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Abstract. This paper describes a tool for extracting formal
safety conditions from interlocking tables for railway inter-
locking systems. The tool has been applied to generate safety
conditions for the interlocking system at Stenstrup station in
Denmark, and the SAL model checker tool has been used to
check that these conditions were satisfied by a model of the
relay circuits implementing the interlocking system at Sten-
strup station.
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1 Introduction

1.1 Background and Problem

With more than 170 million passengers going by train on a
yearly basis in Denmark, the safety of the railway traffic is a
top priority for Railnet Denmark. As in other countries rail-
way interlocking systems are used to prevent trains from col-
liding and derailing. Many interlocking systems in Denmark
are still relay based, i.e. implemented by complex electrical
circuits containing relays. These systems are documented by
track layout diagrams, relay circuit diagrams and interlock-
ing tables (also sometimes called signal control tables or train
route tables). The interlocking tables serve as design specifi-
cations for relay circuit implementations1, and the latter are
verified to satisfy the design requirements by manual inspec-
tion of the circuit diagrams and the tables. Such a manual
verification is very challenging, time consuming, and error
prone. For these reasons Railnet Denmark asked us to re-
search a better verification method.

1 They are also used for some computer based interlocking systems.

1.2 Solution

Our solution has been to develop a set of tools [13] supporting
automated formal verification of relay interlocking systems.
We decided that the verification method should beformal as
formal verification has been recognised as one of the best
ways of avoiding errors and is for that reason strongly recom-
mended by the CENELEC standard EN50128 [10] for soft-
ware for railway control and protection systems. Furthermore
we decided that the method should beautomatedas much as
possible to reduce the time consumption. We chose the model
checking approach [7] to formal verification as this allows for
full automation. However, the model checking approach re-
quires as input a formal model of the system behaviour and a
formal specification of the required properties, and it is not a
trivial task to create this input. To overcome this problem,we
decided also to create tools for generating verifiable formal
models and for generating formal requirements, respectively.

The tools are centred around a domain-specific language
(DSL) for digitised representations of track layout diagrams,
interlocking tables, and circuit diagrams used for document-
ing a relay interlocking system. We chose to centre the tools
around a domain-specific language rather than a general pur-
pose modelling language, as it is easier for railway engineers
to use a language that facilitates concepts already known and
used in the railway domain. The tools comprise:

– data validatorsfor checking that the documentation (in
DSL) follows certain general wellformedness rules,

– generatorsthat from a DSL description produce input to
the SAL model checker[1]:
– a formal, behavioural model (state transition system)

of the described interlocking system and its environ-
ment and

– required properties expressed as formulae in the tem-
poral logic LTL [17].

Fig. 1 shows an overview of the generator tools. As it can
be seen the model is generated from the circuit diagrams and
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Fig. 1.Overview of generator tools. The tool described in this paper is shown by a solid arrow.

the track layout diagram. Additional generators can be used
to derive required properties from the circuit diagrams, the
track layout diagram, and the interlocking table, respectively.
The generated properties include the following:

1. High-level safety conditionsexpressing that there are no
derailments and no collisions. These are generated from
the track layout.

2. Low-level safety conditions(also calledsignalling condi-
tions) expressing that general signalling rules of Railnet
Denmark are obeyed. These are generated from the inter-
locking table.

3. Circuit confidence conditionsexpressing that the circuits
are well-designed in a general sense (e.g. not giving rise
to race conditions). These are generated from the circuit
diagrams.

4. Model consistency conditionsexpressing consistency be-
tween related state variables of the model (used for model
validation). These are generated from the track layout.

Prototypes of the generator tools have been developed us-
ing the RAISE formal method [21,22] due to previous good
experience in using that method. Details on these tools and
their development can be found in [2,5,15].

The whole collection of tools can be used to verify an
interlocking system in the following number of steps:

– Write a DSL description of the interlocking system.
– Validate the description using the data validators.
– Apply the generators to generate input to a model checker.
– Apply the model checker to that input to investigate wheth-

er the model satisfies the required properties.

1.3 Focus of this Paper and Relation to Past Papers

In a series of papers and technical reports our approach and
tools have been described:

– The article [13]Towards a Framework for Modelling and
Verification of Relay Interlocking Systemsgives an over-
view of our approach and tools without going into techni-
cal details.

– The article [14]Modelling and Verification of Relay In-
terlocking Systemshas main focus on describing how a
behavioural model of a relay interlocking system can be
extracted from the circuit diagrams describing the system.

