD ∧ p.POS ̸= INTER −→ p.POS′ = INTER)

(PS-2) The point is completely switched to the commanded position

Guard
• The point is in INTER(2) position‡‡

Update
• The actual position of the point is set to the position commanded by the interlock-

ing

([=] p : Point • [point_switch_2] p.POS = INTER −→ p.POS′ = p.CMD)

Communicating Signal Aspects. For each signal s, there is a transition rule for
changing the setting of the signal:
([=] s : Signal •
[communicate_signal_aspect] s.ACT ̸= s.CMD −→ s.ACT′ = s.CMD)

It states that whenever the actual aspect s.ACT of the signal s differs from
its commanded aspect s.CMD, the actual aspect of the signal is updated to the
commanded aspect.

‡‡This guard shall be stronger in practice in order to prevent the case where the point might be in
INTERMEDIATE position because of a failure. However, we do not consider failures yet in our model,
thus the guard here is adequate.
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6.2.7 Train Movements Transitions
Trains are not explicitly specified in our model, in the sense that there are no explicit
train objects. Instead, train movements and related aspects are implicitly modelled
via the occupancy status of sections, inspired by the “rubber-band” model described
in [AT12]. This implicit model is advantageous compared to the explicit one, because
it can model arbitrary numbers of trains of arbitrary length. Therefore, we do not
have to investigate how many trains we should put in the model and how long trains
should be for the safety proof to be sound. Additionally, in the implicit model of train
movements, train length – in terms of numbers of sections that a train occupies – may
vary as trains move. This variation reflects the actual view of interlocking systems of
the train length: although trains have fixed geometric length, their length – in terms
of the number of sections that they occupy – as seen by the interlocking systems is
not fixed.

Trains in our model are assumed to be well-behaved, meaning that all of the
following hold.

TA-01 Trains always move according to the actual settings of the physical railway
network under consideration, e.g., if the actual position is PLUS (MINUS) then trains
only move from stem end of the point to the plus (minus) end of the point and vice
versa.

TA-02 Trains always stop in front of a signal whose actual aspect is CLOSED, and they
only proceed when authorized by a signal whose actual aspect is OPEN.

TA-03 Trains do not “fly” – i.e., they do not move from a section ta to a further section
tb without making a continuous path through the intermediate sections between ta
and tb.

TA-04 Trains can change their travel direction but do not reverse.

These assumptions are well justified for the following reasons. First, in ETCS Level
2, the sophisticated onboard computer systems in a fitted train ensure that the train
would not go further than what it is authorized to move forward and that the train
does not accidentally reverse [ERT14, chap. 3]. An emergency brake will be triggered
to bring a train to a full-stop if the train violates its movement authority. Second,
the primary causes of train flying as seen by interlocking systems are failures in the
train detection systems (also known as Track Occupancy Detection systems) which
detect whether a section is vacant or occupied by a train [TVA09]. New interlocking
systems use axle counters which are far more reliable than track circuits used by
legacy systems for train detection. Thus, for simplicity at the high level design,
failures in train detection systems are not included in the model, hence eliminating
the possibilities of having flying trains.

The movements of a train as seen by interlocking systems are like an “elastic
band” as illustrated in Figure 6.7. The band extends to the next section in front of
the train when its head starts occupying the next section – movement from (a) to (b)
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in Figure 6.7. The band shrinks when the train leaves the section occupied by its tail
– movement from (b) to (c) in Figure 6.7.

(a)

(b)

(c)

Figure 6.7: “Elastic band” train movements.

Train movements in the “elastic band” model are categorized into the following
types: (1) head movements, (2) tail movements, (3) change direction movements
(only on linear sections), (4) entering interlocked area movements, and (5) leaving
interlocked area movements. The interlocked area is a network or the fraction of a
network under control of the considered interlocking system. The head movements
and tail movements respectively model the extensions and shrinking shown in
Figure 6.7. The movements of type (3) model the case where a train changes
its travel direction. Note that change direction movements differ from reversing
movements: in a change direction movement, the driver has to move from the front
driver cab to the back driver cab and drives the train forward (w.r.t. the direction
that the driver cab is facing), while in a reversing movement the driver stays in the
front driver cab and drives the train backward [ERT14, Subset 026, Sect. 5.12-13].
Change direction movements are allowed in our model of train movements, while
reversing movements are not allowed, as stated in assumption TA-04. Note that the
interlocking controller cannot distinguish between change direction movements and
reversing movements because they result in the same changes in occupancy statuses
of sections (the only way the interlocking controller “sees” the train movements).
Therefore the interlocking controller deals with them in the same way. It is the
responsibility of the onboard system to ensure that the train does not reverse, unless
explicitly authorized [ERT14, Subset 026, Sect. 3.14-15]. Thus, handling reversing
movements is beyond the scope of interlocking systems. The movements of type (4)
and (5) account for the movements at the boundary (see Section 4.2 for the boundary
configuration) of the network under control. In other words, they model how trains
are put into the network and taken out of the network under consideration. The
subsequent paragraphs describe in details the movements of each type.

In the subsequent paragraphs, the macro names in the text in the guards and
updates – e.g., head_leaves – are hyperlinks, they are linked to their respective
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specification in Appendix D. One can follow the link to see the full specification
of the macros.

Head Movements. A head movement can occur on a non-boundary (see Section 4.2)
section e if it is occupied by a train and the head of the train is in the section, i.e.,
the H and O bits of the variable representing the occupancy status of e are set (see
Section 6.2.1). If e is a linear section and has a signal s intended for the same direction
as the direction of the train, then the actual aspect of s has to be OPEN. The effect
of the head movement is illustrated in Figure 6.8: the head of the train leaves e,
effectively toggles the H bit of e’s occupancy status variable; and then the head of the
train enters the next section in the travel direction – in this case up(e), consequently
toggles the H and O bits of the occupancy status variable of up(e).

e up(e)
s

e up(e)
s

CURRENT NEXT

Figure 6.8: Example of head movement on section e from down to up.

The conditions and effects on occupancy status variables can be modelled effi-
ciently by bit-wise AND (&), OR (|), and XOR (⊕) operators and arithmetic shift left
(≪) and arithmetic shift right (≫) operators. The following proposition models the
head movement transition for a linear section.

Guard

• e is not a boundary section, and its neighbouring section in the travel direction
is not a boundary section. The movements at boundary sections are specified
by entering/leaving interlocked area movements explained in the subsequent
paragraphs. The conditions determining boundary sections are specified by
is_boundary_sec_up and is_boundary_sec_down macros. Detail about these macros
can be found in Appendix D.

• The head of the train has to be in the current section e, i.e., the H and O bits of the
occupancy status variable is on. This is specified by occupied_with_head macro.

• if there is signal mounted along e in the direction of travel, it has to be in OPEN(1)
aspect.

Update

• the H bit is toggled in current section (specified by head_leaves macro), and
• the H and O bits are toggled for the next section (specified by head_enters_next

macro).
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([=] l : Linear •
[head_movement_linear_up]
up(l) ∧ ¬is_boundary_sec_up(up(l)) ∧ ¬is_boundary_sec_down(l) ∧
occupied_with_head(l.D2U) ∧ (¬up_sig(l) ∨ up_sig(l).ACT = OPEN)
−→ head_leaves(l.D2U,l.D2U′) ∧ head_enters_next(up(l),l))

([=] l : Linear •
[head_movement_linear_down]
down(l) ∧ ¬is_boundary_sec_down(down(l)) ∧ ¬is_boundary_sec_up(l) ∧
occupied_with_head(l.U2D) ∧ (¬down_sig(l) ∨ down_sig(l).ACT = OPEN)
−→ head_leaves(l.U2D,l.U2D′) ∧ head_enters_next(down(l),l))

If e is a point, then depending on the point’s position, the corresponding next section
will be updated:

• If the train is travelling from stem end toward plus/minus ends and the point’s po-
sition is PLUS (MINUS) then the next section is the neighboring section connected
to e’s plus (minus) end.

• If the train is travelling from plus/minus ends toward stem end, then the next
section is the neighboring section connected to e’s stem end.

([=] p : Point •
[head_movement_point_stem_to_plus] occupied_with_head(p.S2PM) ∧ p.POS = PLUS
−→ head_leaves(p.S2PM,p.S2PM′) ∧ head_enters_next(plus(p),p))

([=] p : Point •
[head_movement_point_stem_to_minus]
occupied_with_head(p.S2PM) ∧ p.POS = MINUS
−→ head_leaves(p.S2PM,p.S2PM′) ∧ head_enters_next(minus(p),p))

([=] p : Point •
[head_movement_point_plus_to_stem] occupied_with_head(p.P2S) ∧ p.POS = PLUS
−→ head_leaves(p.P2S,p.P2S′) ∧ head_enters_next(stem(p),p))

([=] p : Point •
[head_movement_point_minus_to_stem]
occupied_with_head(p.M2S) ∧ p.POS = MINUS
−→ head_leaves(p.M2S,p.M2S′) ∧ head_enters_next(stem(p),p))

Tail Movements. A tail movement can occur on a non-boundary section e if it is
occupied by a train and the tail of the train is within the section, while the head of
the train is not in e. This means that e’s occupancy status variable has the T and O
bits set, and the H bit unset, i.e., its value is 0b011. Figure 6.9 illustrates the effect
a tail movement: the tail of the train vacates e, hence resetting e’s occupancy status
variable to 0; then the tail of the train moves to the next section in the travel direction
– in this case up(e), consequently toggles the T bit of the occupancy status variables
of up(e).
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e up(e) e up(e)

CURRENT NEXT

Figure 6.9: Example of tail movement on section e from down to up.

Guard

• e is not a boundary section, and its neighbouring section in the travel direction is
not a boundary section. Conditions for boundary sections have been explained
in the above paragraph about head movements.

• The tail of the train is in the current section, while the head is not. This is specified
by occupied_with_only_tail macro.

Update

• The current section is set to vacant for current section (specified by tail_leaves
macro), and

• The bit T of the next section is toggled (specified by tail_enters_next macro).

([=] l : Linear •
[tail_movement_linear_up]
up(l) ∧ ¬is_boundary_sec_up(up(l)) ∧ ¬is_boundary_sec_down(l) ∧
occupied_with_only_tail(l.D2U)
−→ tail_leaves(l.D2U,l.D2U′) ∧ tail_enters_next(up(l), l ))

([=] l : Linear •
[tail_movement_linear_down]
down(l) ∧ ¬is_boundary_sec_down(down(l)) ∧ ¬is_boundary_sec_up(l) ∧
occupied_with_only_tail(l.U2D)
−→ tail_leaves(l.U2D,l.U2D′) ∧ tail_enters_next(down(l),l))

As with head movements, if e is a point, then tail movements on it will depend
on e’s physical position. If e is a point, then depending on the point’s position, the
corresponding next section will be updated, analogously to the head movements.
([=] p : Point •
[tail_movement_point_stem_to_plus]
occupied_with_only_tail(p.S2PM) ∧ p.POS = PLUS
−→ tail_leaves(p.S2PM,p.S2PM′) ∧ tail_enters_next(plus(p),p))

([=] p : Point •
[tail_movement_point_stem_to_minus]
occupied_with_only_tail(p.S2PM) ∧ p.POS = MINUS
−→ tail_leaves(p.S2PM,p.S2PM′) ∧ tail_enters_next(minus(p),p))
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([=] p : Point •
[tail_movement_point_plus_to_stem]
occupied_with_only_tail(p.P2S) ∧ p.POS = PLUS
−→ tail_leaves(p.P2S,p.P2S′) ∧ tail_enters_next(stem(p),p))

([=] p : Point •
[tail_movement_point_minus_to_stem]
occupied_with_only_tail(p.M2S) ∧ p.POS = MINUS
−→ tail_leaves(p.M2S,p.M2S) ∧ tail_enters_next(stem(p),p))

Change Direction Movements. Change direction movements allow trains to change
their travel direction to the opposite. As specified in [ERT14, pages 5.12-13], a change
direction movement has to follow a strict procedure that requires the train to have
reached the end of its movement authority and be at a stand-still position. For
simplicity, it is assumed that a train is only allowed to change its travel direction on a
linear section which has signals intended for both up and down directions as shown
in Figure 6.10. A train can change its direction on a section e when the signal the
train is facing has the actual aspect of CLOSED, and the whole train is inside e. These
conditions ensure that no further movements can be made forward by the train, i.e.,
the train is in a stand-still position. The effect of the movement is straight-forward:
the values of the occupancy status variables e.D2U and e.U2D are swapped. Note
that we do not check the setting of s1 in the condition, however the existence of s1 is
essential, since the interlocking controller should use it to prevent the unauthorized
movements of the train after it has changed the direction.

s1

e
s2

s1

e
s2

CURRENT NEXT

Figure 6.10: Change direction from up to down. It is analogous from down to up.

Guard

• e must have signals intended for both up and down directions.
• The whole train has to be within the section.
• The signal in the current travel direction is closed.

Update

• Swap the values of the HTO variables between two directions. This is specified by
swap_up_down_vars macro.
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([=] l : Linear •
[change_direction_up_to_down]
down_sig(l) ∧ up_sig(l) ∧ l .D2U = 0b111 ∧ up_sig(l).ACT = CLOSED
−→ swap_up_down_vars(l))

([=] l : Linear •
[change_direction_down_to_up]
down_sig(l) ∧ up_sig(l) ∧ l .U2D = 0b111 ∧ down_sig(l).ACT = CLOSED
−→ swap_up_down_vars(l))

Entering Interlocked Area Movements. A train enters an interlocked area by two
steps: (a) first the head of the train enters the interlocked area, then (b) the tail enters
the interlocked area as shown in Figure 6.11 and Figure 6.12, respectively. The details
about these movements are explained in the following.

non-interlocked

e
s

l

CURRENT NEXT

non-interlocked

e
s

l

Figure 6.11: The head of a train enters interlocked area.

e e

CURRENT NEXT

non-interlocked

s
l

non-interlocked

s
l

Figure 6.12: The tail of a train enters interlocked area.

(a) The head of a train can enter the section e at the boundary of the interlocked
area when the actual aspect of signal s is OPEN, as shown in Figure 6.11.
Consequently, the head of the train is simply “put” on e – i.e., the H and O bits of
e’s occupancy status variable are toggled. The following proposition expresses
the transition for the example shown in Figure 6.11.

Guard
• The signal s, which controls the entry movement into interlocked area, is

open
Update
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• Toggle the H and O bits of the occupancy status variable of e by making an
xor with 0b101 = 5. In other words, we “put” the head of the train on the
section. This is specified by head_enters macro.

([=] l : Linear •
[enter_interlocked_area_head_from_down]
is_boundary_sec_down(l) ∧ up_sig(l).ACT = OPEN
−→
let e = up(l) in

head_enters(e.D2U,e.D2U′)
end)

([=] l : Linear •
[enter_interlocked_area_head_from_up]
is_boundary_sec_up(l) ∧ down_sig(l).ACT = OPEN
−→
let e = down(l) in

head_enters(e.U2D,e.U2D′)
end)

(b) The tail of the train can enter the boundary section e after the head has entered
the section. The condition is that e is occupied by a train without its tail in the
section, as shown in the left of Figure 6.12. If this condition holds, then the
tail of the train will be “put” into the network – i.e., the T bit of e occupancy
status variable is toggled – as illustrated in the right of Figure 6.12. The following
proposition expresses the transition for the example in Figure 6.12.

Guard
• The section e is occupied without a tail (specified by occupied_without_tail

macro) in the direction coming from the non-interlocked area.
Update
• Toggle the T bit of the occupancy status variable of e by making an xor with

0b010 = 2. This is specified by tail_enters macro.

([=] l : Linear •
[enter_interlocked_area_tail_from_down]
is_boundary_sec_down(l) ∧
let e = up(l) in

occupied_without_tail(e.D2U)
end
−→
let e = up(l) in

tail_enters (e.D2U,e.D2U′)
end)
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([=] l : Linear •
[enter_interlocked_area_tail_from_up]
is_boundary_sec_up(l) ∧
let e = down(l) in

occupied_without_tail(e.U2D)
end
−→
let e = down(l) in

tail_enters (e.U2D,e.U2D′)
end)

Leaving Interlocked Area Movements. Similar to entering interlocked area move-
ments, a train leaves an interlocked area in two steps: (a) first the head of the train
leaves the interlocked area, then (b) the tail leaves the interlocked area as illustrated
by Figure 6.13 and Figure 6.14, respectively. These movements are further elaborated
below.

e
s

e
s

CURRENT NEXT

non-interlocked

l

non-interlocked

l

Figure 6.13: The head of a train leaves the interlocked area.

non-interlocked
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CURRENT NEXT

Figure 6.14: The tail of a train leaves the interlocked area.

(a) The train can leave the interlocked area at a boundary section e if the train
occupies e in the direction toward the non-interlocked area and the head of the
train is inside e. As the effect, the head of the train is removed from e – i.e.,
the H bit of e’s occupancy status variable is toggled. The following proposition
specifies the transition for the movement shown in Figure 6.13.

Guard
• The section e is occupied with the head inside the section. This is specified

by occupied_with_head macro.
Update
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• Toggle the H bit of e’s occupancy status variable (specified by head_leaves
macro).

([=] l : Linear •
[leave_interlocked_area_head_to_down]
is_boundary_sec_down(l) ∧
let e = up(l) in

occupied_with_head(e.U2D)
end
−→
let e = up(l) in

head_leaves(e.U2D,e.U2D′)
end)

([=] l : Linear •
[leave_interlocked_area_head_to_up]
is_boundary_sec_up(l) ∧
let e = down(l) in

occupied_with_head(e.D2U)
end
−→
let e = down(l) in

head_leaves(e.D2U,e.D2U′)
end)

(b) The tail of a train can leave the interlocked area at a boundary section e if e is
occupied in the direction toward the non-interlocked area, the tail of the train is
in the section, and the head of the train is not in e. The train is removed from the
interlocked area – i.e., e’s occupancy status variable is reset to 0 – as the effect
of the transition. The movement in Figure 6.14 is modelled by the following
proposition.

Guard
• The section e is occupied with only the tail inside the section. This is specified

by occupied_with_only_tail macro.
Update
• Reset e’s occupancy status variable to 0. This is specified by tail_leaves

macro.

([=] l : Linear •
[leave_interlocked_area_tail_to_down]
is_boundary_sec_down(l) ∧
let e = up(l) in

occupied_with_only_tail(e.U2D)
end
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−→
let e = up(l) in

tail_leaves (e.U2D,e.U2D′)
end)

([=] l : Linear •
[leave_interlocked_area_tail_to_up]
is_boundary_sec_up(l) ∧
let e = down(l) in

occupied_with_only_tail(e.D2U)
end
−→
let e = down(l) in

tail_leaves (e.D2U,e.D2U′)
end)

Note that in Figure 6.13, the signal s is not controlled by the considered inter-
locking system, but the neighboring one. Therefore, in our model, we do not check
the setting of s for the movement shown in Figure 6.13. Intuitively, this is an over-
approximation because trains would move more freely than they are supposed to.
This over-approximation does not jeopardize the soundness of the safety proof of the
considered interlocking. Moreover, if we want to verify the safety of the combined
model of two interlockings, the train movement model can easily be restricted to
allow trains to pass s only when s is OPEN. Thus, the safety of the combined model
can be inferred from the safety of the two element interlocking models. A formal
proof for such composition may be made, however it is out of the scope of this work.

6.3 Generic High-level Safety Properties

Interlocking systems must at least guarantee the high-level safety properties of no
collisions and no derailments. These properties can be expressed as invariants over
the occupancy status variables of linear and point sections in the given network.
Basically, an interlocking system is safe if no hazardous situations occur on any linear
or point sections at any time. The invariants ruling out hazards of different types on
a section shown in Figure 6.15 are explained in the following paragraphs. Note that
all occupancy status variables are non-negative as described in Section 6.2.1. As a
consequence, all components in the formulas in the following paragraphs are non-
negative.

Head-to-head collision on a section. A head-to-head collision occurs on a linear
section l, when two trains running in opposite directions meet in l. The following
invariant rules out such cases.
[no_head_to_head_collisions_linear]
(∀l : Linear • (¬is_boundary_sec(l))⇒ (l.D2U * l.U2D = 0))
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!

(a) Head-to-head collision

!

(b) Head-to-tail collision

!

(c) Derailment on a point

Figure 6.15: Hazardous situations on a section

Since both l.D2U and l.U2D are non-negative, the above formula ensures that l is
never occupied in both direction up and down (i.e., when l.D2U > 0 and l.U2D > 0).

A head-to-head collision occurs on a point p, when at least two trains running
in two different directions – in the three possible travel directions on p: stem-to-
plus/minus, plus-to-stem, and minus-to-stem – meet in p. Such cases can be ruled
out by the following invariant.

[no_head_to_head_collisions_point]
(∀p : Point • p.M2S * p.S2PM + p.P2S * p.S2PM + p.P2S * p.M2S = 0)

Head-to-tail collision on a section. A head-to-tail collision occurs on a section e
when a train T2 enters e while it is already occupied by another train T1 travelling
in the same direction. Although two trains may never collide if e is long enough to
accommodate both of them, or if T1 travels at higher speed than T2 does, these cases
are still considered as collisions. These situations are reflected by the values of the
occupancy status variables of e. For example, when e is occupied by a train T1 in the
direction from down to up, l.D2U will have its O bit set. If another train T2 enters e in
the same direction, the H and O bits of l.D2U will be toggled according to the train
movement model described in Section 6.2.7, resulting in l.D2U having O bit unset,
while at least one of its H or T bits are set. Therefore, a head-to-tail collision on e in
the direction up is detected by a violation of one of the following formulas where &
is bit-wise and operator.

[no_head_to_tail_collisions_linear ]
(∀l : Linear •
(¬is_boundary_sec(l))⇒
( l .D2U * (1 − (l .D2U & 1)) + l.U2D * (1 − (l .U2D & 1)) = 0))

[no_head_to_tail_collisions_point]
(∀p : Point •
p.S2PM * (1 − (p.S2PM & 1)) + p.P2S * (1 − (p.P2S & 1)) +
p.M2S * (1 − (p.M2S & 1)) = 0)
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Derailment on a point. A derailment occurs when a train traverses a point pwhich
is not locked in the correct position for the travel direction of the train. Such cases are
ruled out by the following invariant in IDL where≫ is arithmetic shift right operator.

[no_derailments]
(∀p : Point •
p.POS * p.P2S + (1 − (p.POS & 1)) * p.M2S + (p.POS≫ 1) * p.S2PM = 0)

The above invariant rules out the following cases: (a) a train is entering a
point from its plus end (p.P2S > 0) while the point is in not in the plus position
(p.POS > 0); (b) a train is entering a point from its minus end (p.M2S > 0) while the
point is not in the minus position (1− (p.POS & 1) > 0); and (c) a train is entering a
point from its stem end (p.S2PM > 0) while the point is in the intermediate position
((p.POS≫ 1) > 0).

6.4 Verification Strategy

This section explains how the third step in the 4-step V&V approach used in our
method, step VV-3, is performed on the case studies for the forthcoming Danish
interlocking systems. A verification strategy which is a combination of BMC and
inductive reasoning is employed. The similar strategy has successfully been used
in [HPK11].

For a given interlocking system, the generic behavioural model described in
Section 6.2 and generic safety properties described in Section 6.3 are instantiated with
the concrete configuration data in step DK:5 and DK:6 of the V&V flow described
in Section 3.7, respectively. Following the semantics of ICL and IDL described
in Section 5.2, this instantiation results in a concrete behavioural model of the
given interlocking systems in the form of a Kripke structure K, and concrete safety
properties ϕ in the form of an invariant in K. To prove that the safety property
ϕ is indeed an invariant in K, in step DK:7, we employ the k-induction scheme
described in Section 2.11.2 in our verification strategy. As mentioned in Section 2.11.2,
it is necessary to strengthen the safety property ϕ with another invariant ψ in
order to eliminate spurious counter-examples. Then instead of proving that ϕ is
an invariant in K, we prove that ϕ ∧ ψ is an invariant in K. ψ is a conjunction of
a number of propositions restricting the starting state of the induction step. The
list of all strengthening invariants and their associated propositions can be found
in Appendix E. An example of such propositions is given in the following.

Train Integrity. Some states are not feasible and are not reachable in the model of
a given interlocking system because the combinations of the values of the occupancy
status variables of sections (see Section 6.2.1) in such states reflect situations that are
not physically possible. Examples of infeasible states are shown in Figure 6.16. A
section e is occupied by a train T1, and the head of the train is not in e; while the
next section e′ of e in the travel direction is occupied by another train T2 as shown in
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Figure 6.16a, or e′ is vacant as shown in Figure 6.16b. These situations are physically
impossible, because they imply that the train T1 does not have a head.

e e'
(a)

e e'
(b)

Figure 6.16: Examples of infeasible states ×

In order to eliminate such states, we strengthen the safety properties with train
integrity invariants. As illustrated intuitively in Figure 6.17, train integrity invariants,
as the name suggests, ensure the integrity of all the trains (modelled implicitly by the
occupancy status variables of sections) in the model, i.e., every train is a unified object
with a head and a tail, except for trains that are entering or leaving the considered
network. The idea is simple: starting from a section e that is occupied by the head (tail) of
a train, if we search backward (forward) – w.r.t. the train’s travel direction – we should find
a unified train without gap. In other words, we should eventually find the tail (head)
of the same train somewhere in one of the previous (next) sections of e – w.r.t. to the
train’s direction – or the boundary of the interlocked area, before we find the head
(tail) of another train, or a vacant section.

Figure 6.17: Train integrity invariant illustration ✓

The train integrity invariants can be formalized as a conjunction of formulas over
the track occupancy variables. For each possible travel direction on a non-boundary
section e, there is a formula expressing the constraints between the occupancy status
variable of e and the occupancy status variable of the next section e′ in the same travel
direction. The pattern of such a formula depends on which type of section (linear
or point) the current section e and the next section e′ are. For instance, for travel
direction up and a linear section e that has another linear section e′ as the neighbor in
travel direction up – i.e., e′ = up(e), the formula will take the following form:

(e.D2U & 0b101) = 0b001⇔ (e′.D2U & 0b011) = 0b001 (6.1)

This formula expresses that section e is occupied by a train in direction up (the O bit
of e.D2U is 1) without the head of the train being on the section (the H bit of e.D2U
is 0), iff section e′ is also occupied by a train in direction up (the O bit of e′.D2U is 1)
without the tail of the train being on the section (the T bit of s′.D2U is 0). It can easily
be seen that Equation 6.1 rules out the situations shown in Figure 6.16. Equation 6.1
shows the expressiveness of our state encodings allowing properties to be efficiently
and compactly formulated.
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6.5 Experiments with Our Toolchain

The verification strategy presented in Section 6.4 has been implemented in the
prototype toolchain described in Section 3.8. We have used the toolchain to verify
successfully the safety properties for model instances (cases) of a number of railway
networks as shown in Table 6.18. The cases in Table 6.18 are listed in the approximate
order of increasing complexity. The first seven cases are made-up networks inspired
by the typical examples used in other studies about formal verification of railway
interlocking systems [HBK10; Win12; Jam+14; HPP14]. The network layouts of these
cases are shown in Appendix C. For example, Tiny is the most simple case with
just a single straight track and two routes, while Lyngby is inspired by the layout of
Lyngby station in Denmark, with three tracks and 24 routes. The last three cases are
real networks. Gadstrup-Havdrup (Gt-Hd) and Køge are extracted from the Early
Deployment Line (EDL) in the Danish Signalling Programme. The EDL is the first
regional line in Denmark to be commissioned in the Danish Signalling Programme.
The line spreads over 55 kilometers from Roskilde station to Næstved station. There
are in total eight stations in the EDL ranging from simple stations similar to the one
shown in Figure 2.2 (named Mini in Table 6.18), to complex stations such as Køge.

Table 6.18: Verification results for different networks using simple induction (k = 1).
Time is measured in seconds, memory usage is measured in MB.

Linears Points Signals Routes log10(|S|) Time Memory
Tiny 3 0 4 2 14 2 27
Toy 6 1 6 4 31 3 104
Twist 8 2 8 8 50 9 206
Fork 9 2 8 6 48 9 202
Cross 8 2 8 10 53 15 232
Mini 6 2 8 12 52 19 231
Lyngby 11 6 14 24 108 373 1143
Gt-hd 21 5 24 33 152 399 1865
Køge 57 23 60 73 419 7928 12881
EDL 110 39 126 179 863 38934 40150

In our first trials of verifying the models, we used simple induction (k-induction
with k = 1) with only safety properties. As discussed in Section 2.11, we got
spurious counter-examples because the safety properties are not strong enough to
be inductive. In order to remedy the issues, we tried two different approaches:
(1) increasing k, and (2) strengthening the invariant to be verified (in this case, the
safety properties). It turned out that the verification time increased significantly as
k increased in the former approach, making it impossible to verify even the small
networks. In the latter approach, we were able to derive strengthening properties ψ
(see Section 2.11) for which the verification could be done just using simple induction.
According to De Moura et al. [MRS03], any k-induction proof can be reduced to a
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simple induction proof with invariant strengthening. Note, however, that in some
applications, k-induction has been shown to be advantageous, see, for example,
[HPK11]. Table 6.18 shows the results of the final verification using the invariant
strengthening approach. Each row of the table lists the size of a network in terms
of the number of linear sections, points, signals, and routes in the configuration,
and the approximate number of possible states (|S|) in the corresponding model
instance. For brevity, the approximate number of states are represented in their
common logarithm values (log10(|S|)); for example, tiny case has approximately 1014

possible states. The two last columns show the approximate accumulated verification
time (in seconds) and memory usage (in MB). All experiments have been performed
on a machine with Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz, 64GB RAM, CentOS
6.6, Linux 2.6.32-504.8.1.el6.x86 64 kernel.