– The article [15]Formal Development of a Tool for Au-
tomated Modelling and Verification of Relay Interlocking
Systemsexplains how the model generator tool (making
the extraction described in [14]) was formally developed
using the RAISE formal method.

– The development of a domain model for circuit diagrams,
the interlocking system model generator and the circuit
confidence conditions generator was done in a sub-project
described very detailed in the technical project report [5].
This report also gives a first suggestion for how the envi-
ronment can be modelled and which other conditions to
consider.

– Another sub-project, described in the technical report [2],
continued the first sub-project by developing a domain
model for railway networks and interlocking tables, and
generators for extracting behavioural environment mod-
els, and three property generators for extracting high-level
safety conditions, low-level safety conditions, and model
consistency conditions, respectively.

The current paper describes how one of theproperty gen-
eratorstakes interlocking tables as input and generates low-
level safety conditions expressing that the signalling rules
of Railnet Denmark are obeyed. This generator utilises the
fact that interlocking tables serve as design specifications and
contain data that can be used to instantiate generic signalling
rules to concrete instances that can serve as safety require-
ments. More details on this tool and its development can be
found in the technical report [2], except for a description of
the conditions of Principle 7 in Section 6.5 as these were not
yet included in the tool when the report was written.

1.4 Related Work

The railway domain has been identified as a grand challenge
for computer science, and the modelling, development and
verification of interlocking systems has been investigatedby
many researchers. Different types of interlocking systems(for
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instance relay based versus computer based, functional versus
geographical, etcetera) have been modelled using different
modelling formalisms and verified using different verifica-
tion techniques (e.g. theorem proving and model checking).
An overview of results and trends in 2003 can be found in [4],
and more recent results can be found in proceedings like [20]
and book chapters like [11,24].

Several other research groups [3,25,18,12,16,6,19] have
also investigated interlocking systems having interlocking ta-
bles as design specifications. One of their goals is to verify
interlocking tables. Their approach for verification is to trans-
late the tables into execution/design models for interlocking
systems (typically by instantiating generic models with data
from the tables) and verify by model checking that these mod-
els satisfy high-level safety requirements such as no colli-
sions and no derailments.

Hence, our goal of model checking is different from that
of the above mentioned research groups: their goal is to verify
the interlocking tables, while our goal is to verify circuitdia-
grams. Consequently, a main difference between their and our
verification approach is that their interlocking models arede-
rived from the interlocking tables (i.e. from the design spec-
ification) while our models are derived from the relay circuit
diagrams for the implementation. Instead of using interlock-
ing tables for generating interlocking models, we use them
for generating requirements (LTL formulas) in terms of sig-
nalling. Like the others, we also check for no collisions and
no derailments.

Eriksson [9] has also formally verified relay based inter-
locking systems by deriving a model from the relay circuits,
but he used theorem proving and not model checking for the
verification.

1.5 Paper Overview

First, in Section 2, an informal introduction to the domain of
the considered interlocking systems is given. Then, in Sec-
tion 3 the notions of Kripke structures (used as behavioural
models) and LTL formulas (used to express safety conditions)
are introduced for the convenience of readers who are not
familiar with these notions. In Section 4 the state space of
models and conditions is introduced, in Section 5 it is shortly
explained how the models are created, and in Section 6 it is
explained how the considered conditions generator extracts
safety conditions from relay interlocking tables. Section7 re-
ports on how the tool has been applied in the verification of
the interlocking system for Stenstrup station in Denmark, and
finally, in Section 8 some conclusions are drawn.

2 Train Route Based Interlocking Systems

In this paper we consider a class of interlocking systems (DSB
type 1954) used for many Danish stations. These systems are
based on a concept of train routes and implemented by relay
based electrical circuits. In this section a short introduction to
these systems and their documentation is given.

2.1 The Physical Domain of a Station

The physical domain under control consists of the railway
tracks, points and signals. The tracks are divided into sec-
tions, each having a track circuit for detecting whether or not
it is occupied by a train. The points can be switched between
two positions: plus (i.e. straight) and minus (i.e. branching),
and the signals can give proceed and stop indications by lights
in coloured lamps.

Fig. 2 shows a (simplified) track layout diagram for a typ-
ical station (Stenstrup station in Denmark). The track layout
diagram outlines the geographical arrangement of the tracks
and track-side equipment such as track circuits, points, and
signals. From the diagram it can be seen that Stenstrup has
six track circuits (named A12, 01, 02, 03, 04, and B12), two
points (named 01 and 02), and six signals (named A, B, E, F,
G, and H).

2.2 Train Route Based Interlocking

The task of an interlocking system is to control points and
signals such that train collisions and derailments are avoided.
The interlocking systems we are considering use atrain route
basedapproach to achieve that. The basic ideas of this ap-
proach are:

– Trains should drive on predefinedroutesthrough the net-
work.

– Each route is covered by an entry signal that indicates
whether it is allowed for a train to enter the route or not.
Trains are assumed to respect the signals.

– Two trains must never be allowed to drive on conflict-
ing (e.g. overlapping) routes at the same time.(To prevent
collisions.)

– Before a train is allowed to enter a route, the points in
the route must be locked in positions making the route
connected (i.e. it is physically possible to go from one end
of the route to the other end without derailing), and the
route must be empty (i.e. there are no trains on the route).
(To prevent derailments and collisions, respectively.)

– The points of a route must not be switched while a train
is driving on the route.(To prevent derailments.)

2.3 Relay Circuit Implementations and Diagrams

The interlocking systems we are considering are implemented
by electrical relay circuits. The circuits are made up of com-
ponents such as power supplies (each having a positive and
a negative pole), relays, contacts, lamps inside signals, and
operator buttons, connected by wires. Arelay is an electrical
switch operated by an electromagnet to connect or discon-
nect a number of contacts in a circuit. When current flows
through the relay, the magnet isdrawn and some of the as-
sociated contacts are connected (these contacts are said tobe
upper contacts) while others (thelower contacts) are discon-
nected. When no current flows through the relay, the magnet
is droppedand the associated upper and lower contacts will
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Fig. 2.Track layout diagram for Stenstrup station.

be disconnected and connected, respectively. When contacts
are connected/disconnected this may imply that sub-circuits
containing these contacts become live/dead. This again may
imply that relays of these sub-circuits are drawn or dropped,
and so on.

An interlocking system can get input from the environ-
ment: buttons in the circuits can be pushed by an operator
and some of the relays (calledthe external relays) change
state (are drawn or dropped) when points change positions
or trains enter or leave track sections. The external relaysare
hence controlled by the environment. All other relays are said
to beinternaland are controlled by the circuits.

2.3.1 Relay Circuit Diagrams

The electrical circuits implementing a relay interlockingsys-
tem are documented byrelay circuit diagrams. For each inter-
nal relay one of the diagrams shows the sub-circuit that con-
trols that relay. Fig. 3 shows an example of a (simplified) re-
lay circuit diagram. This diagram shows the sub-circuit con-
trolling a relay namedRR1. The circuit consists of a number
of components connected by wires. The wires are depicted as
black lines. At the top is the positive pole and at the bottom is
the negative pole of the power supply. RelayRR1 is shown
using this signature:

��
��
��
���
�
�
�

�� ��
RR1

The downwards arrow informs that in the initial state this re-
lay is dropped. (If it had been drawn the arrow would have
been upwards.) A number of contacts belonging to other re-
lays occur in this circuit. E.g. a contact belonging to a relay
namedA1 is shown using this signature:

A1

The downwards arrow informs that in the initial state relay
A1 is dropped. The horizontal bar breaks the wire – this indi-
cates that the contact is disconnected in the initial state (and
in all states whereA1 is dropped). If the bar had not been
breaking the wire it would have indicated that the contact had
been connected in the initial state, as it is the case for the con-
tact ofA2 (which is connected in all states where relayA2 is
dropped).

Also a buttonB1 is shown in the diagram using this sig-
nature:

B1

In the initial state the button is not pushed.
Current will flow through a relay if there is a path from the

positive pole to the negative pole that goes through the relay
and all contacts within this path are connected and all but-
tons are pushed. Therefore, from the diagram in Fig. 3 it can
deduced that for current to flow through relayRR1, button
B1 must be pushed and relayA2 must be dropped, or relay
A1 must be drawn and relayA2 must be dropped. When that
condition becomes fulfilled, relayRR1 will be drawn, and
when it is not anymore fulfilled, it will be dropped.

2.4 Interlocking Tables

For each station aninterlocking tablespecifies the train routes
of the station and for each of these routes

– the conditions for when the train route can be locked (re-
served),

– the conditions for when the entry signal of the route is set
to show a proceed aspect,

– the conditions for when the entry signal of the route is set
back to show a stop aspect, and

– the conditions for releasing the train route again.

The interlocking table serves as a design specification of
the interlocking system. Hence, it is used by the engineers
who design the electrical circuits of the interlocking system,
and it is used by the test team who tests that the implicit re-
quirements of the table hold for the implemented interlocking
system.