We also injected errors into models. Counter examples for these were normally
found in relatively short time. This appears to be a general trend when dealing with
interlocking systems [JR11]. In a few cases, it took long time to find counter examples.
Such examples usually represent very subtle errors in the model or the configuration
data, which may be easily overlooked by inspection.

6.6 Comparison with other Techniques

In order to study how other invariant checking techniques, such as Binary Decision
Diagram (BDD)-based [Bur+92], CounterExample-Guided Abstraction Refinement
(CEGAR) [Cla+03], Incremental Construction of Inductive Clauses for Indubitable
Correctness (IC3), or Cone of Influence (COI) techniques perform on our models
compared to our toolchain, we translated our model into the input language of
nuXmv.

nuXmv is “a new symbolic model checker for the analysis of synchronous finite-
state and infinite-state systems” [Cav+14]. It extends one of the most popular
open-source model checkers, NuSMV2 [Cim+02], with support for various state-of-
the-art abstraction techniques. The subsequent paragraphs report the translation,
techniques, configurations, settings, results, and discussion of our benchmarking
experiments.

Translation. In order to ensure a faithful translation as the ground for our com-
parison, the following principles are used for translating the behavioural model and
safety properties (generated in step DK:5 and step DK:6, respectively, of the flow
described in Section 3.7) to the input language [Boz+14] of nuXmv.

• Variables representing the state space as described in Section 6.2.1 are translated to
their corresponding primitive types in nuXmv, i.e., they are translated to unsigned
word [Boz+14].

• The transition relation of the Kripke structure representing behavioural model is
translated to a TRANS constraint [Boz+14] in nuXmv.
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• Safety properties and strengthening invariants are translated to nuXmv’s invariant
specifications INVARSPEC [Boz+14].

Techniques. We tried to verify the safety properties in the nuXmv translation of the
concrete models using various invariant checking techniques [Boz+14] supported by
nuXmv as listed in the following. Further detail about these techniques can be found
in nuXmv user manual [Boz+14].

(1) check invar: BDD-based invariant checking using reachability analysis

(2) check invar bmc inc: induction using a SAT solver, incremental algorithm

(3) check invar cegar predabs: performs CEGAR [Cla+03] loop

(4) check invar ic3: checking invariant using IC3 [Bra11] engine

(5) check invar inc coi bdd: BDD-based incremental COI [Bie+99b] invariant check-
ing

(6) msat check invar inc coi: SMT-based incremental COI invariant checking

Configurations. Each technique is run on three different configurations of the
properties to be verified denoted by the suffixes appended to the name of the
technique as described in the following.

(a) all: the technique is used to verify the conjunction of all properties including
both safety properties described in Section 6.3 and strengthening invariants
described in Section 6.4.

(b) safety: the technique is used to verify the conjunction of all safety properties
(strengthening invariants are not included).

(c) safety individually: the technique is used to verify each safety property
individually (strengthening invariants are not included).

For example, check invar all means that check invar is used to verify the
conjunction of all properties, including both safety properties and strengthening
invariants.

These configurations allow us to study whether other techniques can verify the
safety properties efficiently without strengthening invariants, which are required
for a successful verification in our toolchain. Note that some techniques work only
with a subset of the above configurations. In such cases, only results of working
configurations are reported.



6.6 Comparison with other Techniques 137

Settings. All experiments are run with nuXmv 1.0.0 on the same machine specified
in Section 6.5, where the evaluation with our toolchain in RT-Tester has been
performed. Each technique is run on networks with increasing complexity as
listed in Table 6.18. Running time and memory usage are profiled during the
experiments. Running time threshold is 24 hours, and memory usage threshold is 54GB.
These thresholds are chosen based on the following factors: the computation capacity
of the machine where the experiments were run, the verification results of our
toolchain as shown in Table 6.18, and the limit amount of time we had for experiments
(experiments should not be run forever). If an experiment exceeds at least one of
these two thresholds and produces no conclusion so far, it will be terminated. Once an
experiment is terminated, no further experiments will be run for the same technique
because the technique would simply reach the thresholds again for more complex
networks.

Results. Table 6.19 shows the running time and memory usage collected from the
benchmarking experiments where rt tester denotes our toolchain implemented in
RT-Tester. For each technique, the running time (in seconds) of successful experiments
are listed in the first row (with white background and underlined), while the
memory usage (in MB) of successful experiments are listed in the second row (with
green background). Experiments that were terminated are marked in yellow or red
background denoting that they have exceeded the running time threshold or the
memory threshold, respectively, without producing any conclusion. The value “-”
denotes the experiments that were not run because the experiments with the same
technique on smaller cases have been terminated due to too long running time or
memory exhaustion. Few techniques, e.g., check invar bmc inc, have running time
and memory usage of zero for tiny case because the experiments ran too quick for
the profiler to measure.

Discussion. As seen in Table 6.19, among all of the techniques used in the bench-
marking experiments, only our toolchain (rt tester) was able to deliver a conclusion
for the largest case, the EDL, within the running time and memory limits. All other
techniques exceeded either the running time threshold or the memory threshold
without delivering a conclusion for the EDL case, hence they were terminated.

As discussed in Chapter 2, checking techniques based on complete model rep-
resentations also failed for the nuXmv tool. The BDD-based invariant checking
technique – check invar – did not perform well on our models. It exceeded the
running time threshold for small cases on all of the three configurations.

BDD-based incremental COI technique – check invar inc coi bdd – did not
perform better compared to its BDD-based peer – check invar. It exceeded the
running time threshold for small cases on all three configurations.

CEGAR technique – check invar cegar predabs – did not perform well on
our models either. When run with configuration all, it exceeded the memory
threshold while refining the abstraction, even for the smallest case. When run with
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configuration safety, or configuration safety individually, it gave a segmentation
fault error as shown in Table 6.19.

IC3 technique – check invar ic3 – was not able to handle the large cases:
it exceeded the memory threshold when run on Køge with configuration all,
and exceeded the running time threshold on even smaller cases when run with
configuration safety or configuration safety individually.

Induction using an SMT solver – msat check invar inc coi – performed better
than our toolchain for small cases when running on configuration all. For large
cases, e.g., Køge, it used more memory and time than our toolchain. Consequently,
it exceeded the memory threshold without delivering a conclusion for the EDL case.

When running induction using an SMT solver – msat check invar inc coi – or
induction using a SAT solver in nuXmv – check invar bmc inc – on configuration
safety or configuration safety individually, the verification time increased sig-
nificantly as a number of unrolled steps k increased, similarly to the case with our
toolchain where we tried to increase k instead of strengthening the properties as
described in Section 6.5. Consequently, both two techniques exceeded the running
time threshold even for the smallest case without delivering an answer. Thus these
results are not shown in Table 6.19. It appears to be a general trend that increasing k
in the k-induction scheme does not work well for our models.

It is evident that when running on configuration all, induction using a SAT solver
in nuXmv – check invar bmc inc – outperformed our toolchain for cases up to Køge
as far as the running time is concerned. On the other hand, it used increasingly more
memory compared to our toolchain as the size of cases grows. As a consequence, the
technique exceeded the memory threshold without delivering a conclusion for the
EDL case. Based on the rate of increasing memory usage of check invar bmc inc
and our toolchain, we would expect the technique to use – for the EDL case – at
least three times the amount of memory it used for verifying Køge case, i.e., at least
93GB. This prediction is based on: (1) our toolchain has slower rate of increasing
memory usage for large cases, and (2) for EDL, our toolchain uses approximately
three times the amount of memory it used for verifying Køge. Therefore our memory
threshold is not the limiting factor preventing the technique from succeeding on the
EDL case in our benchmarking experiments. The analogous arguments are applied
for msat check invar inc coi.

6.7 Related Work

Railway domain has been identified as a grand challenge for computing science
and transport engineering [Bjø04]. Bjørner analysed the results and trends in
formal techniques and tools for development of software for transportation systems
especially railways in [Bjø03]. The author pointed out two major problems for future
research: (1) the need of integrating different techniques and tools for better result,
(2) and the lack of domain understandings. The author proposed a joint research and
development project between the software engineering researchers and transport



140 6 Formal Modelling and Verification of the Danish Interlocking Systems

engineers to establish a conceptual model for railway system to which any actual
railway system would be precisely described.

In recent years, the railway domain has become one of the most promising
application domains of formal methods. Several research groups have investigated
how formal methods would help producing efficiently more robust railway control
systems [Win+06; Win12; BFG05; HPK11; Cao+11; MY09; Jam+14]. An overview
of recent trends, challenges, and lesson learned can be found in [Fan14; FFM12;
Fer+13; Fan12b], and recommendations and best-practices for efficient development
and verification of safe railway control systems are summarized in [HP13a; Fer+13].
Reconfigurable systems and automated, formal verification are among these recom-
mendations that we have followed in our method.

Using formal methods to verify safety properties of interlocking systems is
investigated by numerous research groups. Different approaches are used to obtain
automatically a formal model of an interlocking system from its specification or
implementation, e.g.:

(a) Extract a formal model from the low level implementation of the interlocking
controller in Ladder Logic Diagrams (LLD), e.g., see [Bon13; Bon+13; Jam+13;
Fer+10; JR11; KMS09];

(b) Derive a formal model from the relay circuit diagrams of a relay-based interlock-
ing system, e.g., see [Hax14; Hax12; HKB11; AT12]; or

(c) Derive a formal model from the given network layout and the corresponding
interlocking table for route-based interlocking systems, e.g., see [VHP15; Jam14;
JR14; Jam+14; Win+06; Win12].

Model checking is one of the most promising techniques for verifying safety proper-
ties of interlocking systems thanks to its capability to be fully automated. Unfor-
tunately, due to the state explosion problem, the technique is only able to verify
applications of small size as elaborated in [Fer+10]. Several techniques have been
proposed in order to push the applicability bounds toward industrial size. Win-
ter et al. suggest using ordering strategies optimized for interlocking models [Win12;
Win+06]. A number of high-level abstractions for reducing the complexity of
interlocking models are presented in [Jam+14]. In [Fan12a], Fantechi et al. suggest
a distributed interlocking model whose verification can be divided into small tasks
and verified in parallel. SAT-based model checking and slicing techniques are used
in [JR11]. In order to remedy the problem with state space explosion in the global
model checking approach, a strategy that is a combination of BMC and inductive
reasoning has successfully used for some other applications in previous studies, e.g.,
see [HPK11; HPP14]. In the current work, we employed a similar strategy that is a
combination of SMT-based BMC with inductive reasoning. This strategy allows us
to verify safety properties without having to explore the whole state space, therefore
we were able to push the bounds even further to handle larger networks of industrial
size. For example, only small, simple networks – smaller than Lyngby case shown in
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Table 6.18 – can be verified in [Jam+14]. As another example, the largest network can
be verified with an optimized variable ordering strategy in [Win12] has 41 routes, 9
points, 19 signals, and 31 sections. This is smaller compared to the Køge case, and
much smaller compared to the EDL case in the experiments with our toolchain shown
in Table 6.18. Of course this is a rough comparison, a more thorough benchmarking
taking into account the differences in national regulation and rules is left for future
work.

As an alternative to the model checking approach, theorem proving based
techniques have also shown success in the railway domain, e.g., see [HP00], but these
provide a lesser degree of automation.

There exist also commercial solutions for formal verification of interlocking
systems, e.g., Prover iLock™ offered by Prover® Technology§§. However, they are
proprietary, hence very limited information about the underlying verification method
is publicly available.

Although sequential release has been used in some interlocking systems, we
have not found any published formal models of interlocking systems that integrate
this feature. In [TRN02], the conditions for elements to be unlocked and reused in
sequential releases are pre-computed and specified in the interlocking tables. In our
approach, sequential release is integrated into the behavioural model rather than
into the configuration data. This reduces the complexity of the configuration data
and makes interlocking configuration data relatively independent from the chosen
interlocking approaches.

§§http://www.prover.com/

http://www.prover.com/
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This chapter presents a domain-specific strategy for model-based testing of railway
interlocking systems used in step VV-4 in the 4-step verification and validation
approach presented in Section 3.6. As discussed in Section 2.9, testing and formal
verification are two complementary activities in the software development cycle.
Although formal verification on a system has been performed, testing is necessary
to ensure that the system implementation behaves correctly on the given hardware.

The domain-specific testing strategy presented in this chapter is an extension of
the testing strategy used by Mewes in [Mew10, Sect. 5.2]. The generic requirements
identified for interlocking systems in [Mew10] are adopted and reused. On the other
hand, a domain-specific approach and an SMT solver are used for test generation
instead of implementing test generation directly as in [Mew10]. Furthermore, in
addition to the generic requirements identified in [Mew10], generic requirements
related to sequential release are also identified in the testing strategy presented here.

The remainder of this chapter is organised as follows. First, Section 7.1 motivates
the choice of a domain-specific testing strategy for interlocking systems. Then,
the proposed domain-specific testing strategy is presented in Section 7.2. The
generic requirements identified for the forthcoming Danish interlocking systems
are described in Section 7.3. Section 7.4 and Section 7.5 present some experimental
results and related work, respectively.
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7.1 Why Domain-specific Testing Strategy?

As discussed in [HP15], Dijkstra’s famous statement [BR70] – “Testing shows the
presence, not the absence of bugs” – needs to be clarified. It is indeed possible to prove
the absence of bugs by testing, as long as certain hypotheses of the true behaviours
can be assumed to be valid. Such hypotheses can be formalised by fault models.
A fault model is a three-tuple F = (S ,⊑,D) where S is the reference model – i.e., a
test model in our case, D is a fault domain [PYB96], and ⊑ is a conformance relation
specifying whether a model S ′ ∈ D conforms to the reference model S , denoted
by S ′ ⊑ S [PYB96; HP15]. If such a fault model F can be defined, it is possible to
produce a complete test suite with respect to F . A test suite is complete with respect to
a fault model F if it satisfies the following two conditions [HP14]:

• Sound. If a model S ′ ⊑ S then S ′ will pass all the tests in the test suite.

• Exhaustive. If a model S ′ ̸⊑ S then S ′ will fail at least one test in the test suite.

In other words, a complete test suite will uncover all the faulty implementations,
while it does not reject any correct implementations in the given fault model. Even
if the SUT lies outside the fault domain, a complete test suite with respect to a given
fault domain has been proved to have significantly higher test strength compared to
other approaches [HP14; HHP15]. Throughout the rest of this chapter, a complete
test suite with respect to a fault domain F is abbreviated as a complete test suite.

Although the above result is very interesting in theory, the application of this
in practice is limited, and often infeasible. As the size of the state space of a system
grows, the number of test cases in a complete test suite becomes enormous. Therefore,
it may not be feasible to generate and execute the whole complete test suite within a
reasonable time frame.

In order to remedy the problem, a smaller test suite, which is a subset of the
complete test suite, needs to be selected such that the smaller test suite is as close
to being complete as possible. The smaller test suite can be chosen using different
plausible heuristics. Such heuristic selection is referred as a testing strategy. Here we
name a few common strategies:

(a) Random testing strategy. In this approach, test cases are created by generating
random values as input to the SUT [Ham94]. Consequently, random test cases
are chosen from a complete test suite. Although this process can be highly
automated, it results in a rather weak test suite as the creation of test cases is
not guided by the test model. As a consequence, random testing is often used
as a baseline for evaluating the strength of a test suite [HHP15; HP13b].

(b) Domain-specific strategy. In a domain-specific approach, a smaller test suite is
chosen using domain knowledge and experience. The intuition is that domain
engineers would have experience on where, when, and how a system would
fail. Such insight would let us decide which test cases are more important than
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others. This would at least ensure that the most important parts of a system are
exercised.

(c) Equivalence class testing strategy. In equivalence class testing, a complete test suite
is partitioned into disjoint equivalence classes. An equivalence class is a set of test
cases for which the system behaves the same way, i.e., the behaviours of the
system are not exercised more or less if only one test case in an equivalence
class is tested, or all the test cases in the equivalence class are tested. If such a
partition can be made, then it is possible to produce much a smaller test suite
by selecting one test case from each equivalence class. This smaller test case
would be as complete as the original test suite. The formal justification and
application of model-based equivalence class testing to ETCS onboard systems
can be found in [HP13b; Bra+14b]. Inspiration for applying equivalence class
testing to railway interlocking systems is discussed in [HP15].

As elaborated in Section 2.6, railway interlocking systems have product line char-
acteristics: they share common generic applications, while each individual system is
obtained by instantiating the generic applications with concrete configuration data.
Naturally, requirements for interlocking systems exist at a generic level and can
be instantiated for each concrete system with a concrete configuration data. This
suggests a generic and domain-specific testing strategy for interlocking systems. This
testing strategy is employed in our method, and it falls into category (b) described
above. An equivalence class testing strategy for interlocking systems will also be
investigated in future work based on the inspiration described in [HP15].

7.2 Domain-specific Testing Strategy

This section describes the proposed domain-specific testing strategy. The basic idea
is that generic requirements and test objectives should be identified for a product line,
e.g., the Danish interlocking systems. Then for each individual interlocking system,
these test objectives are instantiated with concrete configuration data, resulting in
concrete test objectives. Eventually, a test suite is generated for the given system
from the concrete test objectives and a test model which is a refinement of the verified
model generated in step DK:5 of the V&V flow. This test suite ensures that applicable
requirements are exercised for the given system.

The subsequent subsections elaborate the testing strategy in detail. First, Sec-
tion 7.2.1 describes a simplified version of the test generation and execution process
using an SMT solver in RT-Tester – a reference MBT framework [Pel13]. Then
Section 7.2.2 shows how the process is extended with our generic, domain-specific
testing strategy.

7.2.1 Model-based Testing Using an SMT Solver
Figure 7.1 shows a simplified test generation and execution process in an MBT
framework using an SMT solver. The process involves the following steps:
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TEST GENERATION & EXECUTION

(1) Requirements

(2) Test Objectives(3) Test Model

Test Generation Engine

(5) Test Oracles

(4a) Symbolic
Test Cases

SMT Solver

(4b) Test Cases Test Execution Engine SUT

(6) Test Verdicts +
Traceability Data Not fully automated

Automated

Figure 7.1: Model-based testing using an SMT solver

(1) The process starts with requirements expressed in an appropriate logic. We
use LTL for this purpose in the work presented in this dissertation. These
requirements may have been identified automatically from the test model or
provided manually.

(2) For each requirement, a test objective – i.e., an LTL formula characterizing the test
cases contributing to the requirement – is derived. Note that there is no general
rules for deriving a test objective from an arbitrary requirement. However, rules
exist for requirements expressed in certain forms. For example, for a requirement
expressed by the LTL formula of the form G(α⇒ β) the test objective is F(α), as
we would like to check that β holds whenever α holds, thus it is not interesting
when α does not hold. Note that the concept of test objectives is quite similar
to the concept of trap properties in test generation with model checkers [FWA09;
Bro+05]. The difference here is that witnesses of a test objective are used to derive
test cases, while counter-examples of a trap property are used to derive test cases.
This is due to the fact that model checkers are meant to prove properties, while
SMT solvers try to find satisfiability assignments for properties.
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(3) A test model formalised as an IOSTS is created.

(4) A test case for a given test objective ϕ shall be derived from a finite path s0.s1 . . . sk
in the test model starting from the current model state s0, and satisfying ϕ. Note
that s0 is not necessary to be an initial state of the test model, it can also be, e.g.,
the last state visited by the previous test case in the test procedure when we run
test cases continuously without resetting the SUT. The calculation of a test case
from a test objective and a test model is done as in the following.

(a) A test generation engine transforms the test objective ϕ into a symbolic test
case – a proposition characterising paths in the test model starting from s0
and satisfying ϕ. This results in a symbolic test case of the following form.

tc ≡ J(s0) ∧ π(s0, . . . , sk) ∧ g(s0, . . . , sk) (7.1)

where
• J(s0) is a proposition characterising the current model state s0;
• π(s0, . . . , sk) is the proposition characterising a path from s0 to sk in the

test model as defined in Equation 2.4; and
• g(s0, . . . , sk) is the translation of ϕ on a path from s0 to sk using the bounded

semantics of LTL formulas described in [Bie+06; Bie+99a].
(b) Equation 7.1 is then solved by an SMT solver, the SONOLAR solver [PVL11]

in our case. A solution of Equation 7.1 represents a path starting from s0 in
the test model and satisfying ϕ. The states in the path are then applied the
restriction operation described in Section 2.11.3 to input variables, resulting
in the sequence of inputs for a test case for ϕ.

(5) The test generation engine generates also test oracles from the test model.

(6) Test cases generated in step (4) are executed on a SUT, the results are checked by
the test oracle generated in step (5) to produce the test verdicts. The traceability
data is also derived automatically during test generation and execution [HP15].

7.2.2 Extended Test Generation and Execution Process

Figure 7.2 shows the test generation and execution process in our method. It is
a more detailed version of the test generation and execution shown in Figure 3.3.
The test generation and execution in Figure 7.2 extends the process described in
Section 7.2.1 with a generic, domain-specific strategy. The generation and execution
from step (4) onward is unchanged compared to the process described in Section 7.2.1.
The main difference in the extended process is how the test model and test objectives
are obtained as explained in the following.
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DOMAIN-SPECIFIC TESTING STRATEGY Generic Requirements

Generic Test Objectives Configuration Data

Test Generator

Test ObjectivesTest Model

Verified Behavioural
Model Instance

TEST GENERATION
& EXECUTION SUT

(6) Test Verdicts +
Traceability Data Not fully automated

Automated
Model refinement

Figure 7.2: Test generation and execution process. The yellow rectangle represents
the part of the process framed in the yellow rectangle in Figure 7.1.

Test Objectives. For a given system, test objectives are generated from generic
requirements by the following procedure, see Figure 7.2.

(a) For a product line, generic requirements are identified. The generic requirements
identified for the Danish interlocking systems are presented in Section 7.3. The
generic requirements are specified in IDL described in Chapter 5.

(b) For each identified generic requirement, a generic test objective characterising test
cases contributing to the given generic requirement is derived. This derivation
is similar to the step (2) described in Section 7.2.1, except that the requirements
and their corresponding test objectives are generic. The generic test objectives
are also specified in IDL.

(c) A test generator – ingredient DK:g in the method described in Chapter 3 –
instantiates the generic test objectives with a wellformed configuration data,
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resulting in concrete test objectives. This is the step DK:8 in the V&V flow
described in Section 3.7.

Test Model. One of the challenges in MBT is how to obtain a correct test model. As
elaborated in Chapter 6, using BMC and inductive reasoning, we can verify the safety
properties of a model instance K generated in step DK:5 of the V&V flow described
in Section 3.7. Therefore, it is sensible to use the verified model instance as the test
model for test generation process. However, the model K is in the form of a Kripke
structure, which is not suitable for test generation yet due to the following reasons.

• K is a closed system evolving according to its transition relation. Thus there
are no explicit notions of input and output. As explained in Section 2.11.3, in
hardware/software integration testing, we need explicit notions of input and
output in the test model in order to specify how we stimulate the SUT and the
expected outcome. Therefore, we need to introduce the notion of input and output
into our verified model instance.

• K is a non-deterministic safe over-approximation of the behaviours of the system.
As the chosen MBT framework has not yet supported test generation and execution
using a non-deterministic model, we need to refine K to a deterministic model TS
and use TS as the test model. As a consequence, the resulting test suite will only
show the conformance of the implementation to TS.

The following rules are used to refine the verified model instance K in a form of a
Kripke structure into a deterministic IOSTS TS that is suitable to use as test model.

• Introduce notions of input and output. The variables representing state space as
described in Chapter 6 are divided into three disjoint sets of input, local, and
output variables. This allows us to consider the behavioural model instance
as an IOSTS TS. Note that the Kripke structure obtained by extending this
IOSTS is the same as K. The division of variables into disjoint sets are merely
for distinguishing the SUT – in this case, the interlocking controller – from its
surrounding environment for testing purposes.

• Refine to a deterministic model. The following rules are used to refine the model
instance to a deterministic one. Note that this refinement is necessary at the
moment because the support for non-determinism in RT-Tester is currently under
development. Once non-determinism is supported, this refinement step is not
needed.

– Transitions in the transition relation described in Chapter 6 that have the same
priority are taken in the order that they appear in the specification.

– Transitions in the transition relation that have different priorities are taken
according to their priorities, i.e., transitions with a higher priority are taken first.
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– Transitions that are generated from a quantified transition in the transition
relation are taken in the alphanumeric order of the values of the quantified
variable.

7.3 Generic Requirements for the Danish Interlocking Systems

This section explains the generic requirements for the forthcoming Danish interlock-
ing systems identified in our domain-specific testing strategy. The requirements
are specified in IDL – the language for describing generic applications presented
in Chapter 5. The syntax is similar to LTL formulas, with some extra constructs for
describing generic requirements, see Chapter 5. Most of the requirements have one of
the forms shown in Table 7.3 (neglecting the quantification for specifying the generic
part) from which the generic test objectives can be derived. Requirements of the third
form (the third row in Table 7.3) are safety requirements. They have been proved in
Chapter 6 using BMC and inductive reasoning. Note that it is not trivial to obtain a
test objective for a requirement of this form. Simple technique would result in test
cases containing only an initial state [FWA09]. Other techniques need to be used to
derive test cases for requirements of this form, see [Bro+05; FWA09].

Table 7.3: Generic requirements and their corresponding generic test objectives

Requirements Test Objectives
G F ϕ F ϕ
G (ϕ⇒ ψ) F ϕ
G ϕ (*)

(*) safety requirements, proved in Chapter 6

For readability, the generic requirements for the Danish interlocking systems
are grouped into three different categories: (1) functional requirements, (2) safety
requirements, and (3) sequential release related requirements. These categories of
requirements are not necessarily disjoint: a requirement may belong to more than
one group. For example, the sequential release related requirement RR-05 may
be also considered as a safety requirement. Therefore, the grouping is mainly for
readability. Note that some of the requirements are also derived from functional
requirements document for the forthcoming Danish interlocking systems. Due to a
confidentiality agreement, these requirements are not included in this thesis. The
subsequent subsections explain in detail each category of the generic requirements.

7.3.1 Functional Requirements

The requirements in this category mainly deal with the functionalities of the systems.
In other words, these requirements check whether a given system perform what it is
supposed to do.
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FR-01 Every route r specified in the interlocking table can be dispatched.
([=] r : Route • [FR_route_marked] G F [r.DSPL = MARKED])

FR-02 Every route r specified in the interlocking table can be allocated.
([=] r : Route • [FR_route_allocating] G F [r .DSPL = ALLOCATING])

FR-03 Every route r specified in the interlocking table can be locked.
([=] r : Route • [FR_route_locked] G F [r.DSPL = LOCKED])

FR-04 It shall be possible to use each route r specified in the interlocking table, i.e.,
trains can travel on the specified route.
([=] r : Route • [FR_route_in_use] G F [r.DSPL = OCCUPIED])

FR-05 It shall be possible to cancel each route r specified in the interlocking table
when r is in MARKED mode.
([=] r : Route •
[FR_cancel_marked_route]
G([r.CTRL = CANCEL ∧ r.DSPL = MARKED]⇒ F [r.DSPL = FREE]))

FR-06 It shall be possible to cancel each route r specified in the interlocking table
when r is in ALLOCATING mode.
([=] r : Route •
[FR_cancel_allocating_route]
G([r.CTRL = CANCEL ∧ r.DSPL = ALLOCATING]⇒
F [ /* the route get free */
(r .DSPL′ = FREE) ∧
/* points in the path stop moving */
(∀p : Point • p ∈ path(r) ⇒ (p.CMD = p.POS)) ∧
/* all sections in the path get unlocked */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = AVAIL))]))

FR-07 It shall be possible to cancel each route r specified in the interlocking table
when r is in LOCKED mode, and no trains have entered r yet.
([=] r : Route •
[FR_cancel_locked_route]
G([r.CTRL = CANCEL ∧ r.DSPL = ALLOCATING ∧
/* the route has not been used, i . e ., all the route ’ s path and
* overlap are still vacant */
(∀e : Section •
e ∈ (elems path(r) ∪ elems overlap(r))⇒ vacant(e))] ⇒

F [ /* the route get free */
(r .DSPL = FREE) ∧
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/* close the source signal */
(src(r ). CMD = CLOSED) ∧
/* all sections in the path get unlocked */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = AVAIL))]))

FR-08 Each pair of a given route r and another route other that is not in conflict with
r, can be allocated concurrently.
([=] r : Route •
([=] other : Route •
[FR_non_conflicting_routes_allocating]
[other ̸= r ∧ other ̸∈ conflicts (r) ] ∧
G F [(r .DSPL = ALLOCATING ∧ other.DSPL = ALLOCATING)]))

FR-09 Each pair of a given route r and another route other that is not in conflict with
r, can be locked concurrently.
([=] r : Route •
([=] other : Route •
[FR_non_conflicting_routes_locked]
[other ̸= r ∧ other ̸∈ conflicts (r) ] ∧
G F [(r .DSPL = LOCKED ∧ other.DSPL = LOCKED)]))

FR-10 Each pair of a given route r and another route other that is not in conflict with
r, can be used concurrently.
([=] r : Route •
([=] other : Route •
[FR_non_conflicting_routes_used]
[other ̸= r ∧ other ̸∈ conflicts (r) ] ∧
G F [(r .DSPL = OCCUPIED ∧ other.DSPL = OCCUPIED)]))

7.3.2 Safety Requirements
These requirements show that different unsafe situations must not occur. Note that
all these requirements (except SR-04) have been proved in the Chapter 6 using BMC
and inductive reasoning. The purpose of testing these requirements is to demonstrate
that the implementation conforms to the safety of the test model. Requirements SR-
01 to SR-03 are high-level safety properties that have been formalised in Section 6.3.
Requirements SR-05 to SR-12 are low-level safety properties as they are specific to the
Danish interlocking systems. These low-level safety properties have also been used
as strengthening invariants, see Appendix E, to prove the high-level safety properties
using BMC and inductive reasoning as described in Section 6.4.