The aim of the generator tool we describe in this paper
is to derive explicit, formal requirements from an interlock-
ing table such that they can be formally verified to hold for a
formal model of the behaviour of the implemented interlock-
ing system. The formal model is generated from the circuit
diagrams and track layout diagram by other generators of our
tool set.

Table 1 shows a (simplified) interlocking table for Sten-
strup station. The interlocking table has one row for each train
route. For each route

– the Route sub-columns contain basic information about
the train route such as its identification number,

– theSignalssub-columns state (1) which signals (the en-
try signal and any distant signal for this) should be set to a
proceed aspect when the conditions for entering the route
are met, and (2) which signals must be set to a stop aspect
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Fig. 3.A simple circuit diagram.

Route Signals Track sections Points Stop Route release
Id From To A B E F G H A12 01 02 04 03 B12 01 02 Init Final
2 A G g r r ↑ ↑ ↑ ↑ ↑ + + A:A12 ↓01,↑02 ↓02,↑01
3 A H g r r ↑ ↑ ↑ ↑ ↑ - - A:A12 ↓01,↑04 ↓04,↑01
5 B E g r r ↑ ↑ ↑ ↑ ↑ + + B:B12 ↓03,↑02 ↓02,↑03
6 B F g r r ↑ ↑ ↑ ↑ ↑ - - B:B12 ↓03,↑04 ↓04,↑03
7 E A g r ↑ ↑ + E:01 ↓01,↑A12 ↓A12,↑01
8 F A r g ↑ ↑ - F:01 ↓01,↑A12 ↓A12,↑01
9 G B g r ↑ ↑ + G:03 ↓03,↑B12 ↓B12,↑03
10 H B r g ↑ ↑ - H:03 ↓03,↑B12 ↓B12,↑03

Route Conflicts
2

3 © 3
5 © © 5
6 © © © 6
7 © © © 7
8 © © © © 8
9 © © © 9
10 © © © © 10

Table 1. Interlocking table (divided in two parts) for Stenstrup station.

(to provide flank or front protection) before the entry sig-
nal can be set to proceed (g means green light (indicating
proceed) andr means red light (indicating stop)),

– thePointssub-columns state required positions of points
(+/- means straight/branching position) for the route to be
connected (and possibly also flank protected),

– the Track sectionscolumns state with an↑ which track
sections must be unoccupied for the route and its safety
distance to be empty,

– theStop column specifies that a certain signal (the entry
signal of the route) should be switched to a stop aspect

when a certain track section (the first section of the route)
becomes occupied,

– theRoute releasecolumns define conditions for when the
train route can be released (to be explained in Section 6),
and

– theRoute conflictsmarks with the symbol◦ which routes
are conflicting.

2.4.1 Data Validation

One of our data validator tools can be used to check that such
an interlocking table contains suitable data with right to a
given track layout diagram, e.g. that the track sections of a
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route constitute a connected path in the track layout, that the
signal in the Stop column is an entry signal for that path and
the section in the Stop column is the first section of the route.

3 Background on Models and Assertions

According to our method, to verify an interlocking system,
the generator tools should be applied to the documentation
of the system (expressed in the domain-specific language) in
order to derive (1) a behavioural modelM of the system and
its environment, and (2) formal safety conditionsφ that the
system must fulfil. The verification problem is then to check
that each conditionφ is satisfied by the modelM . This is
writtenM |= φ.

In order to use the SAL model checker [1] to perform this
check, we have chosen the conditionsφ to be LTL formulas
and the modelsM to be Kripke structures represented in the
input language [8] of the SAL model checker.

This section gives a short introduction to LTL and Kripke
structures, and it defines the satisfaction relation|=. More de-
tails on these topics can for instance be found in [7,17]. The
section also shortly explains how the Kripke structures are
represented in SAL.

3.1 LTL Formulas

The generated conditions are LTL formulas built over a finite
set of propositional state variablesV that characterises the
state of the system. The set of LTL formulas overV is the
least set satisfying the following rules:

– If v ∈ V , thenv is an LTL formula.
– If φ, ψ are LTL formulas, then¬φ, φ ∧ ψ, φ ∨ ψ, φ ⇒
ψ, X(φ), G(φ), F (φ), U(φ, ψ), andW (φ, ψ) are LTL
formulas.

3.2 State Transition System Models

As models we use Kripke structures that describe how the
state of a system can evolve over time.

A Kripke structureover a finite set of propositional2 vari-
ablesV is a four tuple(S, s0, R, L), where

– S is a finite set of states,
– s0 ∈ S is an initial state3,
– R ⊆ S × S is a total4, binary relation on the state space

describing possible state changes, and
– L : S → 2V , where2V denotes the power set ofV , is a

function that labels each state with variables that are true
in that state.

2 More general Kripke models allow non-propositional variables provided
these have finite domains. However, for the models presentedin this article,
propositional variables are sufficient.

3 In the models we are considering, there is only one possible initial state.
More general Kripke structures allow for a set of initial states.

4 R is total means that for alls ∈ S there is a states′ ∈ S such that
(s, s′) ∈ R

3.3 Satisfaction Relation between Models and LTL
Formulas

An (execution)path in a Kripke structure(S, s0, R, L) is an
infinite sequencep of statesp(1), p(2), . . . such that for each
i ≥ 1, (p(i), p(i+1)) ∈ R. In the following, we use the nota-
tion pi for the suffix ofp starting atp(i), i.e.pi = p(i), p(i+
1), . . ..

Thesatisfaction relation|= between pathsp in a Kripke
structure(S, s0, R, L) and LTL formulasφ over the same set
of variablesV is the least relation satisfying:

– p |= v, if v ∈ L(p(1))
– p |= ¬φ, if it is not the case thatp |= φ

– p |= φ ∧ ψ, if p |= φ andp |= ψ

– p |= φ ∨ ψ, if p |= φ or p |= ψ

– p |= φ⇒ ψ, if p |= ψ wheneverp |= φ

– p |= X(φ), if p2 |= φ (from the next time stepφ must be
true)

– p |= G(φ), if for all i ≥ 1, pi |= φ (φ must hold on the
entire path)

– p |= F (φ), if there is somei ≥ 1 such thatpi |= φ (φ
eventually holds, i.e. holds somewhere on the path)

– p |= U(φ, ψ), if there existsi ≥ 1 such thatpi |= ψ and
for all 1 ≤ k < i, pk |= φ (φ must remain true untilψ
becomes true)

– p |= W (φ, ψ) iff p |= U(φ, ψ) ∨ G(φ) (φ must remain
true forever or untilψ becomes true)

The satisfaction relation|= between Kripke structuresM =
(S, s0, R, L) and LTL formulasφ over the same set of vari-
ablesV is defined as follows:M |= φ, iff for all paths p
starting in the initial states0 ofM (i.e. for whichp(1) = s0),
p |= φ holds.

3.4 SAL Representations of Kripke Structures

This subsection shortly explains how Kripke models are rep-
resented in SAL.

A generatedSAL specification consists of the following
elements:

– a declaration of a finite setV of propositional (Boolean)
state variables,

– an initialisation assigning initial values (true or false)to
the variables inV ,

– a set of transition rules of the formcond→ updatewhere
– cond (called the enabling condition) is a propositional

formula over the variables inV using the connectives
¬, ∧, ∨, and⇒, and

– update is a multiple assignment of Boolean values
(true and false) to the primed versionsv′ of some of
the variablesv in V .

Intuitively, the rule states that for states in which the en-
abling condition is true, the system can change state to a
new state that is obtained from the current state by per-
forming the assignments in theupdate.
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Such a specification represents the following Kripke structure
(S, s0, R, L) overV :

– S = V → {true, false} is the finite set of states, where
a stateis a truth valuation of the variables inV ,

– s0 ∈ S is an initial state deduced from the initialisation,
– R ⊆ S×S is a binary relation5 on the state space induced

by the transition rules:(s, s′) ∈ R if there is a transition
rule cond → update such that (i) the enabling condition
cond is true when evaluated ins, (ii) for each assignment
v′ = e in update, s′(v) = e, and (iii) for all variablesv
in V not having an assignment inupdate, s′(v) = s(v),

– L : S → 2V is defined by:L(s) = {v|v ∈ V ∧ s(v) =
true} for s ∈ S.

4 State Space

For a given interlocking system, our tools can be used to
generate a model and safety conditions for the system. The
model and the safety conditions are defined over a common
set of variables describing the state space. This section first
describes informally the common state space and then it de-
fines the setV of variables capturing the possible states of the
system. In sections 5 and 6, it is described how models and
conditions, respectively, are generated by the generator tools.

4.1 State Space

The relays and buttons in the circuits implementing an in-
terlocking system change state over time as reaction to input
from the environment as described in Section 2.3.