Requirement SR-04 does not need to be handled in the context analysed in
this thesis, since we are checking the safe control decisions of the interlocking
controller. According to the ETCS standard, SR-04 is delegated to the EVCs –
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the standardised onboard computers – in the train. The train speed is closely
supervised by a number of standard modules in the EVC. An emergency brake
would automatically be triggered to stop the train if it went over the allowed speed.
An example of such modules is the ceiling speed monitoring module [ERT14, Subset
026, Sect. 3.13]. A complete test suite for this ceiling speed monitoring module can
be automatically generated using equivalence class testing strategy as elaborated
in [Bra+14b; Bra+14a].

SR-01 Head-to-head collisions can never occur, see Section 6.3.

SR-02 Head-to-tail collisions can never occur, see Section 6.3.

SR-03 Derailment due to erroneous point positions can never occur, see Section 6.3.

SR-04 Derailment due to overspeeding can never occur.

SR-05 Whenever a route r is allocated, all routes that are in conflict with r must not
be allocated or locked.

([=] r : Route •
[SR_conflicting_routes_allocating]
G [(r .DSPL = ALLOCATING)⇒
(∀other : Route •
other ∈ conflicts (r) ⇒
other.DSPL ̸= ALLOCATING ∧ other.DSPL ̸= LOCKED)])

SR-06 Whenever a route r is locked, all routes that are in conflict with r must not be
allocated or locked.

([=] r : Route •
[SR_conflicting_routes_locked]
G [(r .DSPL = LOCKED)⇒
(∀other : Route •
other ∈ conflicts (r) ⇒
other.DSPL ̸= ALLOCATING ∧ other.DSPL ̸= LOCKED)])

SR-07 Whenever a route r is in ALLOCATING mode, then all of the following must
hold.

• All points are commanded to the correct positions as required by r.

• All r’s protecting signals are commanded to CLOSED.

• All sections in r’s path are locked exclusively.

• All sections in r’s path and overlap are vacant.
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([=] r : Route •
[SR_route_allocating]
G [(r .DSPL = ALLOCATING)⇒
((∀p : Point • p ∈ points(r) ⇒ (p.CMD = req(r,p))) ∧
/* protecting signals are commanded in correct aspects */
(∀s : Signal • s ∈ signals(r) ⇒ (s.CMD = CLOSED)) ∧
/* all lockable elements in the path are EXLCK(1) */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = EXLCK)) ∧
/* all sections have to be vacant */
(∀e : Section •
e ∈ (elems path(r) ∪ elems overlap(r))⇒ vacant(e)))])

SR-08 Whenever a route r is in the LOCKED mode, then all of the following must
hold.

• All points used by r have their actual positions as required by r, and cannot
move.

• All r’s protecting signals have their actual aspects of CLOSED, and cannot
change their aspects.

• All sections in r’s path are locked exclusively.
• All sections in r’s path and overlap are vacant, except the first section of r’s path.

The exception of the first section represents the case where a train just enters the
route, and the interlocking controller has not reacted to the change yet.

• The source signal of r is commanded to an OPEN aspect.

([=] r : Route •
[SR_route_locked]
G [(r .DSPL = LOCKED)⇒
let fst = first (r) in
/* points are in correct positions */
(∀p : Point •
p ∈ points(r) ⇒ (p.POS = req(r,p) ∧ p.POS = p.CMD)) ∧
/* protecting signals are in correct aspects */
(∀s : Signal •
s ∈ signals(r) ⇒ (s.ACT = CLOSED ∧ s.ACT = s.CMD)) ∧
/* all lockable elements in the path are EXLCK(1) */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = EXLCK)) ∧
/* all sections except the first one have to be vacant */
(∀e : Section •
(e ̸= fst ∧ e ∈ (elems path(r) ∪ elems overlap(r))) ⇒
vacant(e)) ∧
/* first section is vacant or occupied by head of the train */
(vacant(fst ) ∨ hto( fst , r) = 5) ∧
/* entry signal is commanded to be open */
src(r ). CMD = OPEN

end])
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SR-09 Whenever a point p is occupied or in use, it must not be commanded to move.

([=] p : Point •
[SR_not_commanding_used_point_to_move]
G [(¬vacant(p) ∨ p.MODE = USED)⇒ p.POS = p.CMD])

SR-10 Whenever a point p is commanded to change its position, the point must not
in USED mode and the point is commanded as part of the allocating process of a
route.

([=] p : Point •
[SR_point_only_cmd_when_alloc_a_route]
[(∃r : Route • p ∈ points(r)) ] ⇒
G [(p.CMD ̸= p.POS)⇒
(p.MODE ̸= USED ∧
(∃r : Route • p ∈ points(r) ∧ r.DSPL = ALLOCATING) ∧
(∀r : Route • p ∈ points(r) ⇒ r.DSPL ̸= LOCKED))])

SR-11 If a signal s is commanded to change its aspect to OPEN, then exactly one route
among the routes that have s as its source signal has to be in the LOCKED mode.

([=] s : Signal •
[SR_signal_cmd_open_cnd]
[(∃r : Route • s = src(r )) ] ⇒
G [(s .CMD = OPEN)⇒ (∃!r : Route • src(r) = s ∧ r.DSPL = LOCKED)])

SR-12 If the actual aspect of a signal s is OPEN, then one of the following must hold.

(1) At least one of the routes that have s as the source signal has been cancelled, but
s has not been closed as commanded yet.

(2) Exactly one route r among the routes that have s as the source signal such that all
sections in r’s path, except the first one, are exclusively locked for r and vacant,
and all sections in r’s overlap are vacant. Additionally, one of the following holds:
(a) r is LOCKED mode, and there is no command to change the aspect of s, i.e.,

s.CMD is also OPEN, or a train has entered the route, but the interlocking
controller has not reacted to that event yet.

(b) r is in OCCUPIED mode, a train has entered the route, and s has been
commanded to be closed, but the actual aspect has not changed yet.

([=] s : Signal •
[SR_signal_act_open_cnd]
[(∃r : Route • s = src(r )) ] ⇒
/* whenever the signal ’ s actual aspect is OPEN */
G [(s .ACT = OPEN)⇒
/* there exists a route r that has s as its source signal . The route has
* been cancelled , but the signal has not been closed as commanded yet
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*/
((∃r : Route •

s = src(r) ∧ r.DSPL = FREE ∧ s.CMD = CLOSED ∧ r.CTRL = CANCEL) ∨
/* OR there is exactly one route r that has s as the source signal */
(∃!r : Route •
(src(r) = s) ∧
/* r is locked */
((( r .DSPL = LOCKED ∧

(s .CMD = OPEN ∨ H__(hto(first(r),r)) ̸= 0)) ∨
/* a train has entered the route , the interlocking
* controller has reacted , but the signal has not yet
*/

(r .DSPL = OCCUPIED ∧ s.CMD = CLOSED ∧
H__(hto(first (r ), r )) ̸= 0)) ∧

/* all sections in the route ’ s path , except the first one, are
* exclusively locked and vacant */
(∀e : Section •
(e ∈ path(r) ∧ e ̸= first (r )) ⇒
(vacant(e) ∧ e.MODE = EXLCK)) ∧
/* all sections in the route ’ s overlap are vacant */
(∀e : Section • e ∈ overlap(r) ⇒ vacant(e))))) ] )

7.3.3 Sequential Release Related Requirements
The requirements listed in the following concern the sequential release feature. The
requirements are roughly divided into two subgroups: functional requirements or
safety requirements.

Functional Requirements. The following requirements are more concerning about
functionalities of the given system.

RR-01 It shall be possible for two routes that are in conflict to be used at the same
time, given that they do not share the last section in their paths, and there exists at
least one point that is required to be in two different positions by two routes.
([=] r : Route •
([=] other : Route •
[RR_conflicting_route_used_same_time]
[other ∈ conflicts (r) ∧
(∃p : Point •
p ∈ dom points(r) ∩ dom points(other) ∧
req(r ,p) = MINUS ∧ req(other,p) = PLUS ∧
last (r) ̸= last(other)) ] ∧

G F([r .DSPL = OCCUPIED ∧ other.DSPL = OCCUPIED])))

RR-02 The sections of a route shall automatically be released sequentially following
the passage of a train.
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([=] r : Route •
([=] e : Section •
[RR_elem_released_following_train_passage]
[e ∈ path(r) ∧ e ̸= last(r) ] ∧
G([(r .MODE = OCCUPIED ∧ e.MODE = USED ∧ vacant(e) ∧

(e ̸= first (r) ⇒ e.PREV = RELEASED))]⇒
F [e.MODE = AVAIL ∧ r.MODE = OCCUPIED ∧ next(r,e).MODE = USED])))

Safety Requirements. The following requirements are more concerning about
safety of the given system.

RR-03 A section of a route is not released sequentially until its previous section in
the same route has been released.

([=] r : Route •
([=] e : Section •
[RR_elem_released_after_prev_has_been_released]
[e ∈ path(r) ∧ e ̸= first (r) ] ∧
G([r.MODE = OCCUPIED ∧ e.MODE = USED ∧ e.PREV = PENDING]⇒
X([e.MODE ̸= FREE] U [e.PREV = RELEASED]))))

RR-04 Whenever a section e is occupied, it should be exclusively locked or used for
a route.

([=] e : Linear •
[RR_linear_occupied_implies_exlck_or_used]
[(∀r : Route • e ̸= last(r )) ∧ down(e) ∧ up(e)]⇒
G [¬vacant(e)⇒ (e.MODE = EXLCK ∨ e.MODE = USED)])

([=] e : Point •
[RR_point_occupied_implies_exlck_or_used]
[(∀r : Route • e ̸= last(r )) ] ⇒
G [¬vacant(e)⇒ (e.MODE = EXLCK ∨ e.MODE = USED)])

RR-05 If a section e is in EXLCK or USED mode, it shall be locked/used by exactly one
route. In Chapter 6, this requirement has been proved as strengthening invariants,
see Section E.5.

7.4 Experiments

This section presents the implementation of the domain-specific testing strategy
described in Section 7.2 in our toolchain in RT-Tester framework [Pel13; Ver15].
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Demonstrative SUT Generation. Due to confidentiality issues, we did not have
an actual implementation of an interlocking system from our industrial partners.
Instead, a demonstrative version of the SUT in C++ is generated from the verified
model instance using the following transformation rules:

(1) A transition of the form g −→ u is transformed into an if-then statement
if g then u.

(2) Transitions with the same priority are transformed in the order they appear in
the specification.

(3) Transitions with different priority are transformed in the order of their priority,
i.e., transitions with the highest priority are transformed first, and transitions
with lowest priority are transformed last.

(4) Quantified transitions are transformed in a way such that the resulting concrete
transitions appear in the alphanumeric order of the values of the quantified
variable.

(5) The results of the transformation are put into a while loop. Once the then branch
of one of the if-then statement is executed, the remaining statements are ignored
and a new loop begins.

Obviously, the generated SUT will pass all the generated test cases. In realistic
settings, the demonstrative SUT shall be replaced with the real SUT. The demon-
strative SUT can also be used for simulation in order to check the quality of the test
suite before execute it on in the realistic settings. This would reduce the testing
cost, as debugging and fixing bugs in the test suite in the realistic settings are
expensive [BF14].

Automated Test Execution and Report. Thanks to the existing MBT framework in
RT-Tester, the generated test cases can be executed automatically. The results of test
cases are tagged with the name of the transitions where they are observed, and the
requirements that they cover. All these results are documented in an automatically
generated test report including the traceability data back to the requirements and the
test model.

7.5 Related Work

In the railway domain, there is a trend to shift toward using model-based software
development and formal methods in their development process. One of the most
prominent successes is the application of MBT which has been investigated by many
research groups and enterprises, especially railway manufacturers. However, the
transition from code-based process to a model-based one encounters numerous
challenges as pointed out in [Fer+13] such as limited support of modelling languages
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and industrial tools, multiple formalisms, and difficulties in integrating model-based
development into the existing processes used by railway system manufacturers. The
article also summarised a number of lessons learned in the process of adopting
model-based development and formal methods in a multinational railway manu-
facturer. These lessons can serve as a useful guideline for any railway system
manufacturers in transitioning to model-based development.

Ferrari et al. [Fer+11] reports the experience of applying successfully a two-phase
V&V process in a railway signalling manufacturer. The two-phase V&V process
resulted in the cost reduction of about 70 percent. In the first phase, MBT was used
to exercise the functional behaviours of models and code in order to check that the
generated code conformed to the models. In the second phase, abstract interpretation
was used to detect runtime errors. The MBT phase consists of two steps: (a) a
back-to-back testing on both the Simulink model and the generated code to check
for equivalence, and (b) an additional evaluation to ensure the absence of errors
introduced by the model-to-code translation. The unit requirements are encoded into
a Stateflow model. Then the test data is derived using simulation and the assessment
of the correctness is done manually instead of automatically due to the low level of
abstraction of the model – a necessity to generate code.

Bonacchi et al. [BF14] developed a framework that is able to extract a model from
an implementation of an interlocking system expressed in LLD. A pre-planned test
suite provided by railway signalling engineers is then used to perform a software-in-
the-loop testing on the model in order to find bugs and defects in the planned test
suite. This reduces the time spending on debugging while performing hardware-in-
the-loop testing on the target.

In [Bon+12] testing in the railway domain is investigated from a different angle
where a graphical user interface software is tested. The work focus on testing equip-
ment configuration tools that produce configurations for different safety-critical
equipments. These tools have certain impact on the safety of the equipments that
load the resulting configurations. The authors proposed a testing strategy tailored
for such configuration tools with a convenient trade-off between high coverage of the
input domain and the feasibility within a time constraint.

In [Cal+06], the TTCN-3 testing language is applied for testing interlocking
systems. The requirements, derived from a railway signalling manufacturer and
CENELEC standards, are defined as scenarios for general infrastructure. Then these
scenarios are mapped to concrete scenarios based on the actual conditions of the
given railway networks. Next, the TTCN-3 test cases reflecting the concrete scenarios
are automatically executed on a simulation of the interlocking software. It is not
mentioned in the paper whether the concrete scenarios and TTCN-3 are derived
automatically for different railway networks.

In [Mew10], a domain-specific testing strategy for railway interlocking systems
is proposed. A number of generic requirements have been identified. The testing
strategy presented in this chapter is an extension of the work by Mewes [Mew10] in
the following aspects:
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• The generic requirements are specified using a DSL tailored for interlocking
systems;

• In addition to generic requirements identified in [Mew10], generic requirements
related to sequential release are also identified as presented in Section 7.3.3;

• An SMT solver was used to calculate data for test cases from the test model and test
objectives, instead of implementing the test case generation directly as in [Mew10].

Equivalence class testing has been investigated as a technique to produce complete
test suite for railway applications. A successful application of the technique on
the ceiling speed monitoring module in the onboard computers in trains are reported
in [Bra+14b; Bra+14a]. Application of equivalence class testing for interlocking
systems are a ongoing research topic. A discussion of an initial idea can be found
in [HP15].
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This chapter concludes the dissertation with a short summary and evaluation of
the presented research. First, Section 8.1 sums up the novelties of the work and its
contributions with respect to different disciplines. Afterwards, Section 8.2 evaluates
the limitations of the work. Section 8.3 closes the chapter with some suggestions for
future work.

8.1 Contributions and Novelties

The work presented in this dissertation focuses primarily on safety-critical software
systems that have product line characteristics – i.e., these systems share common,
generic components, while each individual system is constructed from the generic
components by instantiating with the configuration data specific for that individual
system. The work involves multiple disciplines: railway control systems, formal
methods, domain-specific approaches, verification and validation of safety-critical
systems, and model-based testing. Naturally, the work contributes to the advance-
ment in all these areas. The contributions are highlighted in the following.

• A holistic and formal method. The work puts together both new and existing
languages, tools, and techniques in the involving disciplines to produce a holistic
and formal method for verification and validation of safety-critical systems with
product line characteristics.

• A fruitful combination of formal methods and domain-specific approaches. The proposed
method takes advantages of both formal methods and domain-specific approaches
to provide a more efficient development process for safety-critical software sys-
tems. While the former offers mathematically rigorous specification, verification
and validation, the latter encapsulates the complex mathematical foundation of
the former, make it more accessible for end-users and prevents human errors.
Furthermore, the method features a 4-step verification and validation approach
integrated naturally into the development life cycle, allowing errors to be discov-
ered as early as possible in the development process.
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• An extra step in using domain-specific approaches. The use of two domain-specific
languages – one for specifying configuration data and one for specifying generic
applications – fits perfectly to systems with product line characteristics. These
two domain-specific languages provide easy-to-use interfaces, and an appropriate
level of abstraction such that one can focus on a single part of the system at a time.
Errors, if exist, can be located efficiently. It is a novelty to have a second DSL for
specifying generic applications instead of specifying generic applications in a GPL
like in previous studies [JR14; Hax14; Mew10; Cao+11; Jam14]. To the best of the
author’s knowledge, this has not been done in any previously published methods
for specification, verification and validation of railway interlocking systems.

• Application of the method to the forthcoming Danish interlocking systems. The ap-
plication of the method to the case of the forthcoming Danish interlocking sys-
tems has shown the applicability of the method. The forth coming Danish
interlocking systems exhibit the product line characteristics: while the common
railway signalling rules, know-how, and safety requirements are shared between
systems, each individual system has its own configuration data – the railway
network layout under its control and the corresponding interlocking table. Fur-
thermore, the forthcoming Danish interlocking systems have two extra important
features: (1) they are ETCS Level 2 compatible; and (2) they feature sequential
release. These two features pose extra challenges in the verification and validation
tasks. Following the recipe of the proposed method, ICL – a DSL for specifying
interlocking configuration data – and IDL – a DSL for specifying the generic
behavioural models, safety properties, and test objectives – are developed based
on the concepts and notions of the interlocking domain. The generic parts are then
instantiated with the concrete configuration data for a given interlocking system,
resulting in a concrete behavioural model, concrete safety properties, and concrete
test objectives. The 4-step verification and validation approach is used to address
the challenging verification and validation tasks.

• Novel, formal generic applications for the forthcoming Danish interlocking systems. The
formal generic applications (generic behavioural model, safety properties, and test
objectives) presented in this dissertation for the forthcoming Danish interlocking
systems contain a number of novelties as listed in the following.

– By introducing the concept of virtual signals, ETCS Level 2 compatible inter-
locking systems – in which there is no physical signals along the tracks – can be
formalised in a similar way as conventional interlocking systems with physical
signals.

– The model is the first formal model of interlocking systems that treats sequential
release in full detail, to the best of the author’s knowledge.

– An innovative encoding for occupancy status of sections allows properties
(safety properties and strengthening invariants) and transition relation, espe-
cially train movement transitions, to be formalised in a succinct way. Further-
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more, the encoding can be handled efficiently by the SMT solver used in our
method, hence improving the verification performance.

• Developed a prototype toolchain. A toolchain has been developed in RT-Tester
framework for the case studies of the forthcoming Danish interlocking systems.

• Pushed the applicability bound of formal methods in verifying railway interlocking sys-
tems further. Experimental results on different case studies including the early
deployment line of the Danish Signalling Programme have shown that the 4-
step verification and validation approach offered by the method can scale to
the systems of industrial size despite the complexity of the sequential release
feature in the systems. A comparison with other verification techniques has shown
that our verification and validation approach out-performed other techniques for
industrial size cases. The method is capable of verifying safety properties of
the design of railway interlocking systems of a size that has not been achieved
before – to the best of the author’s knowledge – in previously published studies,
e.g., [Win12; Jam+14].

• An extension of a generic, domain-specific model-based testing strategy for railway
interlocking systems. The work extends the generic, domain-specific MBT testing
strategy in [Mew10] with a DSL for specifying requirements and test objectives,
a test generation process using an SMT solver, and requirements related to
sequential release. This results in a testing strategy which can exercise the
important aspects of an implementation of a given interlocking system. Although
the testing strategy is specialised for the forthcoming Danish interlocking systems,
it may also be adapted to suit other interlocking systems.

The success with the case studies of the forthcoming Danish interlocking systems
confirms our hypothesis laid out in Chapter 1 that a proper combination of formal
methods and domain-specific approaches leads to a more efficient verification and
validation of safety-critical software systems. The applicability of the proposed
method to other domains than railway control systems is also promising.

8.2 Limitations

Due to the limited time and resources during the project, there is a number of aspects
that have not been addressed yet in the work presented in this dissertation as listed
in the following.

• For simplicity, some aspects of the forthcoming Danish interlocking systems have
not been incorporated in the model such as level crossings or failures handling.

• The static checker for IDL has not been fully implemented in our toolchain.

• The semantics of non-deterministic behaviours have not been considered in our
MBT testing strategy. Deterministic behaviours are selected for simplicity. Sup-
porting non-deterministic behaviours is an on-going research topic.
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8.3 Directions for Future Work

Besides addressing the limitations listed in Section 8.2, the following directions can
be investigated further in future.

• Decomposition. Although our verification and validation approach scales nicely to
applications of industrial size, the verification and validation performance could
be improved by investigating a framework for decomposing large systems into
smaller ones. For the case of railway interlocking systems, the Cover Abstraction
techniques proposed by James et al. [Jam+14] can serve as inspiration.

• Refinement. A framework for refining the generic models could be beneficial. Such
a refinement framework would allow adding further detail into an already verified
abstract model. Ultimately, the model would reach a sufficient level of detail to
enable code generation directly from the model.

• Non-deterministic and Equivalence Class Testing Strategies. Theories and tools should
be developed for addressing the non-deterministic behaviours in the test model,
and application of equivalence class testing strategy for a complete test suite.

• Technology Transfer. In order to adopt the method in the industry, it should
be investigated how to integrate the method in the existing development cycles
and tools used in the railway industry. Although the V&V flow of the method
fits nicely in different phases of the software development cycle, it is necessary
to define a roadmap and develop industrial tools in order to have a seamless
introduction of the method in the existing development process.

• Applications in other Domains. Although the method was developed based on the
needs in verification of railway interlocking systems, it may also be used in other
domains for applications with similar characteristics, e.g., see [ZB14].
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This appendix lists the formal specification of ICL described in Chapter 4. Section A.1
presents some common types and values. The abstract syntaxes and static checkers
for network layouts and interlocking tables described in Chapter 4 are specified in
Section A.2 and Section A.3, respectively. Section A.4 presents the specification of
the Interlocking Table Generator (ITG) described in Section 4.5. The specification is
formalised in the RAISE Specification Language (RSL).

A.1 Common Types and Values

object T :
class

type
Id = Text,
SecId = Id, −− section id
MbId = Id, −− markerboard id
RouteId = Id, −− route id
Direction == UP | DOWN,
LinearEnd = Direction, −− correspond to direction
PointEnd == NB_STEM | NB_PLUS | NB_MINUS,
PointPos == PLUS | MINUS,
Distance = Nat,
T = Text

value
MINOR : Text = ”abcdefghijklmnopqrstuvxyz”,

nat : Direction → Nat
nat(d) ≡

case d of
DOWN→ 0,
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UP→ 1
end,

nat : PointEnd→ Nat
nat(e) ≡

case e of
NB_PLUS→ 0,
NB_MINUS→ 1,
NB_STEM→ 2

end,

nat : PointPos→ Nat
nat(p) ≡

case p of
PLUS→ 0,
MINUS→ 1

end,

/* ASCII code lookup table , for specifying string comparison */
ASCII_CODE : Char →m Nat =
[ ′0 ′ 7→ 48, ′1 ′ 7→ 49, ′2 ′ 7→ 50, ′3 ′ 7→ 51, ′4 ′ 7→ 52, ′5 ′ 7→ 53,
′6 ′ 7→ 54, ′7 ′ 7→ 55, ′8 ′ 7→ 56, ′9 ′ 7→ 57, ′A′ 7→ 65, ′B′ 7→ 66,
′C′ 7→ 67, ′D′ 7→ 68, ′E′ 7→ 69, ′F′ 7→ 70, ′G′ 7→ 71, ′H′ 7→ 72,
′ I ′ 7→ 73, ′ J ′ 7→ 74, ′K′ 7→ 75, ′L′ 7→ 76, ′M′ 7→ 77, ′N′ 7→ 78,
′O′ 7→ 79, ′P′ 7→ 80, ′Q′ 7→ 81, ′R′ 7→ 82, ′S ′ 7→ 83, ′T′ 7→ 84,
′U′ 7→ 85, ′V′ 7→ 86, ′X′ 7→ 88, ′Y′ 7→ 89, ′Z′ 7→ 90, ′a ′ 7→ 97,
′b′ 7→ 98, ′c ′ 7→ 99, ′d′ 7→ 100, ′e ′ 7→ 101, ′f ′ 7→ 102, ′g′ 7→ 103,
′h′ 7→ 104, ′ i ′ 7→ 105, ′ j ′ 7→ 106, ′k′ 7→ 107, ′ l ′ 7→ 108,
′m′ 7→ 109, ′n′ 7→ 110, ′o′ 7→ 111, ′p′ 7→ 112, ′q′ 7→ 113,
′ r ′ 7→ 114, ′s ′ 7→ 115, ′t ′ 7→ 116, ′u′ 7→ 117, ′v′ 7→ 118,
′x ′ 7→ 120, ′y′ 7→ 121, ′z ′ 7→ 122, ′_ ′ 7→ 95],

/* *
* REMARK:
* =============================================
The specification of the following functions are for illustration
purpose. These functions need to be specified explicitly in order
to be translated to SML for running the spec . In practice , these
functions can be implemented differently to ensure the performance.
*/
/* compare two string s1,s2
* s1 = s2 −> 0
* s1 > s2 −> 1
* s1 < s2 −> −1 */
compare : Text × Text→ Int
compare(s1, s2) ≡

if s1 = ⟨⟩ ∧ s2 = ⟨⟩ then 0



A.1 Common Types and Values 167

else
if s1 = ⟨⟩ then −1
else

if s2 = ⟨⟩ then 1
else

let c1 = ASCII_CODE(hd s1), c2 = ASCII_CODE(hd s2) in
if c1 = c2 then compare(tl s1, tl s2)
else if c1 > c2 then 1 else −1 end
end

end
end

end
end,

sum : Int∗ → Int
sum(ls) ≡

if ls = ⟨⟩ then 0 else let i = hd ls in i + sum(tl ls ) end end,

/* get the opposite direction */
− : Direction → Direction
− d ≡
case d of

UP→ DOWN,
DOWN→ UP

end,

/* *
* RouteId has the form of [MAJOR][MINOR]=[\d+][a−z]
*/
/* make the major id of a route */
mk_major_id : Nat→ RouteId
mk_major_id(i) ≡
case i of

1 → ”01”,
2 → ”02”,
3 → ”03”,
4 → ”04”,
5 → ”05”,
6 → ”06”,
7 → ”07”,
8 → ”08”,
9 → ”09”,
10 → ”09”,
11 → ”11”,
12 → ”12”,
13 → ”13”,
14 → ”14”,
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15 → ”15”,
16 → ”16”,
17 → ”17”,
18 → ”18”,
19 → ”19”

end,

/* make the minor id of a route , i . e . 01 −> 01a, 01b ... */
mk_minor_id : RouteId × Nat→ RouteId
mk_minor_id(major, i) ≡ major̂ ⟨MINOR(i)⟩,

/* Add an item e to all the sets in s */
add_elem : T × (T-set)-set → (T-set)-set
add_elem(e, s) ≡ {{e} ∪ x | x : T-set • x ∈ s },

/* *
/* abstract specification of powerset function */
powerset_abs : T-set → (T-set)-set
powerset_abs(s) ≡ {i | i : T-set • i ⊆
s },
*/
/* generate the powerset of a Text−set */
powerset : T-set → (T-set)-set
powerset(s) ≡

if s = {} then {{}}
else

let
e = hd s,
rs = s \ {e },
pwrs = powerset(rs),
px = add_elem(e, pwrs)

in
pwrs ∪ px

end
end,

/* flatten a (Text−set)−set to a Text−set which includes all items
*/
flatten : (T-set) -set → T-set
flatten (ss) ≡

if ss = {} then {}
else let s = hd ss in s ∪ flatten (ss \ {s }) end
end,

/* convert a set to a list */
to_list : T-set → T∗
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to_list (s) ≡
if s = {} then ⟨⟩
else let i = hd s in ⟨ i⟩ ̂ to_list (s \ { i }) end
end,

index : T∗ × T→ Nat
index(ls , e) ≡

let fs = {i | i : Nat • i ∈ inds ls ∧ ls ( i ) = e} in hd fs end
pre e ∈ ls ,

/* sort a list of text ascendingly */
sort : Text∗ → Text∗
sort ( l ) ≡

if l = ⟨⟩ then ⟨⟩
else

let i = hd l in
sort (⟨ j | j in tl l • (compare(j, i ) ≤ 0)⟩) ̂ ⟨ i⟩ ̂
sort (⟨ j | j in tl l • (compare(j, i ) > 0)⟩)

end
end

end

A.2 Railway Network Layouts

T

scheme NetworkLayout =
with T in
class

type
/* *
* Abstract syntax of a railway network layout
*/
Linear :: neighbors : LinearEnd →m SecId length : Distance,
Point :: neighbors : PointEnd →m SecId length : Distance,
MarkerBoard :: section : SecId dir : LinearEnd distance : Distance,
/*NOT−SML−TRANSLATABLE*/
Section = Linear | Point,
NetworkLayout ::

linears : SecId →m Linear
points : SecId →m Point
marker_boards : MbId →m MarkerBoard

value
/* *
* CONSTANTS
*/
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MIN_SECTION_LENGTH : Distance = 0

value
/* *
* wellformedness conditions for a network layout
*/

is_wf : NetworkLayout→ Bool
is_wf(n) ≡

let ls = linears(n), ps = points(n), ms = marker_boards(n) in
/* N−01) all elements have unique identifiers */
unique_identifiers(n) ∧
/* N−02) all linears are wellformed */
(∀i : SecId • i ∈ ls ⇒ is_wf_l(i, n)) ∧
/* N−03) all points are wellformed */
(∀i : SecId • i ∈ ps ⇒ is_wf_p(i, n)) ∧
/* N−04) all marker boards are wellformed */
(∀i : MbId • i ∈ ms⇒ is_wf_m(i, n)) ∧
/* N−05) the orientation is consistent */
orientation_is_correct (n) ∧
/* N−06) cycle−free ( optional ) */
no_cycles(n) ∧
/* N−07) boundary configuration assumption */
boundary_configuration(n) end,