In the relay circuits of an interlocking system there are
relays monitoring the states of the track side equipment:

– For each pointP , there are two relaysplusP andminusP
that are drawn when and only whenP is in the plus and
the minus position, respectively.

– For each track sectiont, there is a relayt that is drawn
when and only when the track section is unoccupied.

– For each signalS, there are two relaysRedS andGreenS
that are drawn when and only when there is a red light and
a green light inS, respectively.

The two first classes of relays are said to beexternalas they
are controlled by the environment. All other relays, including
the last class of relays, are controlled by the circuits and are
said to beinternal.

The remaining internal relays store the internal state of
the interlocking system. For instance, there are relays keep-
ing track of which routes are locked. For some interlocking
systems, there is one locking relay for each route, however,
for systems of DSB type 1954, some routes share a relay. We
will use the notationl(x) to denote the locking relay asso-
ciated with a routex. A locking relay r is dropped, when

5 Note that we only consider SAL specifications for which the relation
defined in this way is total (as required for Kripke structures). We use the
SAL deadlock checker to check that.

and only when one of the train routesx associated withr is
locked. Which of the routes is locked is determined by the
point settings: Routex is locked, whenl(x) is dropped and
the points settings are as required for routex according to the
interlocking table.6

As an example, for Stenstrup station there are four lock-
ing relays,ia (for routes 2 and 3),ib (for routes 5 and 6),ua
(for routes 7 and 8), andub (for routes 9 and 10).

The safety requirements that will be formalised in Sec-
tion 6 can be expressed in terms of the states of the relays
mentioned above.

4.2 State Variables and Initial States

The setV of variables, over which the models and the condi-
tions are defined, includes:

– A Boolean variabler for each relayr in the circuit di-
agrams. When a relay variabler is true/false, it models
that the associated relay is drawn/dropped.

– A Boolean variableb for each button in the circuit dia-
grams. When a button variableb is true/false, it models
that the associated button is pushed/released.

– A Boolean auxiliary variableidle. When it is true, it mod-
els that the interlocking system is in an idle state waiting
for new input.

The initial state of buttons isfalse, the initial state of track
section relay variables istrue (modelling that the track sec-
tions are initially unoccupied), the initial states of point re-
lay variablesplusP andminusP aretrue andfalse, respec-
tively, and the initial states of internal relays are derived from
the circuit diagrams.

5 Behavioural Models

Our framework provides tool components that from the cir-
cuit diagrams and the track layout diagram of an interlocking
system can be used to create a behavioural modelM of the
interlocking system and its interface to the environment. In
Section 4 we described the state variables ofM and stated
the initial values of these variables. In this section we will
shortly outline which transition rules are generated. The tran-
sition rules describe how the internal relays, the externalre-
lays, and the buttons can change state over time.

5.1 State Transition Rules for Internal Relays and Buttons

The state transition rules for internal relays and buttons are
generated from the circuit diagrams.

For each internal relayr in the circuit diagrams two rules
are generated:

¬r ∧ isConductingr → r′ = true

6 Note: two routes can only share a locking relay when at least one point
is required to be set in different positions for the two routes.



8 Anne E. Haxthausen: Automated Generation of Formal SafetyConditions from Railway Interlocking Tables

for drawingr and

r ∧ ¬isConductingr → r′ = false

for droppingr. HereisConductingr is a condition for cur-
rent to flow through the relay. It expresses that there is a path
from the positive pole to the negative pole that goes through
the relay and all contacts within this path are connected and
all buttons are pushed.

As an example, from the diagram in Fig. 3 in Section 2.3.1
it can deduced that for current to flow through relayRR1,
buttonB1 must be pushed and relayA2 must be dropped,
or relayA1 must be drawn and relayA2 must be dropped.
Therefore, the following two rules for relayRR1 are gener-
ated:

¬RR1∧ ((A1 ∧ ¬A2) ∨ (B1∧ ¬A2)) → RR1′ = true
RR1∧ ¬((A1 ∧ ¬A2) ∨ (B1∧ ¬A2)) → RR1′ = false

Similarly, for each button in the relay circuit diagrams
a rule for pressing it is generated, and a rule for releasing
buttons is also generated.

More details on these transition rules can be found in [5,
15].

5.2 State Transition Rules for External Relays

The state transition rules for external relays are generated
from the track layout diagram.

A point P can be switched between three positions: the
plus position, the minus position, and the intermediate posi-
tion between the plus position and the minus position. For
each pointP in the track layout diagram, four transition rules
are generated describing how the relaysplusP andminusP
associated withP , change state when the point is switched
between its three possible positions.