/* boundary assumption */
boundary_configuration : NetworkLayout→ Bool
boundary_configuration(n) ≡
let bs = get_boundaries(n) in

(∀i : SecId • i ∈ bs ⇒ boundary_configuration_l(i, n))
end,

boundary_configuration_l : SecId × NetworkLayout→ Bool
boundary_configuration_l(i, n) ≡

let l = get_linear( i , n), nbs = neighbors(l), j = hd rng nbs in
l_exists ( j , n) ∧
if UP ∈ nbs
then dom signals(i, n) = {UP} ∧ DOWN ∈ signals(j, n)
else dom signals(i, n) = {DOWN} ∧ UP ∈ signals(j, n)
end

end
pre is_boundary(i, n),

/* linears and points are not overlaping */
unique_identifiers : NetworkLayout→ Bool
unique_identifiers(n) ≡

let
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ls = dom linears(n), ps = dom points(n), ms = dom marker_boards(n)
in

card ( ls ∪ ps ∪ ms) = card ls + card ps + card ms
end,

/* wellformed linear section */
is_wf_l : SecId × NetworkLayout ∼→ Bool
is_wf_l( i , n) ≡

let l = get_linear( i , n), nbs = neighbors(l) in
/* L−01) no self−neighboring */
( i ̸∈ rng nbs) ∧
/* L−02) 1 <= no. neighbors <= 2 and distinct */
(card dom nbs ≥ 1) ∧ (card dom nbs = card rng nbs) ∧
/* L−03) all neighbors exist and are mutual neighboring */
(∀j : SecId •

j ∈ rng nbs⇒ s_exists(j , n) ∧ i ∈ get_neighbors(j, n)) ∧
/* L−04) all signals are distinct and no. of signals <= 2 ( i . e .
max. one signal per direction , and they must be distinct ) −> implied
from is_wf_m, thus dont need to check here */
/* L−05) length is greater than minimum */
(length(l ) > MIN_SECTION_LENGTH) end

pre l_exists ( i , n),

/* wellformed point section */
is_wf_p : SecId × NetworkLayout ∼→ Bool
is_wf_p(i, n) ≡

let p = get_point(i, n), nbs = neighbors(p) in
/* P−01) no self−neighboring */
( i ̸∈ rng nbs) ∧
/* P−02) no. neighbors == 3 (no border point ) */
(card dom nbs = 3) ∧
/* P−03) neighbors are distinct */
(card rng nbs = 3) ∧
/* P−04) all neighbors exist and are mutual neighboring */
(∀j : SecId •

j ∈ rng nbs⇒ s_exists(j , n) ∧ i ∈ get_neighbors(j, n)) ∧
/* P−05) length is greater than minimum */
(length(p) > MIN_SECTION_LENGTH) end

pre p_exists( i , n),

/* wellformed marker board */
is_wf_m : MbId × NetworkLayout ∼→ Bool
is_wf_m(i, n) ≡

let m = get_maker_board(i, n), si = section(m), d = dir(m) in
/* M−01) the section exists and is a linear */
l_exists ( si , n) ∧
/* M−02) there does not exist another marker board that is installed
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along the same section in the same direction */
¬ (∃j : MbId •

j ∈ marker_boards(n) \ {i} ∧
let

m′ = get_maker_board(j, n), si ′ = section(m′), d′ = dir(m′)
in

si ′ = si ∧ d′ = d
end) ∧

/* M−03) distance is less than the section ’ s length */
let l = get_linear(si , n) in distance(m) < length(l) end end

pre m_exists(i , n),

/* check whether the orientiation of a network layout is correct ,
i . e . starting from a border section , we traverse the network, then
we should always go in the same direction */
orientation_is_correct : NetworkLayout ∼→ Bool
orientation_is_correct (n) ≡

let
nols =

{ i |
i : SecId •

i ∈ linears (n) ∧ DOWN ̸∈ neighbors(get_linear(i, n))},
nors =

{ i |
i : SecId •

i ∈ linears (n) ∧ UP ̸∈ neighbors(get_linear(i, n))}
in
(∀i : SecId •

i ∈ nols ⇒
let l = get_linear( i , n) in

check_orientation(up(l), i , UP, n)
end) ∧

(∀i : SecId •

i ∈ nors ⇒
let l = get_linear( i , n) in

check_orientation(down(l), i , DOWN, n)
end)

end,

check_orientation :
SecId × SecId × Direction × NetworkLayout ∼→ Bool

check_orientation(i , prev, d, n) ≡
if l_exists ( i , n)
then

let l = get_linear( i , n), nbs = neighbors(l) in
(prev ∈ rng nbs) ∧ (get_l_end_by_nb_id(i, prev, n) ̸= d) ∧
(∀j : SecId •
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j ∈ (rng nbs) \ {prev} ⇒ check_orientation(j, i , d, n))
end

else
let

p = get_point(i, n),
nbs = neighbors(p),
side = get_p_end_by_nb_id(i, prev, n)

in
(prev ∈ rng nbs) ∧
case side of

NB_STEM→
check_orientation(plus(p), i , d, n) ∧
check_orientation(minus(p), i , d, n),

_ → check_orientation(stem(p), i, d, n)
end

end
end

pre s_exists ( i , n),

/* no cycles in the network */
no_cycles : NetworkLayout→ Bool
no_cycles(n) ≡ let ts = sections(n) in ¬ has_cycle(ts , {}, n) end,

/* detect whether a network has cycles using
* graph search , more efficient algorithms such
* as union−find can be used in the implementation
*/
has_cycle : SecId-set × SecId-set × NetworkLayout→ Bool
has_cycle(queue, visited , n) ≡

if queue = {} then false
else

let
s = hd queue,
rest = queue \ {s},
nbs = get_neighbors(s, n),
next = rest ∪ (nbs \ visited )

in
s ∈ visited ∨ has_cycle(next, visited ∪ {s }, n)

end
end

value
/* *
* Getters
*/
get_linear : SecId × NetworkLayout ∼→ Linear
get_linear ( i , n) ≡ linears (n)( i ) pre l_exists ( i , n),
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get_point : SecId × NetworkLayout ∼→ Point
get_point(i , n) ≡ points(n)( i ) pre p_exists( i , n),

get_boundaries : NetworkLayout→ SecId-set
get_boundaries(n) ≡

let ls = linears(n) in
{ i | i : SecId • i ∈ ls ∧ is_boundary(i, n)}

end
pre (∀i : SecId • i ∈ linears (n) ⇒ is_wf_l(i, n )),

/*NOT−SML−TRANSLATABLE*/
get_section : SecId × NetworkLayout ∼→ Section
get_section( i , n) ≡

if l_exists ( i , n) then get_linear( i , n) else get_point(i , n) end
pre s_exists ( i , n),

/* get the signals associated with a linear
* section */
signals : SecId × NetworkLayout ∼→ (LinearEnd ∼→m MbId)
signals( i , n) ≡

let mbs = marker_boards(n) in
[dir(get_maker_board(mi, n)) 7→mi |
mi : MbId • mi ∈ mbs ∧ section(get_maker_board(mi, n)) = i]

end
pre l_exists ( i , n),

/* get the signal in the down direction of
* a linear section */
dsig : SecId × NetworkLayout ∼→MbId
dsig(i , n) ≡ let sigs = signals(i , n) in sigs(DOWN) end
pre l_exists ( i , n) ∧ DOWN ∈ signals(i, n),

/* get the signal in the up direction of a
* linear section */
usig : SecId × NetworkLayout ∼→MbId
usig(i , n) ≡ let sigs = signals(i , n) in sigs(UP) end
pre l_exists ( i , n) ∧ UP ∈ signals(i, n),

/* get the ”down” neighbor of a linear section */
down : Linear ∼→ SecId
down(l) ≡ let nbs = neighbors(l) in nbs(DOWN) end
pre DOWN ∈ neighbors(l),

/* get the ”up” neighbor of a linear section */
up : Linear ∼→ SecId
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up(l) ≡ let nbs = neighbors(l) in nbs(UP) end pre UP ∈ neighbors(l),

/* get the stem neighbor of a point section */
stem : Point ∼→ SecId
stem(p) ≡ let nbs = neighbors(p) in nbs(NB_STEM) end
pre NB_STEM ∈ neighbors(p),

/* get the plus neighbor of a point section */
plus : Point ∼→ SecId
plus(p) ≡ let nbs = neighbors(p) in nbs(NB_PLUS) end
pre NB_PLUS ∈ neighbors(p),

/* get the minus neighbor of a point section */
minus : Point ∼→ SecId
minus(p) ≡ let nbs = neighbors(p) in nbs(NB_MINUS) end
pre NB_MINUS ∈ neighbors(p),

/* get length of a section */
get_length : SecId × NetworkLayout ∼→ Distance
get_length(i , n) ≡

if l_exists ( i , n) then let s = get_linear( i , n) in length(s) end
else let s = get_point(i, n) in length(s) end
end

pre s_exists ( i , n),

/* get the neighbors of a given section */
get_neighbors : SecId × NetworkLayout ∼→ SecId-set
get_neighbors(i, n) ≡

if p_exists( i , n) then rng neighbors(get_point(i, n))
else rng neighbors(get_linear(i , n))
end

pre s_exists ( i , n),

/* get the linear end correspondingto a given neighbor id (s) of
the linear section with id ( i ) */
get_l_end_by_nb_id : SecId × SecId × NetworkLayout ∼→ LinearEnd
get_l_end_by_nb_id(i, s, n) ≡

let l = get_linear( i , n), nbs = neighbors(l) in
hd { j | j : LinearEnd • j ∈ nbs ∧ nbs(j) = s}

end
pre l_exists ( i , n) ∧ s ∈ rng neighbors(get_linear(i , n )),

/* get the point end correspondingto a given neighbor id (s) of
the point section with id ( i ) */
get_p_end_by_nb_id : SecId × SecId × NetworkLayout ∼→ PointEnd
get_p_end_by_nb_id(i, s, n) ≡
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let p = get_point(i, n), nbs = neighbors(p) in
hd { j | j : PointEnd • j ∈ nbs ∧ nbs(j) = s}

end
pre p_exists( i , n) ∧ s ∈ rng neighbors(get_point(i, n )),

get_maker_board : MbId × NetworkLayout ∼→MarkerBoard
get_maker_board(i, n) ≡ marker_boards(n)(i) pre m_exists(i, n),

sections : NetworkLayout ∼→ SecId-set
sections(n) ≡ dom linears(n) ∪ dom points(n)

value
/* *
* Auxiliary functions
*/
l_exists : SecId × NetworkLayout→ Bool
l_exists ( i , n) ≡ i ∈ linears (n),

p_exists : SecId × NetworkLayout→ Bool
p_exists( i , n) ≡ i ∈ points(n),

s_exists : SecId × NetworkLayout→ Bool
s_exists ( i , n) ≡ l_exists ( i , n) ∨ p_exists( i , n),

m_exists : MbId × NetworkLayout→ Bool
m_exists(i , n) ≡ i ∈ marker_boards(n),

is_boundary : SecId × NetworkLayout→ Bool
is_boundary(i, n) ≡

l_exists ( i , n) ∧
let l = get_linear( i , n) in card dom neighbors(l) = 1 end,

/* neighboring is reflexive */
are_neighbors : SecId × SecId × NetworkLayout ∼→ Bool
are_neighbors(i, j , n) ≡

let nbsi = get_neighbors(i, n), nbsj = get_neighbors(j, n) in
i ∈ nbsj ∧ j ∈ nbsi

end
pre s_exists ( i , n) ∧ s_exists ( j , n)

end

A.3 Interlocking Tables

NetworkLayout

scheme Interlocking =
with T in
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class
object L : NetworkLayout

type
/* *
* Abstract syntax of an interlocking table
*/
Route ::

source : MbId
dest : MbId
path : SecId∗
overlap : SecId∗
points : SecId →m PointPos
signals : MbId-set
conflicts : RouteId-set,

InterlockingTable = RouteId →m Route,
Interlocking ::

track_layout : L.NetworkLayout
interlocking_table : InterlockingTable

value
/* *
* WELLFORMED INTERLOCKING CONFIGURATION
*/
is_wf : Interlocking → Bool
is_wf( ixl ) ≡

let n = track_layout(ixl ), rt = interlocking_table( ixl ) in
/* I−01) network layout is wellformed */
L.is_wf(n) ∧
/* I−02) interlocking table is wellformed w.r. t . the network */
is_wf_rt( rt , n) end

type
/* *
* Auxiliary types
*/
/* a protection suite for an element of a route , or a route */
ProtectionSuite :: signals : MbId-set points : SecId →m PointPos

value
/* *
* CONSTANTS
*/
MIN_SAFETY_DISTANCE : Distance = 50,
/* an empty protection suite */
empty : ProtectionSuite = mk_ProtectionSuite({}, [ ] )
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value
/* *
* Wellformed route table
*/
is_wf_rt : InterlockingTable × L.NetworkLayout→ Bool
is_wf_rt(tb , n) ≡
/* T−01) routes identifiers are unique (ensure by the map) and differs
from identifiers of elements in network layout */
let

js =
(dom tb) ∩

(dom L.linears(n) ∪ dom L.points(n) ∪
dom L.marker_boards(n))

in
js = {}

end ∧
/* T−02) routes are distinct */
(card dom tb = card rng tb) ∧
/* T−03) all routes are wellformed */
routes_are_wellformed(tb, n) ∧
/* T−04) no self conflicting */
no_self_conflicting (tb) ∧
/* T−05) conflicts are mutual */
conflicts_are_mutual(tb) ∧
/* T−06) conflicting routes information is correct */
conflicts_are_correct (tb , n) pre L.is_wf(n),

routes_are_wellformed : InterlockingTable × L.NetworkLayout→ Bool
routes_are_wellformed(tb, n) ≡
(∀r : Route • r ∈ rng tb ⇒ is_wf_r(r, n))

pre L.is_wf(n),

no_self_conflicting : InterlockingTable ∼→ Bool
no_self_conflicting (tb) ≡
(∀i : RouteId •

i ∈ tb ⇒
let r = get_route(i, tb ), cs = conflicts (r) in
/* no self − conflicting */
( i ̸∈ cs) end),

conflicts_are_mutual : InterlockingTable ∼→ Bool
conflicts_are_mutual(tb) ≡
(∀i : RouteId •

i ∈ tb ⇒
let r = get_route(i, tb ), cs = conflicts (r) in
(∀j : RouteId •

j ∈ cs ⇒
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/* conflict relation is symmetric */
r_exists ( j , tb) ∧
let r1 = get_route(j , tb ), cs1 = conflicts (r1) in

i ∈ cs1
end)

end),

conflicts_are_correct : InterlockingTable × L.NetworkLayout ∼→ Bool
conflicts_are_correct (tb , n) ≡
(∀i : RouteId •

i ∈ tb ⇒
let r = get_route(i, tb ), cs = conflicts (r) in
/* routes are physically in conflict are marked */
(∀j : RouteId •

j ∈ tb \ { i } ⇒
let r1 = get_route(j , tb) in

are_physically_in_conflict (r , r1 , n) ⇒
marked_as_being_in_conflict(i, j , tb)

end) end)
pre L.is_wf(n) ∧ routes_are_wellformed(tb, n)

value
/* *
* Auxiliary functions
*/
/* whether two routes are in conflict based on the information about
the network layout */
are_physically_in_conflict : Route × Route × L.NetworkLayout ∼→ Bool
are_physically_in_conflict (r1, r2 , n) ≡

let
path1 = elems path(r1),
path2 = elems path(r2),
ovs1 = elems overlap(r1),
ovs2 = elems overlap(r2),
secs1 = path1 ∪ ovs1,
secs2 = path2 ∪ ovs2,
ps1 = points(r1),
ps2 = points(r2),
protecting_points1 = dom ps1 \ secs1,
protecting_points2 = dom ps2 \ secs2,
shared_pps =

(protecting_points1 ∩ dom ps2) ∪
(protecting_points2 ∩ dom ps1)

in
/* not consecutive routes , overlapping paths or overlap */
(¬ are_concatenated_routes(r1, r2, n) ∧ secs1 ∩ secs2 ̸= {}) ∨
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/* share a point , the shared point is a protecting point for at
least one of the routes and two routes require the points in different
positions */
(∃i : SecId • i ∈ shared_pps ∧ ps1(i) ̸= ps2(i)) ∨
/* entry signal of one route is a protecting
* signal of the other route */
(source(r1) ∈ signals(r2 )) ∨ (source(r2) ∈ signals(r1 ))

end
pre L.is_wf(n) ∧ is_wf_r(r1, n) ∧ is_wf_r(r2, n),

/* whether two routes are concatenated routes */
are_concatenated_routes : Route × Route × L.NetworkLayout ∼→ Bool
are_concatenated_routes(r1, r2, n) ≡

source(r1) = dest(r2) ∨ dest(r2) = source(r1)
pre L.is_wf(n) ∧ is_wf_r(r1, n) ∧ is_wf_r(r2, n),

/* check whether two routes are marked as being in conflict in their
specification */

marked_as_being_in_conflict :
RouteId × RouteId × InterlockingTable ∼→ Bool

marked_as_being_in_conflict(i, j , tb) ≡
let

r1 = get_route(i, tb ),
r2 = get_route(j , tb ),
cs1 = conflicts (r1 ),
cs2 = conflicts (r2)

in
i ∈ cs2 ∧ j ∈ cs1

end
pre r_exists ( i , tb) ∧ r_exists ( j , tb)

value
/* *
* Getters
*/
/* get the first detection section of a route */
first : Route ∼→ SecId
first (r) ≡ hd path(r) pre len path(r) > 0,

/* get the last detectin section of a route */
last : Route ∼→ SecId
last (r) ≡ let p = path(r) in p(len p) end pre len path(r) > 0,

prev : Route × SecId ∼→ SecId
prev(r, i ) ≡ let ps = path(r), j = index(ps, i ) − 1 in ps( j ) end
pre i ∈ path(r) ∧ i ̸= first (r ),
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prevs : Route × SecId ∼→ SecId∗
prevs(r, i ) ≡

let ps = path(r), j = index(ps, i ) − 1 in
⟨ps(i ) | i in ⟨0 .. j ⟩⟩

end
pre i ∈ path(r ),

next : Route × SecId ∼→ SecId
next(r , i ) ≡ let ps = path(r), j = index(ps, i ) + 1 in ps( j ) end
pre i ∈ path(r) ∧ i ̸= last(r ),

nexts : Route × SecId ∼→ SecId∗
nexts(r , i ) ≡

let ps = path(r), j = index(ps, i ) + 1 in
⟨ps(i ) | i in ⟨ j .. len (ps)⟩⟩

end
pre i ∈ path(r ),

get_route : RouteId × InterlockingTable ∼→ Route
get_route(i , tb) ≡ tb( i ) pre r_exists ( i , tb ),

get_route : RouteId × Interlocking′ ∼→ Route
get_route(i , ixl ) ≡ get_route(i , interlocking_table ( ixl ))
pre r_exists ( i , interlocking_table ( ixl )),

r_exists : RouteId × InterlockingTable→ Bool
r_exists ( i , tb) ≡ i ∈ tb ,

r_exists : RouteId × Interlocking′ → Bool
r_exists ( i , ixl ) ≡ r_exists ( i , interlocking_table ( ixl ))

type
−− define a subtype of wellformed interlocking configuration data
−− so we don’t need to add wellformedness check as pre conditions
−− for functions used for defining semantics of IDL
Interlocking ′ = {| ixl : Interlocking • is_wf( ixl ) |}

value
/* *
* FUNCTIONS FOR THE SPECIFICATION OF IDL SEMANTICS
* ================================================
* Some of these functions are not SML translatable ,
* comment out when translating to SML
*/
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down : SecId × Interlocking′ ∼→ SecId
down(i, ixl ) ≡

let n = track_layout(ixl ), l = L.get_linear( i , n) in L.down(l) end
pre

let n = track_layout(ixl ) in
L. l_exists ( i , n) ∧ DOWN ∈ L.neighbors(L.get_linear(i, n))

end,

up : SecId × Interlocking′ ∼→ SecId
up(i, ixl ) ≡

let n = track_layout(ixl ), l = L.get_linear( i , n) in L.up(l) end
pre

let n = track_layout(ixl ) in
L. l_exists ( i , n) ∧ UP ∈ L.neighbors(L.get_linear(i, n))

end,

down_sig : SecId × Interlocking′ ∼→MbId
down_sig(i, ixl ) ≡

let n = track_layout(ixl ), mid = L.dsig(i, n) in mid end
pre

let n = track_layout(ixl ) in
L. l_exists ( i , n) ∧ DOWN ∈ L.signals(i, n)

end,

up_sig : SecId × Interlocking′ ∼→MbId
up_sig(i , ixl ) ≡

let n = track_layout(ixl ), mid = L.usig(i, n) in mid end
pre

let n = track_layout(ixl ) in
L. l_exists ( i , n) ∧ UP ∈ L.signals(i, n)

end,

stem : SecId × Interlocking′ ∼→ SecId
stem(i, ixl ) ≡

let n = track_layout(ixl ), p = L.get_point(i , n) in L.stem(p) end
pre L.p_exists( i , track_layout( ixl )),

plus : SecId × Interlocking′ ∼→ SecId
plus(i , ixl ) ≡

let n = track_layout(ixl ), p = L.get_point(i , n) in L.plus(p) end
pre L.p_exists( i , track_layout( ixl )),
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minus : SecId × Interlocking′ ∼→ SecId
minus(i, ixl ) ≡

let n = track_layout(ixl ), p = L.get_point(i , n) in L.minus(p) end
pre L.p_exists( i , track_layout( ixl )),

dir : MbId × Interlocking′→ Nat
dir( i , ixl ) ≡

let n = track_layout(ixl ), m = L.get_maker_board(i, n) in
nat(L.dir(m))

end
pre L.m_exists(i , track_layout( ixl )),

track : MbId × Interlocking′ ∼→ SecId
track( i , ixl ) ≡

let n = track_layout(ixl ), m = L.get_maker_board(i, n) in
L.section(m)

end
pre L.m_exists(i , track_layout( ixl )),

src : RouteId × Interlocking′ ∼→MbId
src( i , ixl ) ≡ let r = get_route(i, ixl ) in source(r) end
pre r_exists ( i , ixl ),

dst : RouteId × Interlocking′ ∼→MbId
dst( i , ixl ) ≡ let r = get_route(i, ixl ) in dest(r) end
pre r_exists ( i , ixl ),

first : RouteId × Interlocking′ ∼→ SecId
first ( i , ixl ) ≡ let r = get_route(i, ixl ) in first (r) end
pre r_exists ( i , ixl ),

last : RouteId × Interlocking′ ∼→ SecId
last ( i , ixl ) ≡ let r = get_route(i, ixl ) in last (r) end
pre r_exists ( i , ixl ),

path : RouteId × Interlocking′ ∼→ SecId∗
path(i , ixl ) ≡ let r = get_route(i, ixl ) in path(r) end
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pre r_exists ( i , ixl ),

overlap : RouteId × Interlocking′ ∼→ SecId∗
overlap(i , ixl ) ≡ let r = get_route(i, ixl ) in overlap(r) end
pre r_exists ( i , ixl ),

points : RouteId × Interlocking′ ∼→ (SecId →m Nat)
points( i , ixl ) ≡

let r = get_route(i, ixl ), ps = points(r) in
[k 7→ nat(ps(k)) | k : SecId • k ∈ ps]

end
pre r_exists ( i , ixl ),

signals : RouteId × Interlocking′ ∼→MbId-set
signals( i , ixl ) ≡ let r = get_route(i, ixl ) in signals(r) end
pre r_exists ( i , ixl ),

conflicts : RouteId × Interlocking′ ∼→ RouteId-set
conflicts ( i , ixl ) ≡ let r = get_route(i, ixl ) in conflicts (r) end
pre r_exists ( i , ixl ),

prev : RouteId × SecId × Interlocking′ ∼→ SecId
prev(ri , i , ixl ) ≡ let r = get_route(ri , ixl ) in prev(r, i ) end
pre

r_exists ( ri , ixl ) ∧
let r = get_route(ri , ixl ) in i ∈ path(r) ∧ i ̸= first (r) end,

prevs : RouteId × SecId × Interlocking′ ∼→ SecId∗
prevs(ri , i , ixl ) ≡ let r = get_route(ri , ixl ) in prevs(r, i ) end
pre

r_exists ( ri , ixl ) ∧ let r = get_route(ri , ixl ) in i ∈ path(r) end,

next : RouteId × SecId × Interlocking′ ∼→ SecId
next(ri , i , ixl ) ≡ let r = get_route(ri , ixl ) in next(r , i ) end
pre

r_exists ( ri , ixl ) ∧
let r = get_route(ri , ixl ) in i ∈ path(r) ∧ i ̸= last(r) end,
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nexts : RouteId × SecId × Interlocking′ ∼→ SecId∗
nexts( ri , i , ixl ) ≡ let r = get_route(ri , ixl ) in nexts(r , i ) end
pre

r_exists ( ri , ixl ) ∧ let r = get_route(ri , ixl ) in i ∈ path(r) end,

conn_end : SecId × SecId × Interlocking′ ∼→ Nat
conn_end(i, j , ixl ) ≡

let n = track_layout(ixl ) in
if L. l_exists ( i , n) then nat(L.get_l_end_by_nb_id(i, j , n))
else nat(L.get_p_end_by_nb_id(i, j, n))
end

end
pre L.are_neighbors(i, j , track_layout( ixl )),

entry : RouteId × SecId × Interlocking′ ∼→ Nat
entry(ri , i , ixl ) ≡

let r = get_route(ri , ixl ) in
if i = first (r)
then

let
m = L.get_maker_board(source(r), track_layout(ixl)),
j = L.section(m)

in
conn_end(i, j , ixl )

end
else conn_end(i, prev(r, i ), ixl )
end

end
pre r_exists ( ri , ixl ) ∧ i ∈ path(get_route(ri , ixl )),

exit : RouteId × SecId × Interlocking′ ∼→ Nat
exit ( ri , i , ixl ) ≡

let r = get_route(ri , ixl ) in
if i = last(r)
then

let m = L.get_maker_board(dest(r), track_layout(ixl)) in
nat(L.dir(m))

end
else conn_end(i, next(r , i ), ixl )
end

end
pre r_exists ( ri , ixl ) ∧ i ∈ path(get_route(ri , ixl )),



186 A Formal Specification of ICL in RSL

req : RouteId × SecId × Interlocking′ ∼→ Nat
req( ri , i , ixl ) ≡ let r = get_route(ri , ixl ) in nat(points(r )( i )) end
pre r_exists ( ri , ixl ) ∧ i ∈ points(get_route(ri , ixl ))

value
/* *
* Wellformed route
*/
is_wf_r : Route × L.NetworkLayout→ Bool
is_wf_r(r , n) ≡
/* R−01) source and destination signals exist and agree on their
direction */
signals_exist_and_agree(r, n) ∧
/* R−02) protecting signals exist , do not contain source and destination
signals */
protecting_signals_exist (r , n) ∧
/* R−03) all points exist */
points_exist (r , n) ∧
/* R−04) all elements in the path and overlap exist */
elems_in_path_and_ovs_exist(r, n) ∧
/* R−05−−12) conditions on the path*/
route_path_cnd(r, n) ∧
/* R−13) the route has proper protection */
has_proper_protection(r, n) pre L.is_wf(n),

/* all the elements in the route ’ s path and overlap exist */
elems_in_path_and_ovs_exist : Route × L.NetworkLayout→ Bool
elems_in_path_and_ovs_exist(r, n) ≡
let es = elems path(r) ∪ elems overlap(r), ps = points(r) in

(∀i : SecId •

i ∈ es ⇒ L.l_exists( i , n) ∨ (L.p_exists( i , n) ∧ i ∈ ps))
end

pre L.is_wf(n),

/* source and destination signals exist and their directions agree
with each other */
signals_exist_and_agree : Route × L.NetworkLayout→ Bool
signals_exist_and_agree(r, n) ≡

let si = source(r), di = dest(r) in
/* source exists */
L.m_exists(si , n) ∧
/* destination exists */
L.m_exists(di, n) ∧
/* source and destination ’ s direction agrees */
let s = L.get_maker_board(si, n), d = L.get_maker_board(di, n) in

L.dir(s) = L.dir(d)
end end
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pre L.is_wf(n),

/* all the points of the route exist */
points_exist : Route × L.NetworkLayout→ Bool
points_exist (r , n) ≡
(∀i : SecId • i ∈ points(r) ⇒ L.p_exists(i, n))

pre L.is_wf(n),

/* all the protecting signals of the route exist */
protecting_signals_exist : Route × L.NetworkLayout→ Bool
protecting_signals_exist (r , n) ≡

let sigs = signals(r) in
(∀i : MbId • i ∈ sigs ⇒ L.m_exists(i, n)) ∧
source(r) ̸∈ sigs ∧ dest(r) ̸∈ sigs

end
pre L.is_wf(n),

/* the conditions on the route ’ s full path */
route_path_cnd : Route × L.NetworkLayout ∼→ Bool
route_path_cnd(r, n) ≡

let
ps = path(r),
ovs = overlap(r),
pps = points(r),
s = L.get_maker_board(source(r), n),
d = L.get_maker_board(dest(r), n),
dir = L.dir(d),
fst = L.section(s ),
lst = L.section(d),
l = L.get_linear( lst , n),
l_nbs = L.neighbors(l),
rp = ⟨fst⟩ ̂ ps ̂ ovs,
le = rp(len rp),
safety_dx = L.distance(d) + sum(⟨L.get_length(o, n) | o in ovs⟩)

in
/* R−06) the route ’ s path has at least length 1 */
(len ps ≥ 1) ∧
/* R−07) if the safety distance is less then minimum then the last
section of the path is a border section */
(safety_dx ≥MIN_SAFETY_DISTANCE ∨ dir ̸∈ l_nbs) ∧
/* R−09) the last section is where the exit signal is */
( lst = ps(len ps)) ∧
/* R−10) no signal in the middle of the path , going in the same
direction */
(∀i : Nat •

i ∈ ⟨1 .. (len ps − 1)⟩ ⇒
(L. l_exists (ps(i ), n) ⇒
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let sigs = L.signals(ps(i ), n) in L.dir(s) ̸∈ sigs end)) ∧
/* R−11) the whole path is acyclic */
(len rp = card (elems rp)) ∧
/* R−11) the whole path is connected */
(∀i : Nat •

i ∈ ⟨1 .. (len rp − 1)⟩ ⇒
L.are_neighbors(rp(i), rp(i + 1), n)) ∧

/* R−05,12) the path MUST NOT go through a point via PLUS−MINUS
and the position should be specified in the route ’ s point setting
*/
(∀i : Nat •

i ∈ ⟨2 .. (len rp − 1)⟩ ⇒
(L.p_exists(rp(i ), n) ⇒

let
p = L.get_point(rp(i ), n),
nbs = L.neighbors(p),
r_nbs =
[e 7→ nbs(e) |
e : PointEnd •

e ∈ nbs ∧ nbs(e) ∈ {rp(i − 1), rp(i + 1)} ]
in

dom nbs ̸= {NB_PLUS, NB_MINUS} ∧ rp(i) ∈ pps ∧
if (NB_PLUS ∈ r_nbs) then pps(rp(i)) = PLUS
else pps(rp(i )) = MINUS
end

end)) ∧
/* R−05) the last section of the route if is a point , should be
specified with correct position in the route ’ s points */
(L.p_exists( le , n) ⇒

let ld = L.get_p_end_by_nb_id(le, rp(len rp − 1), n) in
le ∈ pps ∧
case ld of

NB_PLUS→ pps(le) = PLUS,
NB_MINUS→ pps(le) = MINUS,
_ → true

end
end)

end
pre

L.is_wf(n) ∧ signals_exist_and_agree(r, n) ∧ points_exist(r , n) ∧
elems_in_path_and_ovs_exist(r, n),

/* if a route has proper protection */

has_proper_protection : Route × L.NetworkLayout ∼→ Bool
has_proper_protection(r, n) ≡

let
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px = path(r),
ovs = overlap(r),
s = L.get_maker_board(source(r), n),
d = L.dir(s ),
fst = L.section(s ),
rp = ⟨fst⟩ ̂ px ̂ ovs,
lst = rp(len rp)

in
(∀i : Nat •

i ∈ ⟨2 .. (len rp − 1)⟩ ⇒
(L.p_exists(rp(i ), n) ⇒

let
p = L.get_point(rp(i ), n),
j = hd (rng L.neighbors(p) \ {rp(i − 1), rp(i + 1)})

in
has_proper_protection(r, rp(i ), j , n)

end)) ∧
/* handle the last segment separately this includes both flank and
front protection */
(L.p_exists( lst , n) ⇒

let
prev = rp(len rp − 1),
p = L.get_point(lst , n),
nbs = L.neighbors(p),
nbx = rng nbs \ {prev}

in
(∀j : SecId •

j ∈ nbx⇒ has_proper_protection(r, lst, j , n))
end) ∧

/* signals going in the opposite direction mounted in the path or
overlap must be in the protecting signals set */
(∀i : Nat •

i ∈ ⟨2 .. (len rp)⟩ ⇒
(L. l_exists (rp(i ), n) ⇒

let sigs = L.signals(rp(i ), n), osigs = rng (sigs \ {d}) in
osigs ⊆ signals(r)

end))
end

pre L.is_wf(n) ∧ route_path_cnd(r, n),

/* if a section i is protected by section j */
has_proper_protection :

Route × SecId × SecId × L.NetworkLayout ∼→ Bool
has_proper_protection(r, i , j , n) ≡

let
sigs = signals(r ), ps = points(r ), suite = find_protection(i , j , n)

in
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covered_by(suite, r , n)
end

pre
L.is_wf(n) ∧ route_path_cnd(r, n) ∧ L.s_exists ( i , n) ∧
L. s_exists ( j , n),

/* if the route ’ s protection suite contain the given protection
suite */
covered_by : ProtectionSuite × Route × L.NetworkLayout→ Bool
covered_by(s, r , n) ≡
/* the suite is already covered by the route ’ s protection suite
*/
(s ⊆ protection(r)) ∨
let

diff = s \ protection(r ), sigs = signals( diff ), ps = points(diff )
in
/* if we have extra protecting signals , they cannot be transferred ,
i . e ., sigs ~= {} => false */
sigs = {} ∧
/* there should be more protecting points to transfer */
ps ̸= [] ∧
/* find an alternative protecting suite */
let s ′ = find_alt(s , dom ps, r, n) in
/* alternatives found */
(s ′ ̸= empty) ∧
/* check if alternative suite is covered by the route ’ s suite */
covered_by(s′, r , n) end

end pre L.is_wf(n)

value
/* *
* Auxiliary functions for protection search
*/
/* covered by relation between protection suites , sa <<= sb denotes
sa is covered by sb */
⊆ : ProtectionSuite × ProtectionSuite→ Bool
sa ⊆ sb ≡

signals(sa) ⊆ signals(sb) ∧
let psa = points(sa), psb = points(sb) in
(∀i : SecId • i ∈ psa⇒ i ∈ psb ∧ psb(i) = psa(i))

end,

/* protection suite subtraction */
\ : ProtectionSuite × ProtectionSuite→ ProtectionSuite
sa \ sb ≡

let
sigs = signals(sa) \ signals(sb),
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psa = points(sa),
psb = points(sb),
ps =
[ i 7→ psa(i) |
i : SecId • i ∈ psa ∧ ( i ̸∈ psb ∨ psa(i) ̸= psb(i)) ]

in
mk_ProtectionSuite(sigs, ps)

end,

/* protection suite union */
∪ : ProtectionSuite × ProtectionSuite→ ProtectionSuite
sa ∪ sb ≡

let
sigs = signals(sa) ∪ signals(sb),
psa = points(sa),
psb = points(sb),
cs = dom psa ∩ dom psb,
ps =

(psa \ cs) ∪
[ i 7→ psa(i) | i : SecId • i ∈ psa ∧ i ̸∈ cs ] ∪
[ i 7→ psb(i) | i : SecId • i ∈ psb ∧ i ̸∈ cs ]

in
mk_ProtectionSuite(sigs, ps)

end
pre ¬ (sa # sb),

/* protection suite conflicting */
# : ProtectionSuite × ProtectionSuite→ Bool
sa # sb ≡

let psa = points(sa), psb = points(sb), cs = dom psa ∩ dom psb in
(∃p : SecId • p ∈ cs ∧ psa(p) ̸= psb(p))

end,

protection : Route→ ProtectionSuite
protection(r) ≡

mk_ProtectionSuite(signals(r), points(r) \ elems path(r)),

/* find the set of replacing signals for a given protecting point
*/

find_replacing_signals : SecId × Route × L.NetworkLayout ∼→MbId-set
find_replacing_signals(i , r , n) ≡

let
p = L.get_point(i , n),
nbs = L.neighbors(p),
others =

{s |
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s : PointEnd •
s ∈ nbs ∧
nbs(s) ̸∈ (elems path(r) ∪ elems overlap(r ))},

s_stem = find_protection(i, L.stem(p), n),
s_other =

find_protection(
i , if NB_PLUS ∈ others then L.plus(p) else L.minus(p) end, n),

s_ps = points(s_stem) ∪ points(s_other),
s_sigs = signals(s_stem) ∪ signals(s_other)

in
if s_sigs ̸= {} ∧ s_ps = [] then s_sigs else {} end

end
pre L.is_wf(n) ∧ L.p_exists( i , n),

/* find an alternative protection suite by replacing a set of points
by their replacing signals */
find_alt :

ProtectionSuite × SecId-set × Route × L.NetworkLayout ∼→
ProtectionSuite

find_alt (s , ps, r , n) ≡
let sigs = signals(s ), s_ps = points(s) in

if ps = {} then s
else

let
i = hd ps,
a_sigs = find_replacing_signals(i , r , n),
s_ps = points(s)

in
if a_sigs ̸= {}
then

find_alt (
mk_ProtectionSuite(sigs ∪ a_sigs, s_ps \ { i }),
ps \ { i }, r , n)

else
/* cannot replace the points with signals */
empty

end
end

end
end

pre
L.is_wf(n) ∧
let sigs = signals(s ), s_ps = points(s) in
(∀m : MbId • m ∈ sigs⇒ L.m_exists(m, n)) ∧
(∀i : MbId • i ∈ s_ps ⇒ L.p_exists(i, n)) ∧ ps ⊆ dom s_ps

end,
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/* get protecting signal for i , preventing traffic from j to go
toward i */

find_protection : SecId × SecId × L.NetworkLayout ∼→ ProtectionSuite
find_protection(i , j , n) ≡

if L. l_exists ( j , n)
then

let
l = L.get_linear( j , n),
nbs = L.neighbors(l),
sigs = L.signals( j , n),
d = L.get_l_end_by_nb_id(j, i, n)

in
if d ̸∈ sigs
then
/* if we haven’t reached the border */
if (−d) ∈ nbs then find_protection(j, nbs(−d), n)
else empty
end

else mk_ProtectionSuite({sigs(d)}, [ ] )
end

end
else

let p = L.get_point(j , n), e = L.get_p_end_by_nb_id(j, i, n) in
case e of

NB_PLUS→mk_ProtectionSuite({}, [j 7→MINUS]),
NB_MINUS→mk_ProtectionSuite({}, [j 7→ PLUS]),
NB_STEM→

let
p_s = find_protection(j , L.plus(p), n),
m_s = find_protection(j, L.minus(p), n)

in
if (p_s = empty) ∨ (m_s = empty) ∨ p_s # m_s
then
/* get rubbish information , return empty */
empty

else p_s ∪ m_s
end

end
end

end
end

pre L.is_wf(n) ∧ L.are_neighbors(i, j , n)
end

A.4 Interlocking Table Generator
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Interlocking

scheme InterlockingTableGenerator =
with T in
class

object I : Interlocking

type
−− define a subtype of wellformed network layouts
NetworkLayout′ = {| n : I.L.NetworkLayout • I.L.is_wf(n) |}
−− /**
−− * ABSTRACT SPECIFICATION
−− * ======================
−− * abstract specification for an algorithm
−− that
−− generate an interlocking table from a given
−− wellformed network layout
−− */
−− value
−− mk_table_abs :
−− I .L.NetworkLayout −> I. InterlockingTable
−− mk_table_abs(n) as tb post
−− −− a generated table is a well−formed
−− one
−− I . is_wf_rt ( tb , n) /\
−− −− and it’s the largest
−− ( all tb ’ : I . InterlockingTable :−
−− rng tb ’ <<= rng tb)

value
−− initial route with its source at s
init_r : MbId→ I.Route
init_r (s) ≡ I .mk_Route(s, ””, ⟨⟩ , ⟨⟩ , [ ] , {}, {})

value
/* *
* GENERATE INTERLOCKING TABLE FROM A LAYOUT
*/
−− generate the interlocking table for a given
−− network layout

mk_table : NetworkLayout′→ I.InterlockingTable
mk_table(n) ≡

let rs = gen_routes(n) in mark_conflicts(assign_id(rs, 1, n), n) end,

−− are we collecting the overlap , i . e . already
−− found the destination signal
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is_collecting_ovs : I .Route × NetworkLayout′→ Bool
is_collecting_ovs (r , n) ≡ I .L.m_exists(I .dest(r ), n),

−− last collected section in the route
last_collected_sec : I .Route × NetworkLayout′→ SecId
last_collected_sec (r , n) ≡

let
ps = I.path(r ),
ovs = I.overlap(r ),
src = I.L.get_maker_board(I.source(r), n),
fst = I.L.section(src)

in
if ps = ⟨⟩ ∧ ovs = ⟨⟩ then fst
else if ovs ̸= ⟨⟩ then ovs(len ovs) else ps(len ps) end
end

end,

−− collecting route information on a linear
−− section
collect_route_on_linear :

SecId × I.Route × NetworkLayout′ ∼→ I.Route∗
collect_route_on_linear( i , r , n) ≡

let
isOvs = is_collecting_ovs(r , n),
prev = last_collected_sec(r , n),
l = I.L.get_linear ( i , n),
nbs = I.L.neighbors(l ),
sigs = I.L.signals( i , n),
d = (−I.L.get_l_end_by_nb_id(i, prev, n)),
has_sig = d ∈ sigs,
dsig = if isOvs ∨ ¬ has_sig then I.dest(r) else sigs(d) end,
opposing_sigs = rng (sigs \ {d }),
new_ovs = if isOvs then I.overlap(r) ̂ ⟨ i⟩ else I .overlap(r) end,
new_path = if isOvs then I.path(r) else I .path(r) ̂ ⟨ i⟩ end,
ovs_len = sum(⟨I.L.get_length(o, n) | o in new_ovs⟩)

in
if

d ̸∈ nbs −−reached the border
then

if isOvs ∨ has_sig
then
⟨I .mk_Route(

I .source(r ), dsig, new_path, new_ovs, I.points(r),
I . signals(r) ∪ opposing_sigs, I . conflicts (r )) ⟩

else ⟨⟩
end

else
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let
j = nbs(d),
safety_dx =

if has_sig ∨ isOvs
then I .L.distance(I .L.get_maker_board(dsig, n))
else 0
end,

done =
(isOvs ∧ (ovs_len + safety_dx) ≥ I.MIN_SAFETY_DISTANCE) ∨
(has_sig ∧ safety_dx ≥ I.MIN_SAFETY_DISTANCE),

front_prot =
if done then I.find_protection(i , j , n) else I .empty end,

new_r =
I .mk_Route(

I .source(r ), dsig, new_path, new_ovs,
I .points(r) ∪ I .points(front_prot ),
I . signals(r) ∪ opposing_sigs ∪

I . signals(front_prot ), I . conflicts (r ))
in

if done then ⟨new_r⟩ else collect_route(j , new_r, n) end
end

end
end

pre I .L. l_exists ( i , n),

−− collecting route information on a point
−− section
collect_route_on_point :

SecId × I.Route × NetworkLayout′ ∼→ I.Route∗
collect_route_on_point(i , r , n) ≡

let
isOvs = is_collecting_ovs(r , n),
prev = last_collected_sec(r , n),
p = I.L.get_point(i , n),
nbs = I.L.neighbors(p),
new_ovs = if isOvs then I.overlap(r) ̂ ⟨ i⟩ else I .overlap(r) end,
new_path = if isOvs then I.path(r) else I .path(r) ̂ ⟨ i⟩ end,
ovs_len = sum(⟨I.L.get_length(o, n) | o in new_ovs⟩),
done = isOvs ∧ ovs_len ≥ I.MIN_SAFETY_DISTANCE,
side = I.L.get_p_end_by_nb_id(i, prev, n)

in
case side of

NB_STEM→
let

plus = I.L.plus(p),
prot_plus = I.find_protection(i , plus, n),
minus = I.L.minus(p),
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prot_minus = I.find_protection(i, minus, n)
in

if done
then

let
done_s_r =

I .mk_Route(
I .source(r ), I .dest(r ), new_path, new_ovs,
I .points(r) ∪ I .points(prot_plus) ∪
I .points(prot_minus),
I . signals(r) ∪ I . signals(prot_plus) ∪
I . signals(prot_minus), I . conflicts (r ))

in
⟨done_s_r⟩

end
else

let
plus_r =

I .mk_Route(
I .source(r ), I .dest(r ), new_path, new_ovs,
I .points(r) ∪ [ i 7→ PLUS] ∪

I .points(prot_minus),
I . signals(r) ∪ I . signals(prot_minus),
I . conflicts (r )),

minus_r =
I .mk_Route(

I .source(r ), I .dest(r ), new_path, new_ovs,
I .points(r) ∪ [ i 7→MINUS] ∪

I .points(prot_plus),
I . signals(r) ∪ I . signals(prot_plus),
I . conflicts (r ))

in
collect_route (plus, plus_r, n) ̂
collect_route (minus, minus_r, n)

end
end

end,
_ →

let
pos_side = if side = NB_PLUS then PLUS else MINUS end,
prot_side =

if side = NB_PLUS then I.find_protection(i, I.L.minus(p), n)
else I .find_protection(i , I .L.plus(p), n)
end

in
if done
then
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let
prot_stem = I.find_protection(i , I .L.stem(p), n),
done_r =

I .mk_Route(
I .source(r ), I .dest(r ), new_path, new_ovs,
I .points(r) ∪ [ i 7→ pos_side] ∪

I .points(prot_side) ∪ I .points(prot_stem),
I . signals(r) ∪ I . signals(prot_side) ∪
I . signals(prot_stem), I . conflicts (r ))

in
⟨done_r⟩

end
else

let
stem_r =

I .mk_Route(
I .source(r ), I .dest(r ), new_path, new_ovs,
I .points(r) ∪ [ i 7→ pos_side] ∪

I .points(prot_side),
I . signals(r) ∪ I . signals(prot_side),
I . conflicts (r ))

in
collect_route ( I .L.stem(p), stem_r, n)

end
end

end
end

end
pre I .L.p_exists( i , n),

−− collecting the information for a route
collect_route : SecId × I.Route × NetworkLayout′ ∼→ I.Route∗
collect_route ( i , r , n) ≡

if I .L. l_exists ( i , n) then collect_route_on_linear( i , r , n)
else collect_route_on_point(i , r , n)
end

pre I .L. s_exists ( i , n),

−− for a given signal set , generate all routes
−− starting from a signal in the set
gen_route_m : MbId∗ × NetworkLayout′ ∼→ I.Route∗
gen_route_m(ms, n) ≡
if ms = ⟨⟩ then ⟨⟩

else
let

mi = hd ms,
m = I.L.get_maker_board(mi, n),
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i = I.L.section(m),
l = I.L.get_linear ( i , n),
nbs = I.L.neighbors(l ),
s = I.L.dir(m),
lrs = gen_route_m(tl ms, n)

in
if
−− if we do not reach the border yet
s ∈ nbs

then
let j = nbs(s), r = init_r (mi) in

collect_route ( j , r , n) ̂ lrs
end

else lrs
end

end
end

pre (∀m : MbId • m ∈ ms⇒ I.L.m_exists(m, n)),

−− generate the primary set of all elementary
−− routes for a given network
−− ===============================================
−− Remarks: The sorting doesn’ t have anything
−− todo with the generation , it just makes
−− sure the route are assigned ids in order
−− of their source signals

gen_routes : NetworkLayout′→ I.Route∗
gen_routes(n) ≡

let sigs = sort( to_list (dom I.L.marker_boards(n))) in
gen_route_m(sigs, n)

end,

−− make an alternative route by replacing the
−− set of protecting point rp with protecting
−− signals
mk_alt :

I .Route × SecId-set × (SecId →m MbId-set) × NetworkLayout′ ∼→
I .Route

mk_alt(r, rp, sigmap, n) ≡
let

new_sigs = flatten(rng (sigmap / rp)),
sigs = I.signals(r) ∪ new_sigs,
ps = I.points(r) \ rp

in
I .mk_Route(

I .source(r ), I .dest(r ), I .path(r ), I .overlap(r ), ps, sigs ,
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I . conflicts (r ))
end

pre I . is_wf_r(r , n),

−− make an alternative route by replacing a
−− set from the powerset of protecting point
−− ss with protecting signals
mk_alternatives :

I .Route × (SecId-set)-set × (SecId →m MbId-set) × NetworkLayout′ ∼→
I .Route∗

mk_alternatives(r, ss , sigmap, n) ≡
if ss = {} then ⟨⟩
else

let s = hd ss, rs = mk_alternatives(r, ss \ {s }, sigmap, n) in
⟨mk_alt(r, s , sigmap, n)⟩ ̂ rs

end
end

pre
I . is_wf_r(r , n) ∧
let ps = I.points(r) in
(∀s : SecId-set •

s ∈ ss ⇒
(∀i : SecId • i ∈ s ⇒ i ∈ ps ∧ i ∈ sigmap))

end,

−− Find all alternative routes of a given route
−− by replacing a subset of the set of protecting
−− points of the route with protecting signals

mk_alt_routes : I .Route × NetworkLayout′→ I.Route∗
mk_alt_routes(r, n) ≡

let
ps = I.points(r ),
po = elems I.path(r) ∪ elems I.overlap(r ),
reps_init =
[ i 7→ I.find_replacing_signals(i , r , n) |
i : SecId • i ∈ ps \ po],

sigmap =
[ i 7→ reps_init(i) |
i : SecId • i ∈ reps_init ∧ reps_init( i ) ̸= {} ] ,

pws = powerset(dom sigmap)
in

mk_alternatives(r, pws, sigmap, n)
end

pre I . is_wf_r(r , n),

−− assign id for the routes in the set , and
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−− transform the set to a map
assign_id : I .Route∗ × Nat × NetworkLayout′→ I.InterlockingTable
assign_id(rs , c , n) ≡

if rs = ⟨⟩ then [ ]
else

let
r = hd rs,
id = mk_major_id(c),
alts = mk_alt_routes(r, n),
m =

if alts = ⟨r⟩ then [id 7→ r] else mk_minor_map(alts, id, 1) end
in

assign_id( tl rs , c + 1, n) ∪ m
end

end,

−− make a map of alternative routes with minor
−− ids
mk_minor_map : I.Route∗ × RouteId × Nat→ I.InterlockingTable
mk_minor_map(rs, major, c) ≡
if rs = ⟨⟩ then [ ]

else
let r = hd rs, id = mk_minor_id(major, c) in
[id 7→ r] ∪ mk_minor_map(tl rs, major, c + 1)

end
end,

−− mark pairs of routes that are physically
−− in conflict as conflicting routes
mark_conflicts :

I . InterlockingTable × NetworkLayout′→ I.InterlockingTable
mark_conflicts(rt , n) ≡

let ids = dom rt in
[ i 7→
let

r = rt( i ),
cs =

{ j |
j : RouteId •

j ∈ ids \ { i } ∧
I . are_physically_in_conflict (r , rt ( j ), n)}

in
I .mk_Route(

I .source(r ), I .dest(r ), I .path(r ), I .overlap(r ), I .points(r ),
I . signals(r ), I . conflicts (r) ∪ cs)

end | i : RouteId • i ∈ ids ]
end
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end



APPENDIX B
Interlocking Dynamic

Language – IDL
B.1 BNF Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
B.2 Operators and Their Meaning . . . . . . . . . . . . . . . . . . . . . 206
B.3 Domain Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

This appendix presents some extra information in order to facilitate the specification
of IDL in Chapter 5. Section B.1 shows the complete BNF grammar of IDL. Section B.2
to Section B.3 explain the meaning of some operators, domain functions in IDL,
respectively.

B.1 BNF Grammar

⟨specification⟩ ::= kripke ⟨ident⟩ ⟨decl-string⟩ end

⟨decl⟩ ::= ⟨encoding-decl⟩
| ⟨macro-decl⟩
| ⟨initial-decl⟩
| ⟨module-decl⟩
| ⟨transrel-decl⟩
| ⟨invariant-decl⟩
| ⟨test-obj-decl⟩

⟨encoding-decl⟩ ::= encoding ⟨encoding-list⟩

⟨encoding⟩ ::= ⟨elem-type⟩ :: ⟨variable-list⟩

⟨variable⟩ ::= ⟨symbol⟩→ [ ⟨sym-type⟩ , ⟨target-type⟩ , ⟨ival⟩ , ⟨low⟩ , ⟨high⟩ ]

⟨target-type⟩ ::= ” ⟨primitive-type⟩ ”

⟨primitive-type⟩ ::= int | unsigned int | long | unsigned long | long long
| unsigned long long | float | double | clock

⟨ival⟩ ::= ⟨literal⟩
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⟨low⟩ ::= ⟨literal⟩

⟨high⟩ ::= ⟨literal⟩

⟨macro-decl⟩ ::= macro ⟨macro-list⟩

⟨macro⟩ ::= def ⟨ident⟩ ( ⟨[ident-list]⟩ ) = ⟨expr⟩
| def ⟨ident⟩ = ⟨expr⟩

⟨initial-decl⟩ ::= init ⟨invariant-list⟩

⟨module-decl⟩ ::= module ⟨ident⟩ ⟨transrel⟩
| module ⟨ident⟩ ( ⟨[ident-list]⟩ ) ⟨transrel⟩

⟨invariant-decl⟩ ::= invariant ⟨invariant-list⟩

⟨invariant⟩ ::= [ ⟨ident⟩ ] ⟨simple-expr⟩

⟨transrel-decl⟩ ::= transrel ⟨transrel⟩

⟨transrel⟩ ::= [ ⟨ident⟩ ] ⟨simple-expr⟩−→ ⟨next-expr⟩
| [ ⟨ident⟩ ]
| [ ⟨ident⟩ ( ⟨[expr-list]⟩ ) ]
| ⟨transrel⟩ [=] ⟨transrel⟩
| ⟨transrel⟩ [>] ⟨transrel⟩

⟨test-obj-decl⟩ ::= test_obj ⟨test-obj-list⟩

⟨test-obj⟩ ::= [ ⟨ident⟩ ] ⟨ltl-formula⟩
| ( [=] ⟨ident⟩ : ⟨elem-type⟩ • ⟨test-obj⟩ )

⟨ltl-formula⟩ ::= [ ⟨simple-expr⟩ ]
| G ⟨ltl-formula⟩
| X ⟨ltl-formula⟩
| F ⟨ltl-formula⟩
| ¬ ⟨ltl-formula⟩
| E ⟨ident⟩ : ⟨ltl-formula⟩
| ⟨ltl-formula⟩ U ⟨ltl-formula⟩
| ⟨ltl-formula⟩ ∧ ⟨ltl-formula⟩
| ⟨ltl-formula⟩ ∨ ⟨ltl-formula⟩
| ⟨ltl-formula⟩⇒ ⟨ltl-formula⟩

⟨simple-expr⟩ ::= ⟨expr⟩

⟨next-expr⟩ ::= ⟨expr⟩
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⟨expr⟩ ::= ⟨ident⟩
| ⟨literal⟩
| ⟨elem-type⟩
| ⟨symbol-expr⟩
| ⟨uop⟩ ⟨expr⟩
| ⟨expr⟩ ⟨bop⟩ ⟨expr⟩
| ⟨macro-ex-expr⟩
| ⟨domain-expr⟩
| ⟨quantified-expr⟩
| ⟨if-then-else-expr⟩
| ⟨case-expr⟩
| ⟨let-expr⟩
| ⟨index-expr⟩

⟨symbol-expr⟩ ::= ⟨expr⟩ . ⟨ident⟩ ⟨version⟩

⟨macro-ex-expr⟩ ::= ⟨ident⟩ ( ⟨[expr-list]⟩ )

⟨domain-expr⟩ ::= ⟨domain-func⟩ ( ⟨expr-list⟩ )
| ⟨domain-uop⟩ ⟨expr⟩
| ⟨expr⟩ ⟨domain-bop⟩ ⟨expr⟩

⟨quantified-expr⟩ ::= ( ⟨quan-op⟩ ⟨ident⟩ : ⟨elem-type⟩ • ⟨expr⟩ )

⟨quan-op⟩ ::= ∀ | ∃ | ∃!