For each track sectiont in the track layout diagram, tran-
sition rules for drawing and dropping the corresponding track
relay are generated. The rules reflect the possible train move-
ments and therefore depend on the track layout.

More details on these transition rules can be found in [2].

6 Safety Requirements

This section first describes which formal requirements the
generator tool derives from an interlocking table (that has
been checked by the data validator tool) and then it informs
how the tool was formally specified.

The formal requirements are formulas in LTL, expressed
as conditions on the relay variables keeping the state of points,
track sections, signals, and route lockings. They express safety
conditions at the design level (i.e. concrete instances of the
general signalling principles) that an interlocking system must
satisfy.

In each of the subsections 6.1– 6.6 below, first a general
signalling principle is stated informally, then it is explained
how formal, concrete instances of this can be generated by

instantiating a formal condition pattern with data from a given
interlocking table, and finally an example of this is given for
the interlocking table for Stenstrup in Table 1.

In the formal condition patterns the following notation
will be used for a routex:

– Lx: the locking relayl(x) of x.
– RouteLockedx: the condition¬Lx∧PointsSetx express-

ing that routex is locked.
– PointsSetx: a condition expressing that the points ofx

are set as required according to the “Points” fields forx

in the interlocking table.
– TracksFreex: a condition expressing that the track sec-

tions of x are unoccupied as required according to the
“Track sections” fields forx in the interlocking table.

– SignalsSetx: a condition expressing that the covering
signals ofx are set to a stop aspect as required accord-
ing to the “Signals” fields forx in the interlocking table.

– StopSectionx: the track section (relay) specified in the
“Stop field” for x in the interlocking table.

– Initx: a condition expressing that the second last track
section ofx is occupied and the last track section ofx
is unoccupied as specified in the “Init” field forx in the
“Route release” columns in the interlocking table.

– Endx: a condition expressing that the second last track
section ofx is unoccupied and the last track section ofx

is occupied as specified in the “Final” field forx in the
“Route release” columns in the interlocking table.

6.1 No Locking of Conflicting Routes

Principle 1. When a train routex is locked, none of its con-
flicting routesy must be locked.

For each routex, this is expressed by a condition of the fol-
lowing form:

G(RouteLockedx ⇒
∧

y∈ConflictingRoutes(x)

¬RouteLockedy)

(1)

whereConflictingRoutes(x) is the set of routes that are in
conflict withx according to the interlocking table.

Example 1.Applying this principle to train route 2 for Sten-
strup, the generated condition will be in the following form
as the route is in conflict with train routes 3, 5, 6, 7, 8 and 10
according to the interlocking table for Stenstrup:

G(RouteLocked2 ⇒
¬ RouteLocked3 ∧
¬ RouteLocked5 ∧
¬ RouteLocked6 ∧
¬ RouteLocked7 ∧
¬ RouteLocked8 ∧
¬ RouteLocked10)

Expanding each of the expressionsRouteLockedy using the
data in the interlocking table, this gives
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G(¬ ia ∧ plus01∧ plus02⇒
¬ (¬ ia∧ minus01∧ minus02)∧
¬ (¬ ib ∧ plus01∧ plus02)∧
¬ (¬ ib ∧ minus01∧ minus02)∧
¬ (¬ ua∧ plus01)∧
¬ (¬ ua∧ minus01)∧
¬ (¬ ub∧ minus02)

)

6.2 Locking and Points Positions

Principle 2. When a locking relayr is dropped, one of the
routesx, which is controlled byr, must have the points of
that route set as required for routex according to the inter-
locking table. (This implies that a route can’t be locked before
its points are set.)

For each locking relayr, this is expressed by a condition of
the following form:

G(¬r ⇒
∨

x∈Routes(r)

PointsSetx) (2)

whereRoutes(r) is the set of routesx controlled byr, i.e.
for which l(x) = r.

Example 2.Applying this principle to locking relayia for
Stenstrup, the following condition is generated as routes 2
and 3 are the routes controlled byia:

G(¬ ia ⇒ (plus01∧ plus02)∨ (minus01∧ minus02))

The condition expresses that whenia is dropped, points 01
and 02 are either both set in the plus position or both set in
the minus position as required by the interlocking table for
routes 2 and 3, respectively.

6.3 Signal Aspects

Only certain combinations of lights are allowed aspects of the
signals.

Principle 3. A signal must never display a red light and green
light at the same time.