⟨if-then-else-expr⟩ ::= if ⟨expr⟩ then ⟨expr⟩ else ⟨expr⟩ end
| ⟨expr⟩ ? ⟨expr⟩ : ⟨expr⟩

⟨case-expr⟩ ::= case ⟨expr⟩ of ⟨case-branch-list⟩ end
| case ⟨expr⟩ of ⟨case-default⟩ end
| case ⟨expr⟩ of ⟨case-branch-list⟩ , ⟨case-default⟩ end

⟨case-branch⟩ ::= ⟨expr⟩→ ⟨expr⟩

⟨case-default⟩ ::= ⟨wildcard⟩→ ⟨expr⟩

⟨let-expr⟩ ::= let ⟨assign-list⟩ in ⟨expr⟩ end

⟨assign⟩ ::= ⟨ident⟩ = ⟨expr⟩

⟨index-expr⟩ ::= ⟨expr⟩ [ ⟨expr⟩ ]
| ⟨expr⟩ [ ⟨expr⟩ : ⟨expr⟩ ]

⟨elem-type⟩ ::= Linear | Point | Section | Signal | Route
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⟨sym-type⟩ ::= INPUT | LOCAL | OUTPUT

⟨uop⟩ ::= ¬

⟨bop⟩ ::= ≤ | < | > | ≥ | = | ̸=
| ∧ | ∨ | ⊕ | ⇒
| + | − | ∗ | / | %
| & | | | ≪ | ≫

⟨domain-func⟩ ::= down | up | down_sig | up_sig
| stem | plus | minus
| dir | track
| src | dst | first | last
| path | overlap | points | signals | conflicts
| prev | next | prevs | nexts | req
| conn_end
| entry | exit

⟨domain-uop⟩ ::= elems | hd | tl | dom | rng | len

⟨domain-bop⟩ ::= ∈ | ∪ | ∩ | \

⟨version⟩ ::= ’ | ⟨empty⟩

⟨wildcard⟩ ::= _

⟨ident⟩ ::= [_a-zA-Z][_a-zA-Z0-9]*

⟨literal⟩ ::= [0-9]+ | 0b[01]+ | 0x[0-9a-fA-F]+

B.2 Operators and Their Meaning

The meaning of a number of selected operators are explained in the following.
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v′ value of v in the next state
o.VAR variable VAR of the object o

[=] non-deterministic choice
[>] prioritized choice
≫ arithmetic shift right
≪ arithmetic shift left

̂ bitwise xor
& bitwise and
| bitwise or
∧ logical and
∨ logical or
⊕ logical xor
⇒ logical implication

elems return the set of the items in a list
hd return the head item of a list
tl return the tail of a list

dom return the set of domain items of a map
rng return the set of value items of a map
ls[i] return the ith item of the list ls (0-index)

ls[i : j] return the items in the range ith to jth of list ls
m[k] return the value corresponding to the key k in the map m

B.3 Domain Functions

The meaning of domain functions are explained in the following. Each function
explanation is a row in the table. (1) The first column shows the applications of IDL
domain function. (2) The second column shows their semantics of by RSL function
applications (of RSL functions defined on the abstract syntax for ICL) where σ is the
interlocking configuration data under consideration. Note that the function name in
this column is linked to its respective RSL function in Appendix A. One can go to
the respective RSL function by following the hyper link. (3) The third column is the
brief informal description of the function applications.

Functions on Linear Sections.

IDL Syntax Meaning in RSL Description
up(l) up(l, σ) the neighboring section at l’s up end

down(l) down(l, σ) the neighboring section at l’s down end
up_sig(l) up_sig(l, σ) the signal intended for the up direction

down_sig(l) down_sig(l, σ) the signal intended for the down direction

Functions on Points.
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IDL Syntax Meaning in RSL Description
stem(p) stem(p, σ) the neighboring section at p’s stem end
plus(p) plus(p, σ) the neighboring section at p’s plus end

minus(p) minus(p, σ) the neighboring section at p’s minus end

Functions on Sections.

IDL Syntax Meaning in RSL Description
conn_end(e,n) conn_end(e, n, σ) returns the end of e that is connected to n

Functions on Signals.

IDL Syntax Meaning in RSL Description
dir(s) dir(s, σ) the direction s is intended for

track(s) track(s, σ) the section where s is installed along

Functions on Routes.

IDL Syntax Meaning in RSL Description
src(r) src(r, σ) the source signal of the route r
dst(r) dst(r, σ) the destination signal of the route r

path(r) path(r, σ) the list of sections in r’s path
overlap(r) overlap(r, σ) the list of sections in r’s overlap
points(r) points(r, σ) the map of points used by r to their required positions

signals(r) signals(r, σ) the set of r’s protecting signals
conflicts(r) conflicts(r, σ) the set of r’s conflicting routes

first(r) first(r, σ) the first section of r’s path
last(r) last(r, σ) the last section of r’s path

entry(r, e) entry(r, e, σ) the end of e from which r enters e
exit(r, e) exit(r, e, σ) the end of e to which r exits e
next(r, e) next(r, e, σ) the next element of e in route r
prev(r, e) prev(r, e, σ) the previous element of e in route r

nexts(r, e) nexts(r, e, σ) the next elements of e in route r
prevs(r, e) prevs(r, e, σ) the previous elements of e in route r

req(r, p) req(r, p, σ) the position of p as required by r



APPENDIX C
Cases for Experiments with Our

Toolchain
This appendix lists the network layout of made-up cases that were used for the
experiments with our toolchain as described in Section 6.5. The cases extracted from
the Early Deployment Line (EDL) of the Danish Signalling Programme are not listed
here due to the non-disclosure agreement (NDA) with our industrial partners.
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This appendix lists the full specification of the generic applications (behavioural
model, properties, and test objectives) for the forthcoming Danish interlocking
systems in IDL as described in Chapter 6. First, Section D.1 explains briefly some
selected macros that are used in the specification. The full specification in IDL is
then given in Section D.2.

D.1 Selected Macros

Some selected macros and their objectives are explained briefly in the following. All
macros used for our generic applications for the Danish interlocking systems are
defined in Section D.2.

• vacant(e) : whether e is vacant

• H__(hto) : get the H bit of the occupancy status variable hto

• _T_(hto) : get the T bit of the occupancy status variable hto

• __O(hto) : get the O bit of the occupancy status variable hto

• route_entry_hto(e,r,v) : get the occupancy status variable of e in the direction of r at
version v

• neighbor_hto(e,n,v) : get the occupancy status variable of e in the direction coming
from n

• hto(e,x,v) : a generic version of two above macros

• is_boundary_sec_down(e) : whether e is a boundary section in the down direction

• is_boundary_sec_up(e) : whether e is a boundary section in the up direction

• occupied_with_head(hto) : whether a section is occupied with the head of a train in
it



212 D Generic Applications of the Danish Interlocking Systems

• occupied_without_tail(hto) : whether a section is occupied without the tail of a train
in it

• occupied_without_head(hto) : whether a section is occupied without the head of a
train in it

• occupied_with_only_tail(hto) : whether a section is occupied with only the tail of a
train in it

• head_enters(hto,hto′) : toggle the H and O bits of the occupancy variable hto to model
the head of a train entering a section

• head_leaves(hto,hto′) : toggle the H bit of the occupancy variable hto to model the
head of a train leaving a section

• tail_enters (hto,hto′ ) : toggle the T bit of the occupancy variable hto to model the
tail of a train entering a section

• tail_leaves (hto,hto′ ) : set the occupancy variable hto to 0 to model the tail of a train
leaving a section

• can_turn_around_at(e) : whether trains can change direction at e

D.2 Full Specification in IDL

/* =======================================================
* File : $Name: dk_interlocking . kr $
* Created : $Date: 2014−04−10 12:22:23 $
* Author: $Author: Linh H. Vu<lvho@dtu.dk> $
* =======================================================
* Description : Generic behavioral model of the forthcoming
* Danish interlocking systems
* =======================================================
* Route control states :
* ====================
* 0 : NOCMD
* 1 : DISPATCH
* 2 : CANCEL
* Possible transitions :
* NOCMD −> DISPATCH/CANCEL
* DISPATCH −> NOCMD/CANCEL
* CANCEL −> NOCMD
* Route states :
* ============
* 0 : FREE
* 1 : MARKED
* 2 : ALLOCATING
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* 3 : LOCKED
* 4 : OCCUPIED
* Signals aspect :
* ==============
* 0 : CLOSED
* 1 : OPEN
* Point positions :
* ===============
* 0 : PLUS
* 1 : MINUS
* 2 : INTER
* Element modes:
* =============
* 0 : AVAIL
* 1 : EXLCK
* 2 : USED
*/

kripke dk_interlocking

encoding

/* *
* D2U: occupancy status for direction from down to up
* U2D: occupancy status for direction from up to down
* MODE: current mode of the element
* PREV: whether the previous element in the same route has been
* released
*/

Linear::
D2U→ [INPUT,”unsigned int”,0,0,7]
U2D→ [INPUT,”unsigned int”,0,0,7]
MODE→ [LOCAL,”unsigned int”,0,0,2]
PREV→ [LOCAL,”unsigned int”,0,0,1],

/* *
* S2PM: occupancy status for direction from stem to plus /minus
* P2S: occupancy status for direction from plus to stem
* M2S: occupancy status for direction from minus to stem
* CMD: commanded position of the point
* POS: actual position of the point
* MODE: current mode of the element
* PREV: whether the previous element in the same route has been
* released
*/

Point ::
S2PM→ [INPUT,”unsigned int”,0,0,7]
P2S→ [INPUT,”unsigned int”,0,0,7]
M2S→ [INPUT,”unsigned int”,0,0,7]
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CMD→ [OUTPUT,”unsigned int”,0,0,1]
POS→ [INPUT,”unsigned int”,0,0,2]
MODE→ [LOCAL,”unsigned int”,0,0,2]
PREV→ [LOCAL,”unsigned int”,0,0,1],

/* *
* ACT: actual aspect of the signal
* CMD: commanded aspect of the signal
*/

Signal::
ACT→ [INPUT,”unsigned int”,0,0,1]
CMD→ [OUTPUT,”unsigned int”,0,0,1],

/* *
* CTRL: control command for the route
* MODE: current mode of the route ( internal )
* DSPL: current mode of the route (shown externally )
*/

Route::
CTRL→ [INPUT,”unsigned int”,0,0,2]
MODE→ [LOCAL,”unsigned int”,0,0,4]
DSPL→ [OUTPUT,”unsigned int”,0,0,4]

// init
// /**
// * Linear sections are vacant and available , their PREV variables are unset
// */
// [ initial_state_linear ]
// ( all l : Linear :− vacant( l ) /\ l .MODE = AVAIL /\ l.PREV = PENDING),
// /**
// * Points are vacant and available , their PREV variables are unset , and their
// * positions are PLUS
// */
// [ initial_state_point ]
// ( all p : Linear :−
// (vacant(p) /\ p.MODE = AVAIL /\ p.PREV = PENDING) /\
// (p.CMD = PLUS /\ p.POS = PLUS)),
// /**
// * Signals are CLOSED
// */
// [ initial_state_signal ]
// ( all s : Signal :− s .CMD = CLOSED /\ s.ACT = CLOSED),
// /**
// * Routes are FREE and no pending commands
// */
// [ initial_state_route ]
// ( all r : Route :− r .CTRL = NOCMD /\ r.MODE = FREE /\ r.DSPL = FREE)
/* *
* =======================================
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* TRANSITION RELATION OF THE WHOLE SYSTEM
* =======================================
*/

transrel

[DP] [=] ( [SUT] [>] [ET] [>] [TM])

/* *
* =============================
* ROUTE DISPATCHING TRANSITIONS
* =============================
* i . e . communication with TMS, controlling route dispatching / canceling
*/

module DP

/* *
* DISPATCH ROUTES
* ===============
* if a route has not been dispatched , then it can be dispatched
*/

([=] r : Route •
[ctrl_nocmd_to_dispatch] (r.CTRL = NOCMD ∧ r.DSPL = FREE) −→
(r .CTRL′ = DISPATCH))
[=]

/* *
* DISPATCH ORDERED HAS BEEN SERVED
* ===============================
*/

([=] r : Route •
[ctrl_dispatch_to_nocmd] (r.CTRL = DISPATCH ∧ r.DSPL ̸= FREE) −→
(r .CTRL′ = NOCMD))
[=]

/* *
* CANCELING ROUTES
* ================
* a route can be canceled if it is not already been commanded to be
* canceled
*/

([=] r : Route •
[ ctrl_to_cancel ]
(r .CTRL ̸= CANCEL ∧
(r .DSPL = MARKED ∨ r.DSPL = ALLOCATING ∨ r.DSPL = LOCKED))
−→ (r.CTRL′ = CANCEL))
[=]
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/* *
* CANCELING ORDER HAS BEEN SERVED
* ===============================
* finish route canceling
*/

([=] r : Route •
[ctrl_cancel_to_nocmd]
(r .CTRL = CANCEL ∧ r.DSPL = FREE ∧ src(r).ACT = CLOSED)
−→ (r.CTRL′ = NOCMD))

/* *
* ========================
* INTERLOCKING TRANSITIONS
* ========================
*/

module SUT

/* *
* BEGIN: HANDLING ROUTE CANCELING
* ===============================
*/
/* a marked route can be canceled at anytime */
([=] r : Route •
[cancel_marked_route] (r.CTRL = CANCEL ∧ r.MODE = MARKED) −→
(r .MODE′ = FREE ∧ r.DSPL′ = FREE))
[=]

/* a route in allocating mode can be canceled at anytime */
([=] r : Route •
[cancel_allocating_route]
(r .CTRL = CANCEL ∧ r.MODE = ALLOCATING ∧
/* no points are switching , if there is a point switching , we wait until the
* next cycle when the point is already done switching and then cancel the
* route */
(∀p : Point • p ∈ points(r) ⇒ p.POS = req(r,p)))
−→
/* free the route */
(r .MODE′ = FREE) ∧ (r.DSPL′ = FREE) ∧
/* canceling the command to points, we don’t canceling the protecting point
* because it may be used by other routes */
(∀p : Point • p ∈ path(r) ⇒ (p.CMD′ = p.POS)) ∧
/* and unlock all sections in the route ’ s path */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE′ = AVAIL)))
[=]
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/* a locked route can only be canceled if they are not used yet we don’t need to
* check if any points are switching in here as when the route is in ALLOCATING
* mode, because the route in LOCKED mode implies that all points have been
* switched to a proper position as requested */
([=] r : Route •
[cancel_locked_route]
(r .CTRL = CANCEL ∧ r.MODE = LOCKED ∧
/* can only be canceled if the route has not been used, i . e ., all the
* route ’ s path and overlap are still vacant */
(∀e : Section •
e ∈ (elems path(r) ∪ elems overlap(r))⇒ vacant(e)))

−→
/* free the route */
(r .MODE′ = FREE) ∧ (r.DSPL′ = FREE) ∧
/* close the source signal */
(src(r ). CMD′ = CLOSED) ∧
/* and unlock all sections in the route ’ s path */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE′ = AVAIL)))
[=]

/* *
* END: HANDLING ROUTE CANCELING
* =============================
*/
/* *
* ROUTE MARKING
* =============
*/

([=] r : Route •
[route_marking] (r.CTRL = DISPATCH ∧ r.MODE = FREE) −→
(r .MODE′ = MARKED ∧ r.DSPL′ = MARKED))
[=]

/*
* ROUTE ALLOCATING
* ================
*/

([=] r : Route •
[route_allocating ]
(r .MODE = MARKED) ∧
/* none of the conflicting routes in ALLOCATING(2) or LOCKED(3) modes
*/

(∀cr : Route •
(cr ∈ conflicts (r )) ⇒ (cr.MODE ̸= ALLOCATING ∧ cr.MODE ̸= LOCKED)) ∧
/* all detection sections in the path and overlap are vacant */
(∀e : Section •
e ∈ (elems path(r) ∪ elems overlap(r))⇒ vacant(e)) ∧
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/* all elements in route ’ s path are in AVAIL mode */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = AVAIL)) ∧
/* all elements in route ’ s overlap are not in USED mode */
(∀e : Section • e ∈ overlap(r) ⇒ (e.MODE ̸= USED)) ∧
/* all protecting points are in AVAIL mode,
* or are already in the correct position */
(∀e : Point •
e ∈ (dom points(r) \ elems path(r))⇒
(e.MODE = AVAIL ∨ e.POS = req(r,e)))
−→
(r .MODE′ = ALLOCATING) ∧ (r.DSPL′ = ALLOCATING) ∧
/* command points */
(∀p : Point • p ∈ points(r) ⇒ (p.CMD′ = req(r,p))) ∧
/* command signals */
(∀s : Signal • s ∈ signals(r) ⇒ (s.CMD′ = CLOSED)) ∧
/* lock exclusively all elements in the route ’ s path */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE′ = EXLCK)))
[=]

/* *
* ROUTE LOCKING
* =============
*/

([=] r : Route •
[route_lock]
r .MODE = ALLOCATING ∧
/* protecting signals ’ actual aspects are as required */
(∀s : Signal • s ∈ signals(r) ⇒ (s.ACT = CLOSED)) ∧
/* points ’ actual positions are as required */
(∀p : Point • p ∈ points(r) ⇒ (p.POS = req(r,p))) ∧
/* all detection sections in the path and overlap are vacant */
(∀e : Section •
e ∈ (elems path(r) ∪ elems overlap(r))⇒ vacant(e)) ∧
/* all elements in the route ’ s path are locked exclusively */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = EXLCK))
−→ r.MODE′ = LOCKED ∧ r.DSPL′ = LOCKED ∧ src(r).CMD′ = OPEN)
[=]

/* *
* ROUTE IN USE + FIRST ELEMENT IN USE
* ===================================
*/

([=] r : Route •
[route_in_use]
/* the first element of the route is occupied */
let e = first (r) in

r .MODE = LOCKED ∧ ¬vacant(e)
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end
−→
r .MODE′ = OCCUPIED ∧ r.DSPL′ = OCCUPIED ∧ src(r).CMD′ = CLOSED ∧
first (r ). MODE′ = USED)

[=]

/* *
* ELEMENT IN USE
* ==============
* Excluding the first element
*/

([=] r : Route •
([=] e : Section •
[element_in_use]
e ∈ path(r) ∧ e ̸= first (r) ∧ prev(r,e ). MODE = USED ∧
r .MODE = OCCUPIED ∧ e.MODE = EXLCK ∧ not vacant(e) ∧
((e ∈ Point) ⇒ e.POS = req(r,e)) ∧
(e ̸= last(r) ⇒ next(r,e).MODE = EXLCK)
−→ e.MODE′ = USED))

[=]

/* *
* SEQUENTIAL RELEASE OF ELEMENTS
* ==============================
* Except the last element
*/

([=] r : Route •
([=] e : Section •
[sequential_release_e]
e ∈ path(r) ∧ e ̸= last(r) ∧ r.MODE = OCCUPIED ∧
e.MODE = USED ∧ vacant(e) ∧ (e ̸= first(r)⇒ e.PREV = RELEASED) ∧
let nx = next(r,e) in

nx.PREV = PENDING ∧ nx.MODE = USED ∧ (_T_(hto(nx,r,0)) ̸= 0) ∧
((nx ∈ Point)⇒ nx.POS = req(r,nx))

end ∧ ((e ∈ Point) ⇒ e.POS = req(r,e))
−→ e.MODE′ = FREE ∧ e.PREV′ = PENDING ∧ next(r,e).PREV′ = RELEASED))

[=]

/* *
* SEQUENTIAL RELEASE OF THE LAST ELEMENT + ROUTE
* ==============================================
* − It is the last element , release the route
*/

([=] r : Route •
[sequential_release_last_elem]
r .MODE = OCCUPIED ∧
let e = last(r) in
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e.MODE = USED ∧ vacant(e) ∧ (e ̸= first(r)⇒ e.PREV = RELEASED) ∧
((e ∈ Point) ⇒ e.POS = req(r,e))

end
−→
last (r ). MODE′ = AVAIL ∧ last(r).PREV′ = PENDING ∧ r.MODE′ = FREE ∧
r .DSPL′ = FREE)
[=]

/* *
* RELEASE THE LAST ELEMENT AND THE ROUTE
* ======================================
*/

([=] r : Route •
[release_last_elem_pseudo_timer]
r .MODE = OCCUPIED ∧
let e = last(r) in

e.MODE = USED ∧ hto(e,r,0) = 0b111 ∧ dst(r).ACT = CLOSED ∧
(e ̸= first (r) ⇒ e.PREV = RELEASED)

end
−→
last (r ). MODE′ = AVAIL ∧ last(r).PREV′ = PENDING ∧ r.MODE′ = FREE ∧
r .DSPL′ = FREE)

/* *
* =========================
* TRACK ELEMENT TRANSITIONS
* =========================
*/

module ET

/* *
* POINT SWITCHING
* ===============
*/
/* Start switching */
([=] p : Point •
[point_switch_1] p.POS ̸= p.CMD ∧ p.POS ̸= INTER −→ p.POS′ = INTER)
[=]

/* Move in the commanded position */
([=] p : Point • [point_switch_2] p.POS = INTER −→ p.POS′ = p.CMD)
[=]

/* *
* COMMUNICATE SIGNAL ASPECTS TO TRAINS
* ====================================
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*/
([=] s : Signal •
[communicate_signal_aspect] s.ACT ̸= s.CMD −→ s.ACT′ = s.CMD)

/* *
* ==========================
* TRAIN MOVEMENT TRANSITIONS
* ==========================
*/

module TM

/* *
* HEAD MOVEMENT ON LINEAR SECTIONS
* ================================
*/
/* from down to up */
([=] l : Linear •
[head_movement_linear_up]
up(l) ∧ ¬is_boundary_sec_up(up(l)) ∧ ¬is_boundary_sec_down(l) ∧
occupied_with_head(l.D2U) ∧ (¬up_sig(l) ∨ up_sig(l).ACT = OPEN)
−→ head_leaves(l.D2U,l.D2U′) ∧ head_enters_next(up(l),l))
[=]

/* from up to down */
([=] l : Linear •
[head_movement_linear_down]
down(l) ∧ ¬is_boundary_sec_down(down(l)) ∧ ¬is_boundary_sec_up(l) ∧
occupied_with_head(l.U2D) ∧ (¬down_sig(l) ∨ down_sig(l).ACT = OPEN)
−→ head_leaves(l.U2D,l.U2D′) ∧ head_enters_next(down(l),l))
[=]

/* *
* TAIL MOVEMENT ON LINEAR SECTIONS
* ================================
*/
/* from down to up */
([=] l : Linear •
[tail_movement_linear_up]
up(l) ∧ ¬is_boundary_sec_up(up(l)) ∧ ¬is_boundary_sec_down(l) ∧
occupied_with_only_tail(l.D2U)
−→ tail_leaves(l.D2U,l.D2U′) ∧ tail_enters_next(up(l), l ))
[=]

/* from up to down */
([=] l : Linear •
[tail_movement_linear_down]
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down(l) ∧ ¬is_boundary_sec_down(down(l)) ∧ ¬is_boundary_sec_up(l) ∧
occupied_with_only_tail(l.U2D)
−→ tail_leaves(l.U2D,l.U2D′) ∧ tail_enters_next(down(l),l))
[=]

/* *
* HEAD MOVEMENT ON POINT SECTIONS
* ===============================
*/
/* from stem toward plus */
([=] p : Point •
[head_movement_point_stem_to_plus] occupied_with_head(p.S2PM) ∧ p.POS = PLUS
−→ head_leaves(p.S2PM,p.S2PM′) ∧ head_enters_next(plus(p),p))
[=]

/* from stem toward minus */
([=] p : Point •
[head_movement_point_stem_to_minus]
occupied_with_head(p.S2PM) ∧ p.POS = MINUS
−→ head_leaves(p.S2PM,p.S2PM′) ∧ head_enters_next(minus(p),p))
[=]

/* from plus toward stem */
([=] p : Point •
[head_movement_point_plus_to_stem] occupied_with_head(p.P2S) ∧ p.POS = PLUS
−→ head_leaves(p.P2S,p.P2S′) ∧ head_enters_next(stem(p),p))
[=]

/* from minus toward stem */
([=] p : Point •
[head_movement_point_minus_to_stem]
occupied_with_head(p.M2S) ∧ p.POS = MINUS
−→ head_leaves(p.M2S,p.M2S′) ∧ head_enters_next(stem(p),p))
[=]

/* *
* TAIL MOVEMENT ON POINT SECTIONS
* ===============================
*/
/* from stem toward plus */
([=] p : Point •
[tail_movement_point_stem_to_plus]
occupied_with_only_tail(p.S2PM) ∧ p.POS = PLUS
−→ tail_leaves(p.S2PM,p.S2PM′) ∧ tail_enters_next(plus(p),p))
[=]

/* from stem toward minus */
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([=] p : Point •
[tail_movement_point_stem_to_minus]
occupied_with_only_tail(p.S2PM) ∧ p.POS = MINUS
−→ tail_leaves(p.S2PM,p.S2PM′) ∧ tail_enters_next(minus(p),p))
[=]

/* from plus toward stem */
([=] p : Point •
[tail_movement_point_plus_to_stem]
occupied_with_only_tail(p.P2S) ∧ p.POS = PLUS
−→ tail_leaves(p.P2S,p.P2S′) ∧ tail_enters_next(stem(p),p))
[=]

/* from minus toward stem */
([=] p : Point •
[tail_movement_point_minus_to_stem]
occupied_with_only_tail(p.M2S) ∧ p.POS = MINUS
−→ tail_leaves(p.M2S,p.M2S) ∧ tail_enters_next(stem(p),p))
[=]

/* *
* CHANGE DIRECTION (ONLY ON LINEAR SECTIONS)
* ==========================================
*/
/* change direction from going upward to downward */
([=] l : Linear •
[change_direction_up_to_down]
down_sig(l) ∧ up_sig(l) ∧ l .D2U = 0b111 ∧ up_sig(l).ACT = CLOSED
−→ swap_up_down_vars(l))
[=]

/* change direction from going downward to upward */
([=] l : Linear •
[change_direction_down_to_up]
down_sig(l) ∧ up_sig(l) ∧ l .U2D = 0b111 ∧ down_sig(l).ACT = CLOSED
−→ swap_up_down_vars(l))
[=]

/* *
* ENTER INTERLOCKED AREA (ONLY ON LINEAR SECTIONS)
* ================================================
*/
/* *
* from the down side if down is the border of interlocked area
* <−− down up −−>
* ////−−−−−−|−−||−−−−−−
* l [] up(l )
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* sig
*/
/* head enters */
([=] l : Linear •
[enter_interlocked_area_head_from_down]
is_boundary_sec_down(l) ∧ up_sig(l).ACT = OPEN
−→
let e = up(l) in

head_enters(e.D2U,e.D2U′)
end)
[=]

/* tail enters */
([=] l : Linear •
[enter_interlocked_area_tail_from_down]
is_boundary_sec_down(l) ∧
let e = up(l) in

occupied_without_tail(e.D2U)
end
−→
let e = up(l) in

tail_enters (e.D2U,e.D2U′)
end)
[=]

/* *
* from the up if the up is the border of interlocked area
* <−− down up −−>
* sig
* down(l) [] l
* −−−−−−−−||−−|−−−−−−////
*/
/* head enters */
([=] l : Linear •
[enter_interlocked_area_head_from_up]
is_boundary_sec_up(l) ∧ down_sig(l).ACT = OPEN
−→
let e = down(l) in

head_enters(e.U2D,e.U2D′)
end)
[=]

/* tail enters */
([=] l : Linear •
[enter_interlocked_area_tail_from_up]
is_boundary_sec_up(l) ∧
let e = down(l) in
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occupied_without_tail(e.U2D)
end
−→
let e = down(l) in

tail_enters (e.U2D,e.U2D′)
end)
[=]

/* *
* LEAVE INTERLOCKED AREA (ONLY ON LINEAR SECTIONS)
* ================================================
* We don’t care the aspect of the exit signal since the exiting signal
* is not controled by this interlocking
*/
/* *
* leave downward if the down is border
* <−− down up −−>
* ////−−−−−−−−||−−−−−−
* l up(l )
*/
/* head leaves */
([=] l : Linear •
[leave_interlocked_area_head_to_down]
is_boundary_sec_down(l) ∧
let e = up(l) in

occupied_with_head(e.U2D)
end
−→
let e = up(l) in

head_leaves(e.U2D,e.U2D′)
end)
[=]

/* tail leaves */
([=] l : Linear •
[leave_interlocked_area_tail_to_down]
is_boundary_sec_down(l) ∧
let e = up(l) in

occupied_with_only_tail(e.U2D)
end
−→
let e = up(l) in

tail_leaves (e.U2D,e.U2D′)
end)
[=]

/* *
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* leave upward if the up is border
* <−− down up −−>
* down(l) l
* −−−−−−−−||−−−−−−−////
*/
/* head leaves */
([=] l : Linear •
[leave_interlocked_area_head_to_up]
is_boundary_sec_up(l) ∧
let e = down(l) in

occupied_with_head(e.D2U)
end
−→
let e = down(l) in

head_leaves(e.D2U,e.D2U′)
end)
[=]

/* tail leaves */
([=] l : Linear •
[leave_interlocked_area_tail_to_up]
is_boundary_sec_up(l) ∧
let e = down(l) in

occupied_with_only_tail(e.D2U)
end
−→
let e = down(l) in

tail_leaves (e.D2U,e.D2U′)
end)

invariant

/* *
* ============================
* HIGH−LEVEL SAFETY PROPERTIES
* ============================
*/
[no_head_to_head_collisions_linear]
(∀l : Linear • (¬is_boundary_sec(l))⇒ (l.D2U * l.U2D = 0)),

[no_head_to_tail_collisions_linear ]
(∀l : Linear •
(¬is_boundary_sec(l))⇒
( l .D2U * (1 − (l .D2U & 1)) + l.U2D * (1 − (l .U2D & 1)) = 0)),

[no_head_to_head_collisions_point]
(∀p : Point • p.M2S * p.S2PM + p.P2S * p.S2PM + p.P2S * p.M2S = 0),
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[no_head_to_tail_collisions_point]
(∀p : Point •
p.S2PM * (1 − (p.S2PM & 1)) + p.P2S * (1 − (p.P2S & 1)) +
p.M2S * (1 − (p.M2S & 1)) = 0),

[no_derailments]
(∀p : Point •
p.POS * p.P2S + (1 − (p.POS & 1)) * p.M2S + (p.POS≫ 1) * p.S2PM = 0),

/* *
*
* ========================
* STRENGTHENING INVARIANTS
* ========================
*/
/* *
* TRAIN INTEGRITY CONDITIONS
* ==========================
*/
/* linear section , up direction */
[ train_integrity_linear_up ]
(∀l : Linear •
(up(l) ∧ ¬is_boundary_sec_up(up(l)) ∧ ¬is_boundary_sec_down(l))⇒
((occupied_without_head(l.D2U)⇒ occupied_without_tail(hto(up(l),l))) ∧
(occupied_without_tail(hto(up(l),l )) ⇒ occupied_without_head(l.D2U)))),

/* linear section , down direction */
[train_integrity_linear_down]
(∀l : Linear •
(down(l) ∧ ¬is_boundary_sec_down(down(l)) ∧ ¬is_boundary_sec_up(l))⇒
((occupied_without_head(l.U2D)⇒ occupied_without_tail(hto(down(l),l))) ∧
(occupied_without_tail(hto(down(l),l))⇒ occupied_without_head(l.U2D)))),

/* point section , from stem toward plus /minus */
[train_integrity_point_stem_to_plusminus]
(∀p : Point •
(occupied_without_head(p.S2PM)⇒
((occupied_without_tail(hto(plus(p),p)) ∧ p.POS = PLUS) ⊕
(occupied_without_tail(hto(minus(p),p)) ∧ p.POS = MINUS))) ∧
(occupied_without_tail(hto(plus(p),p))⇒
(occupied_without_head(p.S2PM) ∧ p.POS = PLUS)) ∧

(occupied_without_tail(hto(minus(p),p))⇒
(occupied_without_head(p.S2PM) ∧ p.POS = MINUS)) ∧
¬(occupied_without_tail(hto(plus(p),p)) ∧
occupied_without_tail(hto(minus(p),p)))),
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/* point section , from plus /minus toward stem */
[train_integrity_point_plusminus_to_stem]
(∀p : Point •
(occupied_without_head(p.P2S)⇒
(occupied_without_tail(hto(stem(p),p)) ∧ p.POS = PLUS)) ∧

(occupied_without_head(p.M2S)⇒
(occupied_without_tail(hto(stem(p),p)) ∧ p.POS = MINUS)) ∧

(occupied_without_tail(hto(stem(p),p))⇒
((occupied_without_head(p.P2S) ∧ p.POS = PLUS) ⊕
(occupied_without_head(p.M2S) ∧ p.POS = MINUS)))),

/* \ ~ (occupied_without_head(p.P2S) /\ occupied_without_head(p.M2S))), −>
* covered by point
* safety prop */
/* *
* CONDITIONS ON ROUTES
* ====================
*/
[mode_and_display_are_identical]
(∀r : Route • r .MODE = r.DSPL),

[conflicting_routes_are_not_set_together]
(∀r : Route •
(r .MODE = ALLOCATING ∨ r.MODE = LOCKED)⇒
(∀cr : Route •
cr ∈ conflicts (r) ⇒ (cr.MODE ̸= ALLOCATING ∧ cr.MODE ̸= LOCKED))),

[route_allocating_cnd]
(∀r : Route •
(r .MODE = ALLOCATING)⇒
/* points are commanded in correct positions */
((∀p : Point • p ∈ points(r) ⇒ (p.CMD = req(r,p))) ∧
/* protecting signals are commanded in correct aspects */
(∀s : Signal • s ∈ signals(r) ⇒ (s.CMD = CLOSED)) ∧
/* all lockable elements in the path are EXLCK(1) */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = EXLCK)) ∧
/* all sections have to be vacant */
(∀e : Section •
e ∈ (elems path(r) ∪ elems overlap(r))⇒ vacant(e)))),

[route_lock_cnd]
(∀r : Route •
(r .MODE = LOCKED)⇒
let fst = first (r) in
/* points are in correct positions */
(∀p : Point •
p ∈ points(r) ⇒ (p.POS = req(r,p) ∧ p.POS = p.CMD)) ∧
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/* protecting signals are in correct aspects */
(∀s : Signal •
s ∈ signals(r) ⇒ (s.ACT = CLOSED ∧ s.ACT = s.CMD)) ∧
/* all lockable elements in the path are EXLCK(1) */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = EXLCK)) ∧
/* all sections except the first one have to be vacant */
(∀e : Section •
(e ̸= fst ∧ e ∈ (elems path(r) ∪ elems overlap(r))) ⇒
vacant(e)) ∧
/* first section is vacant or occupied by head of the train */
(vacant(fst ) ∨ hto( fst , r) = 5) ∧
/* entry signal is commanded to be open */
src(r ). CMD = OPEN

end),

[route_used_cnd_a]
(∀r : Route • r .MODE = OCCUPIED⇒ (last(r).MODE ̸= AVAIL)),

[route_used_cnd_b]
(∀r : Route •
r .MODE = OCCUPIED⇒
(count_fwd___O(r) ∨
let fst = first (r ),

lst = last(r) in
(( lst ̸= fst) ? lst .PREV : ( lst .MODE = USED)) ∧ vacant(last(r))

end)),

[route_used_cnd_c]
(∀r : Route • r .MODE = OCCUPIED⇒ linear_chunk_cnd(r,last(r))),

[route_in_use_last_sec_is_free_in_opposite_dir]
(∀r : Route • r .MODE = OCCUPIED⇒ bwd_hto(last(r),r,0) = 0),

[routes_share_last_not_used_at_same_time]
(∀r : Route •
r .MODE = OCCUPIED⇒
(∀opr : Route •
(opr ̸= r ∧ last (r) = last(opr)) ⇒ (opr.MODE ̸= OCCUPIED))),

[first_entry_cnd ]
(∀r : Route •
¬(¬vacant(first(r )) ∧ src(r ). CMD = OPEN ∧ src(r).ACT = CLOSED)),

/* *
* CONDITIONS ON SIGNALS
* =====================
*/
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[entry_signal_closed_when_tail_in_first]
(∀r : Route • _T_(hto( first (r ), r )) ⇒ src(r).ACT = CLOSED),

[signal_cmd_open_cnd]
(∀s : Signal •
(∃r : Route • s = src(r )) ⇒
(s .CMD = OPEN⇒ (∃!r : Route • src(r) = s ∧ r.MODE = LOCKED))),

[signal_act_open_cnd]
(∀s : Signal •
(∃r : Route • s = src(r )) ⇒
(s .ACT = OPEN⇒
((∃r : Route •

s = src(r) ∧ r.MODE = FREE ∧ s.CMD = CLOSED ∧ r.CTRL = CANCEL) ∨
(∃!r : Route •
(src(r) = s) ∧
((( r .MODE = LOCKED ∧

(s .CMD = OPEN ∨ H__(hto(first(r),r)) ̸= 0)) ∨
(r .MODE = OCCUPIED ∧ s.CMD = CLOSED ∧
H__(hto(first (r ), r )) ̸= 0)) ∧

(∀e : Section •
(e ∈ path(r) ∧ e ̸= first (r )) ⇒
(vacant(e) ∧ e.MODE = EXLCK)) ∧
(∀e : Section • e ∈ overlap(r) ⇒ vacant(e ))))))),

/* *
* POINT SWITCHING CONDITIONS
* ==========================
*/
[not_commanding_occupied_point_to_move]
(∀p : Point • (¬vacant(p) ∨ p.MODE = USED)⇒ p.POS = p.CMD),

/* protecting point can be in FREE mode */
[point_only_cmd_when_alloc_a_route]
(∀e : Point •
(∃r : Route • e ∈ points(r )) ⇒
(e.CMD ̸= e.POS⇒
(e.MODE ̸= USED ∧
(∃r : Route • e ∈ points(r) ∧ r.MODE = ALLOCATING)))),

/* *
* GROUND UNOCCUPIED ELEMENTS
* ======================
*/
/* if a signal is not an entry signal of any route , then it is always
* CLOSED */
[ground_unused_signal]
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(∀s : Signal •
(∀r : Route • src(r) ̸= s) ⇒ (s.ACT = CLOSED ∧ s.CMD = CLOSED)),

/* ground unused segments */
[ground_unused_linear_to_down]
(∀l : Linear •
/* a section is not used by any routes in the direction up */
(¬is_boundary_sec(l) ∧
(∀r : Route • l ∈ path(r) ⇒ entry(r,l) ̸= UP) ∧
/* trains cannot turn around here */
¬(can_turn_around_at(l) ∧
(∃r : Route • l ∈ path(r) ∧ entry(r, l ) = DOWN)))⇒

( l .U2D = 0)),

[ground_unused_linear_to_up]
(∀l : Linear •
/* a section is not used by any routes in the up direction up */
(¬is_boundary_sec(l) ∧
(∀r : Route • l ∈ path(r) ⇒ entry(r,l) ̸= DOWN) ∧
/* trains cannot turn around here */
¬(can_turn_around_at(l) ∧
(∃r : Route • l ∈ path(r) ∧ entry(r, l ) = UP)))⇒ (l.D2U = 0)),

[ground_unused_point_p]
(∀p : Point •
(¬(∃r : Route •

p ∈ (dom points(r) ∩ elems path(r)) ∧ entry(r,p) = PLUS))⇒
(p.P2S = 0)),

[ground_unused_point_m]
(∀p : Point •
(¬(∃r : Route •

p ∈ (dom points(r) ∩ elems path(r)) ∧ entry(r,p) = MINUS))⇒
(p.M2S = 0)),

[ground_unused_point_s]
(∀p : Point •
(¬(∃r : Route •

p ∈ (dom points(r) ∩ elems path(r)) ∧ entry(r,p) = STEM))⇒
(p.S2PM = 0)),

/* *
* Ground boundary sections
*/
[ground_unused_boundary_linear]
(∀l : Linear • is_boundary_sec(l)⇒ (l.U2D = 0 ∧ l.D2U = 0)),
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/* *
* CONDITIONS ON ELEMENTS
* ======================
*/
[element_prev_variable]
(∀e : Section • is_boundary_sec(e) ∨ (e.PREV = RELEASED⇒ e.MODE = USED)),

[occupied_implies_exlck_or_used_point]
(∀e : Point •
(∀r : Route • e ̸= last(r )) ⇒
(¬vacant(e)⇒ (e.MODE = EXLCK ∨ e.MODE = USED))),

[occupied_implies_exlck_or_used_linear]
(∀e : Linear •
((∀r : Route • e ̸= last(r )) ∧ down(e) ∧ up(e))⇒
(¬vacant(e)⇒ (e.MODE = EXLCK ∨ e.MODE = USED))),

[point_chunk_cnd_stem_plus]
(∀e : Point •
let s = stem(e),

p = plus(e),
s_b = hto(stem(e),e ,0),
p_b = hto(plus(e),e ,0),
s_t = e.S2PM,
p_t = e.P2S in

(¬can_turn_around_at(s) ∧ ¬can_turn_around_at(p))⇒
((e.POS = PLUS)⇒
((p_t + s_b) * (s_t + p_b * (¬p.PREV ∧ p.MODE = USED)) = 0))

end),

[point_chunk_cnd_stem_minus]
(∀e : Point •
let s = stem(e),

m = minus(e),
s_b = hto(stem(e),e ,0),
m_b = hto(minus(e),e,0),
s_t = e.S2PM,
m_t = e.M2S in

(¬can_turn_around_at(s) ∧ ¬can_turn_around_at(m))⇒
((e.POS = MINUS)⇒
((m_t + s_b) * (s_t + m_b * (¬m.PREV ∧m.MODE = USED)) = 0))

end),

[hto_vs_mode]
(∀r : Route •
(∀e : Section •
(e ∈ path(r) ∧ e ̸= last(r )) ⇒
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((hto(e, r ,0) = 1⇒ e.MODE = USED) ∧
(hto(e, r ,0) = 3⇒ e.MODE = USED) ∧
(hto(e, r ,0) = 5⇒ e.MODE = EXLCK ∨ e.MODE = USED) ∧
(hto(e, r ,0) = 7⇒ e.MODE = USED)))),

[hto_vs_mode_last_down]
(∀r : Route •
(entry(r , last (r )) = 0) ⇒
let e = last(r) in

(e.D2U = 1⇒ e.MODE = USED) ∧
(e.D2U = 3⇒ e.MODE = AVAIL ∨ e.MODE = USED) ∧
(e.D2U = 5⇒ e.MODE = EXLCK ∨ e.MODE = USED) ∧
(e.D2U = 7⇒ e.MODE = AVAIL ∨ e.MODE = USED) ∧
(( r .MODE = OCCUPIED ∧ e.MODE = USED ∧ e.PREV = RELEASED ∧ e.D2U = 0)⇒
(e.U2D = 0 ∧
(¬up(e) ∨ is_boundary_sec_up(up(e)) ∨ _T_(hto(up(e),e)) = 1)))

end),

[hto_vs_mode_last_up]
(∀r : Route •
(entry(r , last (r )) = 1) ⇒
let e = last(r) in

(e.U2D = 1⇒ e.MODE = USED) ∧
(e.U2D = 3⇒ e.MODE = AVAIL ∨ e.MODE = USED) ∧
(e.U2D = 5⇒ e.MODE = EXLCK ∨ e.MODE = USED) ∧
(e.U2D = 7⇒ e.MODE = AVAIL ∨ e.MODE = USED) ∧
(( r .MODE = OCCUPIED ∧ e.MODE = USED ∧ e.PREV = RELEASED ∧ e.U2D = 0)⇒
(e.D2U = 0 ∧
(¬down(e) ∨ is_boundary_sec_down(down(e)) ∨ _T_(hto(down(e),e)) = 1)))

end),

[elem_locked_by_only_one_route]
(∀e : Section •
(∃r : Route • e ∈ path(r)) ⇒
(e.MODE = EXLCK⇒
(∃!r : Route •
e ∈ path(r) ∧
let lst = last(r ),

fst = first (r) in
/* route is allocating , imply all elems locked */
(( r .MODE = ALLOCATING) ∨
/* route is locked , imply all elems locked */
(r .MODE = LOCKED) ∨
/* route in use , the 1st elem is never locked when
* the route is in use */

((e ̸= fst) ∧ r.MODE = OCCUPIED ∧
((e ∈ Point) ⇒ (e.POS = req(r,e) ∧ e.CMD = req(r,e))) ∧
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/* next elems in the same route are locked and vacant */
(∀ne : Section •
ne ∈ nexts(r,e) ⇒
(ne.MODE = EXLCK ∧ vacant(ne) ∧
((ne ∈ Point) ⇒
(ne.POS = req(r,ne) ∧ ne.CMD = req(r,ne))))) ∧

/* the head of the train is in e
* then prev is occupied without a head
* we have e ~= fst , thus pv always exists */

let pv = prev(r,e) in
(hto(e, r) = 5 ∧ pv.MODE = USED ∧
((pv ∈ Point)⇒ pv.POS = req(r,pv)) ∧
occupied_without_head(hto(pv,r))) ∨
/* e is vacant , then the prev is locked or used */
(vacant(e) ∧ (pv.MODE = EXLCK ∨ pv.MODE = USED) ∧
((pv ∈ Point)⇒ (pv.POS = req(r,pv) ∧ pv.CMD = req(r,pv))))

end))
end))),

[elem_used_by_only_one_route]
(∀e : Section •
(∃r : Route • e ∈ path(r)) ⇒
(e.MODE = USED⇒
(∃!r : Route •
e ∈ path(r) ∧
let fst = first (r ),

lst = last(r) in
r .MODE = OCCUPIED ∧ ((e ∈ Point)⇒ e.POS = req(r,e)) ∧
(e ̸= fst ⇒
let pv = prev(r,e) in
/* the prev has been released */
e.PREV ∨
/* the prev is used without a head
* or is going to be released */

((( pv ∈ Point)⇒ pv.POS = req(r,pv)) ∧ pv.MODE = USED ∧
(occupied_without_head(hto(pv,r)) ∨
(vacant(pv) ∧ _T_(hto(e,r )) = 1 ∧ (pv ̸= fst ⇒ pv.PREV))))

end) ∧
(e ̸= lst ⇒
let nx = next(r,e) in
¬nx.PREV ∧
/* this includes nx */
(∀p : Point •
p ∈ nexts(r,e) ⇒ (p.POS = req(r,p) ∧ p.CMD = req(r,p))) ∧

((nx.MODE = EXLCK ∧
((hto(nx,r) = 5 ∧ occupied_without_head(hto(e,r))) ∨
(vacant(nx) ∧ H__(hto(e,r)) = 1)) ∧
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(∀ne : Section •
(ne ̸= nx ∧ ne ∈ nexts(r,e)) ⇒ (ne.MODE = EXLCK))) ∨

(nx.MODE = USED ∧
((occupied_without_head(hto(e,r)) ∧

occupied_without_tail(hto(nx,r))) ∨
(vacant(e) ∧ _T_(hto(nx,r)) = 1 ∧ (e ̸= fst ⇒ e.PREV)))))

end)
end)))

test_obj

([=] r : Route •
([=] other : Route •
[FR_non_conflicting_routes_allocating]
[other ̸= r ∧ other ̸∈ conflicts (r) ] ∧
G F [(r .DSPL = ALLOCATING ∧ other.DSPL = ALLOCATING)])),

([=] r : Route •
([=] other : Route •
[FR_non_conflicting_routes_locked]
[other ̸= r ∧ other ̸∈ conflicts (r) ] ∧
G F [(r .DSPL = LOCKED ∧ other.DSPL = LOCKED)])),

([=] r : Route •
([=] other : Route •
[FR_non_conflicting_routes_used]
[other ̸= r ∧ other ̸∈ conflicts (r) ] ∧
G F [(r .DSPL = OCCUPIED ∧ other.DSPL = OCCUPIED)])),

([=] r : Route • [FR_route_marked] G F [r.DSPL = MARKED]),

([=] r : Route • [FR_route_in_use] G F [r.DSPL = OCCUPIED]),

([=] r : Route • [FR_route_allocating] G F [r .DSPL = ALLOCATING]),

([=] r : Route • [FR_route_locked] G F [r.DSPL = LOCKED]),

([=] r : Route •
[FR_cancel_marked_route]
G([r.CTRL = CANCEL ∧ r.DSPL = MARKED]⇒ F [r.DSPL = FREE])),

([=] r : Route •
[FR_cancel_allocating_route]
G([r.CTRL = CANCEL ∧ r.DSPL = ALLOCATING]⇒
F [ /* the route get free */
(r .DSPL′ = FREE) ∧
/* points in the path stop moving */
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(∀p : Point • p ∈ path(r) ⇒ (p.CMD = p.POS)) ∧
/* all sections in the path get unlocked */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = AVAIL))])),

([=] r : Route •
[FR_cancel_locked_route]
G([r.CTRL = CANCEL ∧ r.DSPL = ALLOCATING ∧
/* the route has not been used, i . e ., all the route ’ s path and
* overlap are still vacant */
(∀e : Section •
e ∈ (elems path(r) ∪ elems overlap(r))⇒ vacant(e))] ⇒

F [ /* the route get free */
(r .DSPL = FREE) ∧
/* close the source signal */
(src(r ). CMD = CLOSED) ∧
/* all sections in the path get unlocked */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = AVAIL))])),

([=] e : Linear •
[RR_linear_occupied_implies_exlck_or_used]
[(∀r : Route • e ̸= last(r )) ∧ down(e) ∧ up(e)]⇒
G [¬vacant(e)⇒ (e.MODE = EXLCK ∨ e.MODE = USED)]),

([=] e : Point •
[RR_point_occupied_implies_exlck_or_used]
[(∀r : Route • e ̸= last(r )) ] ⇒
G [¬vacant(e)⇒ (e.MODE = EXLCK ∨ e.MODE = USED)]),

/* *
* GENERIC REQUIREMENTS TAKEN FROM THE PAPER
* Anne Haxthausen \& Jan Peleska. Efficient Development and Verification of
* Safe Railway Control Software . Nova Science Publishers Inc ., 2013.
* [[ bib : Haxthausen13Efficient ]] [[ papers : Haxthausen13Efficient ]]
* =========================================================================
*/
/* *
* It shall be possible to allocate / lock each specified route
* ([=] r : Route :− G(F(r.DSPL = ALLOCATING))
*/

([=] r : Route • [tcgen_route_allocating] G(F([r.DSPL = ALLOCATING]))),

/* *
* ([=] r : Route :− G(F(r.DSPL = LOCKED))
*/

([=] r : Route • [tcgen_route_locked] F([r .DSPL = LOCKED])),

/* *
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* It shall be possible to use each specified route
* ([=] r : Route :− G(F(r.DSPL = OCCUPIED))
*/

([=] r : Route • [tcgen_route_in_use] F([r .DSPL = OCCUPIED])),

/* *
* Non−conflicting routes may be allocated in a concurrent way
*/

([=] r : Route •
([=] other : Route •
[tcgen_non_conflicting_routes_req]
[other ̸= r ∧ other ̸∈ conflicts (r) ] ∧
G F [(r .DSPL = LOCKED ∧ other.DSPL = LOCKED)])),

([=] r : Route •
([=] other : Route •
[tcgen_non_conflicting_routes]
[other ̸= r ∧ other ̸∈ conflicts (r) ] ∧
F([r .DSPL = LOCKED ∧ other.DSPL = LOCKED]))),

/* *
* Conflicting routes which can be used at the same time
*/

([=] r : Route •
([=] other : Route •
[RR_conflicting_route_used_same_time]
[other ∈ conflicts (r) ∧
(∃p : Point •
p ∈ dom points(r) ∩ dom points(other) ∧
req(r ,p) = MINUS ∧ req(other,p) = PLUS ∧
last (r) ̸= last(other)) ] ∧

G F([r .DSPL = OCCUPIED ∧ other.DSPL = OCCUPIED]))),

/* *
* Allocation to a train is only granted after the points are locked in the
* positions required for the requested route
*/
// ([=] r : Route :− [ tcgen_open_signal ] F([ src (r ). CMD = OPEN])),
([=] r : Route •
[tcgen_open_signal_req]
G([src(r ). CMD = OPEN]⇒
[(∀s : Signal • s ∈ signals(r) ⇒ s.ACT = CLOSED) ∧
(∀p : Point • p ∈ points(r) ⇒ p.CMD = req(r,p))])),

/* conflicting routes */
([=] r : Route •
[SR_conflicting_routes_allocating]
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G [(r .DSPL = ALLOCATING)⇒
(∀other : Route •
other ∈ conflicts (r) ⇒
other.DSPL ̸= ALLOCATING ∧ other.DSPL ̸= LOCKED)]),

([=] r : Route •
[SR_conflicting_routes_locked]
G [(r .DSPL = LOCKED)⇒
(∀other : Route •
other ∈ conflicts (r) ⇒
other.DSPL ̸= ALLOCATING ∧ other.DSPL ̸= LOCKED)]),

/* route allocating */
([=] r : Route •
[SR_route_allocating]
G [(r .DSPL = ALLOCATING)⇒
((∀p : Point • p ∈ points(r) ⇒ (p.CMD = req(r,p))) ∧
/* protecting signals are commanded in correct aspects */
(∀s : Signal • s ∈ signals(r) ⇒ (s.CMD = CLOSED)) ∧
/* all lockable elements in the path are EXLCK(1) */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = EXLCK)) ∧
/* all sections have to be vacant */
(∀e : Section •
e ∈ (elems path(r) ∪ elems overlap(r))⇒ vacant(e)))] ),

/* route locked */
([=] r : Route •
[SR_route_locked]
G [(r .DSPL = LOCKED)⇒
let fst = first (r) in
/* points are in correct positions */
(∀p : Point •
p ∈ points(r) ⇒ (p.POS = req(r,p) ∧ p.POS = p.CMD)) ∧
/* protecting signals are in correct aspects */
(∀s : Signal •
s ∈ signals(r) ⇒ (s.ACT = CLOSED ∧ s.ACT = s.CMD)) ∧
/* all lockable elements in the path are EXLCK(1) */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = EXLCK)) ∧
/* all sections except the first one have to be vacant */
(∀e : Section •
(e ̸= fst ∧ e ∈ (elems path(r) ∪ elems overlap(r))) ⇒
vacant(e)) ∧
/* first section is vacant or occupied by head of the train */
(vacant(fst ) ∨ hto( fst , r) = 5) ∧
/* entry signal is commanded to be open */
src(r ). CMD = OPEN

end]),
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([=] r : Route • [TC_route_locked] F [r.DSPL = LOCKED]),

/* not commanding used points to move */
([=] p : Point •
[SR_not_commanding_used_point_to_move]
G [(¬vacant(p) ∨ p.MODE = USED)⇒ p.POS = p.CMD]),

([=] p : Point •
[SR_point_only_cmd_when_alloc_a_route]
[(∃r : Route • p ∈ points(r)) ] ⇒
G [(p.CMD ̸= p.POS)⇒
(p.MODE ̸= USED ∧
(∃r : Route • p ∈ points(r) ∧ r.DSPL = ALLOCATING) ∧
(∀r : Route • p ∈ points(r) ⇒ r.DSPL ̸= LOCKED))]),

/* signal commanded open */
([=] s : Signal •
[SR_signal_cmd_open_cnd]
[(∃r : Route • s = src(r )) ] ⇒
G [(s .CMD = OPEN)⇒ (∃!r : Route • src(r) = s ∧ r.DSPL = LOCKED)]),

/* signal actual open */
([=] s : Signal •
[SR_signal_act_open_cnd]
[(∃r : Route • s = src(r )) ] ⇒
/* whenever the signal ’ s actual aspect is OPEN */
G [(s .ACT = OPEN)⇒
/* there exists a route r that has s as its source signal . The route has
* been cancelled , but the signal has not been closed as commanded yet
*/

((∃r : Route •
s = src(r) ∧ r.DSPL = FREE ∧ s.CMD = CLOSED ∧ r.CTRL = CANCEL) ∨
/* OR there is exactly one route r that has s as the source signal */
(∃!r : Route •
(src(r) = s) ∧
/* r is locked */
((( r .DSPL = LOCKED ∧

(s .CMD = OPEN ∨ H__(hto(first(r),r)) ̸= 0)) ∨
/* a train has entered the route , the interlocking
* controller has reacted , but the signal has not yet
*/

(r .DSPL = OCCUPIED ∧ s.CMD = CLOSED ∧
H__(hto(first (r ), r )) ̸= 0)) ∧

/* all sections in the route ’ s path , except the first one, are
* exclusively locked and vacant */
(∀e : Section •
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(e ∈ path(r) ∧ e ̸= first (r )) ⇒
(vacant(e) ∧ e.MODE = EXLCK)) ∧
/* all sections in the route ’ s overlap are vacant */
(∀e : Section • e ∈ overlap(r) ⇒ vacant(e))))) ] ),

/* simplified */
([=] r : Route •
([=] e : Section •
[RR_elem_released_following_train_passage]
[e ∈ path(r) ∧ e ̸= last(r) ] ∧
G([(r .MODE = OCCUPIED ∧ e.MODE = USED ∧ vacant(e) ∧

(e ̸= first (r) ⇒ e.PREV = RELEASED))]⇒
F [e.MODE = AVAIL ∧ r.MODE = OCCUPIED ∧ next(r,e).MODE = USED]))),

/* *
* only release an element when its previous element in the same route has been
* released
*/

([=] r : Route •
([=] e : Section •
[RR_elem_released_after_prev_has_been_released]
[e ∈ path(r) ∧ e ̸= first (r) ] ∧
G([r.MODE = OCCUPIED ∧ e.MODE = USED ∧ e.PREV = PENDING]⇒
X([e.MODE ̸= FREE] U [e.PREV = RELEASED]))))

macro

/* *
* NAMED CONSTANTS
*/
/* control modes */
def NOCMD = 0,

def DISPATCH = 1,

def CANCEL = 2,

/* Route modes */
def FREE = 0,

def MARKED = 1,

def ALLOCATING = 2,

def LOCKED = 3,

def OCCUPIED = 4,
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/* Signals aspect */
def CLOSED = 0,

def OPEN = 1,

/* Point positions and neighbor sides */
def PLUS = 0,

def MINUS = 1,

def STEM = 2,

def INTER = 2,

/* Element modes */
def AVAIL = 0,

def EXLCK = 1,

def USED = 2,

/* prev variable values */
def PENDING = 0,

def RELEASED = 1,

/* DIRECTION */
def DOWN = 0,

def UP = 1,

/*
* Perform function f on a linear section
* e : the linear element
* p: the neighbor end
* 0: down end
* 1: up end
* f : function to perform, takes two parameters : current value , next
* value
*/

def do_linear(e,p,f ) =
case p of

DOWN→ f(e.D2U,e.D2U′),
UP→ f(e.U2D,e.U2D′)

end,
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/*
* Perform function f on a point section
* e : the point element
* p: the neighbor end
* 0: plus end
* 1: minus end
* 2: stem end
* f : function to perform, takes two parameters : current value , next
* value
*/

def do_point(e,p,f) =
case p of

PLUS→ f(e.P2S,e.P2S′),
MINUS→ f(e.M2S,e.M2S′),
STEM→ f(e.S2PM,e.S2PM′)

end,

/*
* Perform function f on a section . The function will decide whether to
* perform
* do_linear or do_point based on the type of e .
* e : the linear element
* p: the neighbor end
* f : function to perform, takes two parameters : current value , next
* value
*/

def do_sec(e,p,f ) =
(e ∈ Linear) ? do_linear(e,p,f ) : do_point(e,p,f ),

/*
* A function returns HTO variable at version 0
*/

def _hto0(v0,v1) =
v0,

/*
* A function returns HTO variable at version 0
*/

def _hto1(v0,v1) =
v1,

/*
* Return the HTO variable of the element e in the direction that the route r
* enters e
*/

def route_entry_hto(e,r,v) =



D.2 Full Specification in IDL 243

case v of
0 → do_sec(e,entry(r,e),_hto0),
1 → do_sec(e,entry(r,e),_hto1)

end,

def bwd_hto(e,r,v) =
case v of

0 → do_sec(e,exit(r,e ), _hto0),
1 → do_sec(e,exit(r,e ), _hto1)

end,

/*
* return the HTO variable of e which encodes traffic coming from n
*/

def neighbor_hto(e,n,v) =
case v of

0 → do_sec(e,conn_end(e,n),_hto0),
1 → do_sec(e,conn_end(e,n),_hto1)

end,

/*
* Return the HTO variable of the element e based on either :
* − the end that neighbor x is connected to e
* − the direction that route x enters e
*/

def hto(e,x,v) =
(x ∈ Route) ? route_entry_hto(e,x,v) : neighbor_hto(e,x,v),

/*
* An overload of hto(x,e ,v ), returns HTO variable at version 0
*/

def hto(e,x) =
hto(e,x ,0),

/*
* Return H bit of a HTO variable
*/

def H__(hto) =
(hto≫ 2),

/*
* Return T bit of HTO variable
*/
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def _T_(hto) =
((hto & 2)≫ 1),

/*
* Return O bit of HTO variable
*/

def __O(hto) =
(hto & 1),

/*
* A formula encodes whether a linear section l is vacant
*/

def vacant_linear(l ) =
( l .D2U + l.U2D = 0),

/*
* A formula encodes whether a point section p is vacant
*/

def vacant_point(p) =
(p.S2PM + p.P2S + p.M2S = 0),

/*
* A formula encodes whether a section e is vacant
*/

def vacant(e) =
(e ∈ Linear) ? vacant_linear(e) : vacant_point(e),

/*
* Toggle the H and O bit of a section
*/

def head_enters(hto0,hto1) =
hto1 = (hto0 ̂ 5),

def head_enters_next(nx,curr) =
let hto0 = hto(nx,curr ,0),

hto1 = hto(nx,curr,1) in
head_enters(hto0,hto1)

end,

/*
* Toggle the H bit of a section
*/
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def head_leaves(hto0,hto1) =
hto1 = (hto0 ̂ 4),

/*
* Toggle the T bit of a section
*/

def tail_enters (hto0,hto1) =
hto1 = (hto0 ̂ 2),

def tail_enters_next (nx,curr) =
let hto0 = hto(nx,curr ,0),

hto1 = hto(nx,curr,1) in
tail_enters (hto0,hto1)

end,

/*
* Tail leaves
*/

def tail_leaves (hto0,hto1) =
hto1 = 0,

/* *
* Swap values of occupancy status variables in a linear section
*/

def swap_up_down_vars(l) =
l .D2U′ = l.U2D ∧ l.U2D′ = l.D2U,

/* *
* ==================================
* Macros for strenthening properties
* ==================================
*/
/*
* These macros are used for specifying strengthening invariants
*/
/*
* Occupied without a tail : 101 001
*/

def occupied_without_tail(hto) =
(hto & 3) = 1,
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/*
* Occupied without a head: 001 011
*/

def occupied_without_head(hto) =
(hto & 5) = 1,

/*
* Occupied with a head: 111 101
*/

def occupied_with_head(hto) =
(hto & 5) = 5,

/*
* Occupied with only the tail : 011
*/

def occupied_with_only_tail(hto) =
hto = 3,

/*
* If trains can change direction at a section
*/

def can_turn_around_at(e) =
(e ∈ Linear) ∧ down_sig(e) ∧ up_sig(e),

/* Apply function f to HTO variables (in the same direction as r ’ s) of elements
* in the path of r , start from the last section toward the first section ,
* until a point which has different position than required by r is met
*/

def count_fwd_bit(r,f) =
count_fwd_bit(r,last(r ), f ),

/*
* Apply function f to HTO variables (in the same direction as r ’ s) of elements
* in the path of r , start from e toward the first section , until a point which
* has different position than required by r is met
*/

def count_fwd_bit(r,e,f) =
let fst = first (r) in

if (e ∈ Linear)
then

(e = fst ) ? f (hto(e, r ,0)) : ( f (hto(e, r ,0)) + count_fwd_bit(r,prev(r,e), f ))
else

(e.POS = req(r,e)) ∧
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((e = fst ) ? f (hto(e, r ,0))
: ( f (hto(e, r ,0)) + count_fwd_bit(r,prev(r,e), f )))

end
end,

/*
* Apply function f to HTO variables (in the opposite direction of r ’ s) of
* elements in the path of r , start from the last section toward the first
* section , until a point which has different position than required by r is
* met
*/

def count_bwd_bit(r,f) =
count_bwd_bit(r,last(r ), f ),

/*
* Apply function f to HTO variables (in the opposite direction of r ’ s) of
* elements in the path of r , start from e toward the first section , until a
* point which has different position than required by r is met
*/

def count_bwd_bit(r,e,f) =
let fst = first (r) in

if (e ∈ Linear)
then

let val = (entry(r,e) = DOWN) ? f(e.U2D) : f(e.D2U) in
(e = fst ) ? val : (val + count_bwd_bit(r,prev(r,e),f ))

end
else

(e.POS = req(r,e)) ∧
let val = (entry(r,e) ̸= STEM) ? f(e.S2PM)

: (( req(r ,e) = PLUS) ? f(e.P2S) : f (e.M2S)) in
(e = fst ) ? val : (val + count_bwd_bit(r,prev(r,e),f ))

end
end

end,

/*
* Search backward from e for a point
*/

def check_point(r,e) =
let fst = first (r) in

if (e = fst )
then

e
else

let pv = prev(r,e) in
(pv ∈ Point) ? e : check_point(r,pv)

end
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end
end,

/*
* This formula ensures each chunk of linear sections between two points of a
* route only is occupied in one direction at a time
*/

def linear_chunk_cnd(r,e) =
let fst = first (r ),

cp = check_point(r,e) in
(( cp = e) ? 1
: (count_chunk_fwd_bit(r,e,cp,__O) * count_chunk_bwd_bit(r,e,cp,__O) =

0)) ∧ ((cp ̸= fst) ⇒ linear_chunk_cnd(r,prev(r,cp)))
end,

/*
* Apply function f to HTO variables (in the same direction of r ’ s) of elements
* in the path of r , start from e toward stop
*/

def count_chunk_fwd_bit(r,e,stop,f) =
(e = stop) ? f (hto(e, r ,0))
: ( f (hto(e, r ,0)) + count_chunk_fwd_bit(r,prev(r,e),stop,f )),

/*
* Apply function f to HTO variables (in the opposite direction of r ’ s) of
* elements in the path of r , start from e toward stop
*/

def count_chunk_bwd_bit(r,e,stop,f) =
if (e ∈ Linear)
then

let val = (entry(r,e) = DOWN) ? f(e.U2D) : f(e.D2U) in
(e = stop) ? val : (val + count_chunk_bwd_bit(r,prev(r,e),stop,f))

end
else

let val = (entry(r,e) ̸= STEM) ? f(e.S2PM)
: (( req(r ,e) = PLUS) ? f(e.P2S) : f (e.M2S)) in

(e = stop) ? val : (val + count_chunk_bwd_bit(r,prev(r,e),stop,f))
end

end,

/*
* Count O bit of forward HTO variables
*/

def count_fwd___O(r) =
count_fwd_bit(r,__O),

/* check if e is a boundary section */
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def is_boundary_sec(e) =
(is_boundary_sec_down(e) ∨ is_boundary_sec_up(e)),

/* check if e is a boundary section in the downward direction */

def is_boundary_sec_down(e) =
(e ∈ Linear) ∧ ¬down(e) ∧ up_sig(e) ∧ ¬down_sig(e) ∧
let us = up(e) in

(us ∈ Linear) ∧ down_sig(us)
end,

/* check if e is a boundary section in the upward direction */

def is_boundary_sec_up(e) =
(e ∈ Linear) ∧ ¬up(e) ∧ down_sig(e) ∧ ¬up_sig(e) ∧
let ds = down(e) in

(ds ∈ Linear) ∧ up_sig(ds)
end

end
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This appendix lists all strengthening invariants that are used in our verification strat-
egy for verifying safety properties of the forthcoming Danish interlocking systems.
Note that some of these strengthening invariants are also safety properties at a lower
level. Further detail can be found in the full specification of the generic applications
for the forthcoming Danish interlocking systems in Appendix D.

E.1 Train Integrity

The occupancy status encoding described in Section 6.2.1 allows us to distinguish
different situations in which:

(a) a section is vacant,

(b) a section is occupied by the whole train

(c) a section is occupied by just the head of the train

(d) a section is occupied by just the tail of the train, or

(e) the train spreads over the section, i.e., when the train is longer than the section.

Figure E.1 shows the values of the occupancy status variable of the sections corre-
sponding to different cases.

Some spurious counter-examples given by the model checker start from a state
where the train integrity is violated. An example of such cases is shown in Fig-
ure 6.16b where the train of the right has only the head.

In order to eliminate such spurious cases, we introduce the train integrity invariant.
For a linear section l that is not a boundary section and its neighbouring section in
the considered travel direction is not a boundary section, the following property must
hold
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111 011 001 101 000

Figure E.1: The values of the occupancy status variable of sections in different
situations. The labels under each section denotes the value of the
occupancy status variable for that section.

Figure E.2: A spurious state where the train on the right has only the head

TI-L-1 l is occupied by a train in the direction up (down) without the head being on
l, if and only if up(l) (down(l)) is occupied by a train in the same direction without the
tail being on up(l) (down(l)).

For a boundary section*, when the previous section or next section cannot
be determined – because the considered boundary section does not have those
neighbouring sections – we consider that the train integrity properties hold for that
section. The train integrity invariant for linear sections is specified in detailed in the
following.

[ train_integrity_linear_up ]
(∀l : Linear •
(up(l) ∧ ¬is_boundary_sec_up(up(l)) ∧ ¬is_boundary_sec_down(l))⇒
((occupied_without_head(l.D2U)⇒ occupied_without_tail(hto(up(l),l))) ∧
(occupied_without_tail(hto(up(l),l )) ⇒ occupied_without_head(l.D2U))))

[train_integrity_linear_down]
(∀l : Linear •
(down(l) ∧ ¬is_boundary_sec_down(down(l)) ∧ ¬is_boundary_sec_up(l))⇒
((occupied_without_head(l.U2D)⇒ occupied_without_tail(hto(down(l),l))) ∧
(occupied_without_tail(hto(down(l),l))⇒ occupied_without_head(l.U2D))))

For a point section p, the position of the point is taken into account. For the travel
direction from the stem end toward plus/minus ends, the following must hold:

TI-P-1 If p is occupied by a train in the travel direction coming from its stem end and
the head of the train is not on p, then only one of the following must hold:

(TI-P-1a) p’s actual position is PLUS(0), and plus(p) is occupied by a train in the
direction coming from p and the tail of the train is not on plus(p).

*Only linear sections can be boundary sections, see Chapter 4
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(TI-P-1b) p’s actual position is MINUS(1), and minus(p) is occupied by a train in the
direction coming from p and the tail of the train is not on minus(p).

TI-P-2 If plus(p) (minus(p)) is occupied by a train in the travel direction coming from
p and the tail of the train is not on plus(p) (minus(p)), then p’s actual position must be
PLUS(0) (MINUS(0)) and pmust be occupied by a train in the travel direction coming
from its stem end and the head of the train is not on p.

TI-P-3 It is not the case that both of the following hold:

(TI-P-3a) plus(p) is occupied by a train in the travel direction coming from p and the
tail of the train is not on plus(p).

(TI-P-3b) minus(p) is occupied by a train in the travel direction coming from p and
the tail of the train is not on minus(p).

[train_integrity_point_stem_to_plusminus]
(∀p : Point •
(occupied_without_head(p.S2PM)⇒
((occupied_without_tail(hto(plus(p),p)) ∧ p.POS = PLUS) ⊕
(occupied_without_tail(hto(minus(p),p)) ∧ p.POS = MINUS))) ∧
(occupied_without_tail(hto(plus(p),p))⇒
(occupied_without_head(p.S2PM) ∧ p.POS = PLUS)) ∧

(occupied_without_tail(hto(minus(p),p))⇒
(occupied_without_head(p.S2PM) ∧ p.POS = MINUS)) ∧
¬(occupied_without_tail(hto(plus(p),p)) ∧
occupied_without_tail(hto(minus(p),p))))

For travel direction from the plus/minus ends toward the stem end, the following
must hold:

TI-P-4 If p is occupied by a train in the travel direction coming from its plus (minus)
end and the head of the train is not on p, then p’s actual position must be PLUS(0)
(MINUS(0)) and stem(p) must be occupied by a train in the travel direction coming
from p and the tail of the train is not on stem(p).

TI-P-5 If stem(p) is occupied by a train in the travel direction coming from p and the
tail of the train is not on stem(p), then only one of the following must hold:

(TI-P-5a) p’s actual position is PLUS(0), and p is occupied by a train in the direction
coming from its plus end and the head of the train is not on p.

(TI-P-5b) p’s actual position is MINUS(1), and p is occupied by a train in the direction
coming from its minus end and the head of the train is not on p.

[train_integrity_point_plusminus_to_stem]
(∀p : Point •
(occupied_without_head(p.P2S)⇒
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(occupied_without_tail(hto(stem(p),p)) ∧ p.POS = PLUS)) ∧
(occupied_without_head(p.M2S)⇒
(occupied_without_tail(hto(stem(p),p)) ∧ p.POS = MINUS)) ∧

(occupied_without_tail(hto(stem(p),p))⇒
((occupied_without_head(p.P2S) ∧ p.POS = PLUS) ⊕
(occupied_without_head(p.M2S) ∧ p.POS = MINUS))))

E.2 Invariants on Routes

SI-R-1 If a route is in ALLOCATING or LOCKED mode, then all of its conflicting
routes must not be in ALLOCATING or LOCKED mode.
[conflicting_routes_are_not_set_together]
(∀r : Route •
(r .MODE = ALLOCATING ∨ r.MODE = LOCKED)⇒
(∀cr : Route •
cr ∈ conflicts (r) ⇒ (cr.MODE ̸= ALLOCATING ∧ cr.MODE ̸= LOCKED)))

SI-R-2 If a route r is in ALLOCATING mode, then all of the following hold

• all points used by r are commanded into correct position as required by r
• all protecting signals are commanded to be CLOSED
• all sections in r’s path are in EXLCK mode
• all sections in r’s path and overlap are vacant

[route_allocating_cnd]
(∀r : Route •
(r .MODE = ALLOCATING)⇒
/* points are commanded in correct positions */
((∀p : Point • p ∈ points(r) ⇒ (p.CMD = req(r,p))) ∧
/* protecting signals are commanded in correct aspects */
(∀s : Signal • s ∈ signals(r) ⇒ (s.CMD = CLOSED)) ∧
/* all lockable elements in the path are EXLCK(1) */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = EXLCK)) ∧
/* all sections have to be vacant */
(∀e : Section •
e ∈ (elems path(r) ∪ elems overlap(r))⇒ vacant(e))))

SI-R-3 If a route r is in LOCKED mode, the all of the following hold

• the actual positions of all points e used by r are as required, and there is no
potential change, i.e., e.POS = e.CMD

• the actual aspect of all protecting signals e are as required, and there is no
potential change, i.e., e.ACT = e.CMD
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• all sections in r’s path are in EXLCK mode
• all sections in r’s path and overlap are vacant, except the first section, which

must be vacant or occupied by the head of the train.
• the source signal is commanded to be switched to OPEN

[route_lock_cnd]
(∀r : Route •
(r .MODE = LOCKED)⇒
let fst = first (r) in
/* points are in correct positions */
(∀p : Point •
p ∈ points(r) ⇒ (p.POS = req(r,p) ∧ p.POS = p.CMD)) ∧
/* protecting signals are in correct aspects */
(∀s : Signal •
s ∈ signals(r) ⇒ (s.ACT = CLOSED ∧ s.ACT = s.CMD)) ∧
/* all lockable elements in the path are EXLCK(1) */
(∀e : Section • e ∈ path(r) ⇒ (e.MODE = EXLCK)) ∧
/* all sections except the first one have to be vacant */
(∀e : Section •
(e ̸= fst ∧ e ∈ (elems path(r) ∪ elems overlap(r))) ⇒
vacant(e)) ∧
/* first section is vacant or occupied by head of the train */
(vacant(fst ) ∨ hto( fst , r) = 5) ∧
/* entry signal is commanded to be open */
src(r ). CMD = OPEN

end)

SI-R-4 If a route r is in OCCUPIED mode, all of the following hold

• the last section of the route is not in FREE mode
• the route is occupied by a train (i.e., starting from the last section, if we go in the

opposite direction of the r’s direction, then we should meet a section which has
the O bit set), or the train has just moved pass the last section to the next route,
i.e., the last section lst is vacant and lst.PREV = 1

• if we divide the route into chunks of linear sections, two chunks are separated
by a point, the for each chunk, the following hold: if a chunk is occupied in one
direction (up or down) then the other direction must be vacant. This condition
eliminates two cases:

– two trains are moving head-on, which will eventually result in a collision
– two trains are back-to-back, which is infeasible within a chunk

• if a route is in use, then the last section of the route must be free in the opposite
direction w.r.t. the direction of the route.

[route_used_cnd_a]
(∀r : Route • r .MODE = OCCUPIED⇒ (last(r).MODE ̸= AVAIL))
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[route_used_cnd_b]
(∀r : Route •
r .MODE = OCCUPIED⇒
(count_fwd___O(r) ∨
let fst = first (r ),

lst = last(r) in
(( lst ̸= fst) ? lst .PREV : ( lst .MODE = USED)) ∧ vacant(last(r))

end))

[route_used_cnd_c]
(∀r : Route • r .MODE = OCCUPIED⇒ linear_chunk_cnd(r,last(r)))

[route_in_use_last_sec_is_free_in_opposite_dir]
(∀r : Route • r .MODE = OCCUPIED⇒ bwd_hto(last(r),r,0) = 0)

SI-R-5 Two routes that share the last section must not be occupied at the same time.

[routes_share_last_not_used_at_same_time]
(∀r : Route •
r .MODE = OCCUPIED⇒
(∀opr : Route •
(opr ̸= r ∧ last (r) = last(opr)) ⇒ (opr.MODE ̸= OCCUPIED)))

SI-R-6 It is never the case that the first section of a route is not vacant, while the
source signal is commanded to be open and its actual aspect is closed.
[first_entry_cnd ]
(∀r : Route •
¬(¬vacant(first(r )) ∧ src(r ). CMD = OPEN ∧ src(r).ACT = CLOSED))

SI-R-7 The current mode of a route displayed to the output interfaces must faithfully
represents the current mode of the route.
[mode_and_display_are_identical]
(∀r : Route • r .MODE = r.DSPL)

E.3 Invariants on Signals

SI-S-1 If a signal s is commanded to be opened, then there is exactly one route r that
is in LOCKED mode, and s is r’s source signal
[signal_cmd_open_cnd]
(∀s : Signal •
(∃r : Route • s = src(r )) ⇒
(s .CMD = OPEN⇒ (∃!r : Route • src(r) = s ∧ r.MODE = LOCKED)))
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SI-S-2 If a signal s’s actual aspect is OPEN, then one of the following holds:

• There is a route that was just canceled, i.e., its control command is CANCEL(2),
its mode is FREE(0), and s is commanded to be closed.

• There is exactly one route r that have e as source signal and one of the following
holds

– r is in LOCKED mode, and e is commanded to be opened or the train has
occupied the first section

– r is in OCCUPIED mode, e is commanded to be CLOSED, the train occupies
the first section, all sections in r’s path, except the first section, are in
EXLOCK mode and vacant, and all sections in r’s overlap are vacant.

[signal_act_open_cnd]
(∀s : Signal •
(∃r : Route • s = src(r )) ⇒
(s .ACT = OPEN⇒
((∃r : Route •

s = src(r) ∧ r.MODE = FREE ∧ s.CMD = CLOSED ∧ r.CTRL = CANCEL) ∨
(∃!r : Route •
(src(r) = s) ∧
((( r .MODE = LOCKED ∧

(s .CMD = OPEN ∨ H__(hto(first(r),r)) ̸= 0)) ∨
(r .MODE = OCCUPIED ∧ s.CMD = CLOSED ∧
H__(hto(first (r ), r )) ̸= 0)) ∧

(∀e : Section •
(e ∈ path(r) ∧ e ̸= first (r )) ⇒
(vacant(e) ∧ e.MODE = EXLCK)) ∧
(∀e : Section • e ∈ overlap(r) ⇒ vacant(e )))))))

SI-S-3 When the tail of the train is in the first section, the source signal’s actual aspect
must be CLOSED

[entry_signal_closed_when_tail_in_first]
(∀r : Route • _T_(hto( first (r ), r )) ⇒ src(r).ACT = CLOSED)

E.4 Invariants on Points

SI-P-1 When a point p is not vacant or is in USED mode, it must not have any
potential to move, i.e., p.POS = p.CMD

[not_commanding_occupied_point_to_move]
(∀p : Point • (¬vacant(p) ∨ p.MODE = USED)⇒ p.POS = p.CMD)



258 E Strengthening Invariants

SI-P-2 When a point p is going to switch, i.e., p.POS ̸= p.CMD, it must not be in
USED mode, and there exists a route r that requires p and r is in ALLOCATING
mode.
[point_only_cmd_when_alloc_a_route]
(∀e : Point •
(∃r : Route • e ∈ points(r )) ⇒
(e.CMD ̸= e.POS⇒
(e.MODE ̸= USED ∧
(∃r : Route • e ∈ points(r) ∧ r.MODE = ALLOCATING))))

SI-P-3 For a point p, if a train can change direction neither in the neighbouring
section at its stem end, nor in the neighbouring section at its plus (minus) end, then
if the actual position of p is PLUS(0), only one of the following holds:

• p is occupied by a train in the direction coming from its plus (minus) end, or
stem(p) is occupied by a train in the direction coming from p.

• p is occupied by a train in the direction coming from its stem end, or plus(p)
(minus(p)) is occupied by a train in the direction coming from p and plus(p)’s
(minus(p)’s) mode is USED(2) and plus(p)’s (minus(p)’s) PREV variable is not set.

[point_chunk_cnd_stem_plus]
(∀e : Point •
let s = stem(e),

p = plus(e),
s_b = hto(stem(e),e ,0),
p_b = hto(plus(e),e ,0),
s_t = e.S2PM,
p_t = e.P2S in

(¬can_turn_around_at(s) ∧ ¬can_turn_around_at(p))⇒
((e.POS = PLUS)⇒
((p_t + s_b) * (s_t + p_b * (¬p.PREV ∧ p.MODE = USED)) = 0))

end)

[point_chunk_cnd_stem_minus]
(∀e : Point •
let s = stem(e),

m = minus(e),
s_b = hto(stem(e),e ,0),
m_b = hto(minus(e),e,0),
s_t = e.S2PM,
m_t = e.M2S in

(¬can_turn_around_at(s) ∧ ¬can_turn_around_at(m))⇒
((e.POS = MINUS)⇒
((m_t + s_b) * (s_t + m_b * (¬m.PREV ∧m.MODE = USED)) = 0))

end)
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E.5 Invariants on Elements

SI-E-1 If an element e is in EXLCK mode, it must be locked for exactly one route r
that has e in its path and satisfies one of the following

• r is in ALLOCATING mode
• r is in LOCKED mode
• r is in OCCUPIED mode, and all the following hold

– if e is a point, it must be in correct position as required by r
– all e’s next sections in r must be in EXLCK mode, vacant, and in correct

position required by r if the section is a point
– e’s previous section in r is in EXLCK or USED mode, and in correct position

if it is a point

[elem_locked_by_only_one_route]
(∀e : Section •
(∃r : Route • e ∈ path(r)) ⇒
(e.MODE = EXLCK⇒
(∃!r : Route •
e ∈ path(r) ∧
let lst = last(r ),

fst = first (r) in
/* route is allocating , imply all elems locked */
(( r .MODE = ALLOCATING) ∨
/* route is locked , imply all elems locked */
(r .MODE = LOCKED) ∨
/* route in use , the 1st elem is never locked when
* the route is in use */

((e ̸= fst) ∧ r.MODE = OCCUPIED ∧
((e ∈ Point) ⇒ (e.POS = req(r,e) ∧ e.CMD = req(r,e))) ∧
/* next elems in the same route are locked and vacant */
(∀ne : Section •
ne ∈ nexts(r,e) ⇒
(ne.MODE = EXLCK ∧ vacant(ne) ∧
((ne ∈ Point) ⇒
(ne.POS = req(r,ne) ∧ ne.CMD = req(r,ne))))) ∧

/* the head of the train is in e
* then prev is occupied without a head
* we have e ~= fst , thus pv always exists */

let pv = prev(r,e) in
(hto(e, r) = 5 ∧ pv.MODE = USED ∧
((pv ∈ Point)⇒ pv.POS = req(r,pv)) ∧
occupied_without_head(hto(pv,r))) ∨
/* e is vacant , then the prev is locked or used */
(vacant(e) ∧ (pv.MODE = EXLCK ∨ pv.MODE = USED) ∧
((pv ∈ Point)⇒ (pv.POS = req(r,pv) ∧ pv.CMD = req(r,pv))))
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end))
end)))

SI-E-2 If an element e is in USED mode, it must be used by exactly one route r that
has e in its path and all of the following hold

• r is in OCCUPIED mode
• if e is a point, it must be in correct position as required by r
• e’s previous section pv in r has been released, or still locked for r and the train is

still in pv or just left pv to e.
• all e’s next sections nx satisfy the following

– if nx is a point, it must be in position as required by r
– one of the following holds

* nx is in EXLCK mode, and e’s next sections in r are in EXLCK mode
* nx is in USED mode, and the train occupies both e and nx or the train

occupies only nx and e is going to be released.

[elem_used_by_only_one_route]
(∀e : Section •
(∃r : Route • e ∈ path(r)) ⇒
(e.MODE = USED⇒
(∃!r : Route •
e ∈ path(r) ∧
let fst = first (r ),

lst = last(r) in
r .MODE = OCCUPIED ∧ ((e ∈ Point)⇒ e.POS = req(r,e)) ∧
(e ̸= fst ⇒
let pv = prev(r,e) in
/* the prev has been released */
e.PREV ∨
/* the prev is used without a head
* or is going to be released */

((( pv ∈ Point)⇒ pv.POS = req(r,pv)) ∧ pv.MODE = USED ∧
(occupied_without_head(hto(pv,r)) ∨
(vacant(pv) ∧ _T_(hto(e,r )) = 1 ∧ (pv ̸= fst ⇒ pv.PREV))))

end) ∧
(e ̸= lst ⇒
let nx = next(r,e) in
¬nx.PREV ∧
/* this includes nx */
(∀p : Point •
p ∈ nexts(r,e) ⇒ (p.POS = req(r,p) ∧ p.CMD = req(r,p))) ∧

((nx.MODE = EXLCK ∧
((hto(nx,r) = 5 ∧ occupied_without_head(hto(e,r))) ∨
(vacant(nx) ∧ H__(hto(e,r)) = 1)) ∧
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(∀ne : Section •
(ne ̸= nx ∧ ne ∈ nexts(r,e)) ⇒ (ne.MODE = EXLCK))) ∨

(nx.MODE = USED ∧
((occupied_without_head(hto(e,r)) ∧

occupied_without_tail(hto(nx,r))) ∨
(vacant(e) ∧ _T_(hto(nx,r)) = 1 ∧ (e ̸= fst ⇒ e.PREV)))))

end)
end)))

SI-E-3 If a non-boundary element e has e.PREV = 1 then it must be in USED mode

[element_prev_variable]
(∀e : Section • is_boundary_sec(e) ∨ (e.PREV = RELEASED⇒ e.MODE = USED))

SI-E-4 If an element e is occupied, then it must be in EXLCK or USED mode.

[occupied_implies_exlck_or_used_point]
(∀e : Point •
(∀r : Route • e ̸= last(r )) ⇒
(¬vacant(e)⇒ (e.MODE = EXLCK ∨ e.MODE = USED)))

[occupied_implies_exlck_or_used_linear]
(∀e : Linear •
((∀r : Route • e ̸= last(r )) ∧ down(e) ∧ up(e))⇒
(¬vacant(e)⇒ (e.MODE = EXLCK ∨ e.MODE = USED)))

E.6 Ground Unused Elements

SI-G-1 If a signal is not a source signal of any route, then it remains closed

[ground_unused_signal]
(∀s : Signal •
(∀r : Route • src(r) ̸= s) ⇒ (s.ACT = CLOSED ∧ s.CMD = CLOSED))

SI-G-2 For a travel direction of a section, the section remains vacant if the section
is not in the path of any route going in the same direction, and the section is not
a boundary section, and there are no routes entering the section from the opposite
direction and the train may turn around in the section.
[ground_unused_linear_to_down]
(∀l : Linear •
/* a section is not used by any routes in the direction up */
(¬is_boundary_sec(l) ∧
(∀r : Route • l ∈ path(r) ⇒ entry(r,l) ̸= UP) ∧
/* trains cannot turn around here */
¬(can_turn_around_at(l) ∧
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(∃r : Route • l ∈ path(r) ∧ entry(r, l ) = DOWN)))⇒
( l .U2D = 0))

[ground_unused_linear_to_up]
(∀l : Linear •
/* a section is not used by any routes in the up direction up */
(¬is_boundary_sec(l) ∧
(∀r : Route • l ∈ path(r) ⇒ entry(r,l) ̸= DOWN) ∧
/* trains cannot turn around here */
¬(can_turn_around_at(l) ∧
(∃r : Route • l ∈ path(r) ∧ entry(r, l ) = UP)))⇒ (l.D2U = 0))

[ground_unused_point_p]
(∀p : Point •
(¬(∃r : Route •

p ∈ (dom points(r) ∩ elems path(r)) ∧ entry(r,p) = PLUS))⇒
(p.P2S = 0))

[ground_unused_point_m]
(∀p : Point •
(¬(∃r : Route •

p ∈ (dom points(r) ∩ elems path(r)) ∧ entry(r,p) = MINUS))⇒
(p.M2S = 0))

[ground_unused_point_s]
(∀p : Point •
(¬(∃r : Route •

p ∈ (dom points(r) ∩ elems path(r)) ∧ entry(r,p) = STEM))⇒
(p.S2PM = 0))

SI-G-3 All boundary sections remain vacant since the interlocking under considera-
tion does not control them, and they are initialized vacant.
[ground_unused_boundary_linear]
(∀l : Linear • is_boundary_sec(l)⇒ (l.U2D = 0 ∧ l.D2U = 0))
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