For each signalS, this is expressed by a condition of the fol-
lowing form:

G(idle⇒ ¬(RedS ∧GreenS)) (3)

Example 3.Applying this principle to signal A for Stenstrup,
the following condition is generated:

G(idle⇒ ¬ (RedA∧ GreenA))

Principle 4. When the green light is turned off in a signalS,
the red light must be turned on.

For each signalS, this is expressed by a condition of the fol-
lowing form:

G(idle ∧ ¬ GreenS ⇒ RedS) (4)

Example 4.Applying this principle to signal A for Stenstrup,
the following condition is generated:

G(idle∧ ¬ GreenA⇒ RedA)

6.4 Proceed Signal

Principle 5. When a signalS shows a proceed aspect, one
of the routesx, starting fromS, must be ready for use, i.e. (1)
the routex must be locked, (2) all the track sections of the
route must be unoccupied as stated in the interlocking table,
and (3) all covering signals of the route must show a stop as-
pect as stated in the interlocking table.

For each signalS, this is expressed by a condition of the fol-
lowing form:

G(idle ∧GreenS ⇒
∨

x∈Routes(S)

(RouteLockedx ∧ TracksFreex ∧ SignalsSetx))

(5)

whereRoutes(S) is the set of routes starting from signalS.
From the condition, it can be derived that the green light

must be turned off when the right-hand side becomes false.
As it takes time for the system to turn the green light off,idle
has been included on the left-hand side of the implication.

Example 5.Applying this principle to signal A, a condition
of the following form is generated as train routes 2 and 3 start
from signalA:

G(idle∧ GreenA⇒
(RouteLocked2 ∧ TracksFree2 ∧ SignalsSet2) ∨
(RouteLocked3 ∧ TracksFree3 ∧ SignalsSet3))

Expanding each of the sub-formulae using the data in the in-
terlocking table, this gives:

G(idle∧ GreenA⇒
((¬ia ∧ plus01∧ plus02)∧

(A12∧ 01∧ 02∧ 03∧ B12)∧
(RedF∧ RedG)

)
∨
((¬ia ∧ minus01∧ minus02)∧

(A12∧ 01∧ 04∧ 03∧ B12)∧
(RedE∧ RedH)

)
)
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6.5 Stop Signal

Principle 6. When track section,StopSectionx, specified in
the ”Stop” field for routex in the interlocking table, is occu-
pied in an idle state, the signalSx in the same field must show
a stop aspect (i.e. the red light must be on).

For each routex, this is expressed by a condition of the fol-
lowing form:

G(idle ∧ ¬ StopSectionx ⇒ RedSx) (6)

In the condition it is necessary to includeidle on the left-
hand side of the implication in order to give the system time
to change the setting of the signal as a reaction on the occu-
pation ofStopSectionx.

Note that condition (6) is a consequence of conditions (5)
and (4) if it has been generated from a well-formed inter-
locking table as¬ StopSectionx implies¬ TracksFreey
for all routesy starting fromSx (due to the fact that for a
well-formed interlocking tableStopSectionx is included in
the track sections of any routey starting fromSx), and this
implies¬GreenSx (due to (5)), which impliesRedSx (due
to (4)).

Example 6.Applying this principle to route 2 for Stenstrup,
the following condition is generated:

G(idle∧ ¬ A12⇒ RedA)

It expresses that when track section A12 (the first section of
the route) is occupied by a train (or another object), then the
entry signal, A, must show a stop aspect (i.e. the red light
must be on).

Principle 7. When the setting of the entry signalS of a locked
routex is changed to stop (i.e. the red light is turned on), it
must keep this setting as long as the route is still locked.

This principle prohibits that the signal is changed to proceed
in the case where a train, that has entered the route, reverses
direction and leaves the route before the route has been re-
leased.

For each signalS and each routex ∈ Routes(S), this
principle is expressed by a condition of the following form:

G(¬ Lx ∧ ¬RedS ∧X(RedS)⇒X(W (RedS, Lx))) (7)

whereLx = l(x) is the locking relay ofx, andW is the LTL
weak until operator andX is the next state operator.

Example 7.Applying this principle to signal A and route 2
(or route 3) for Stenstrup, the following condition is gener-
ated:

G(¬ia ∧ ¬aRed∧ X(aRed)⇒ X(W(aRed,ia)))

It expresses that if the red light in signal A is off (i.e.¬aRed
is true) while route 2 (or route 3) is locked (i.e.¬ia is true)
and if the red light is turned on in the next state (i.e. X(aRed)
is true), then the red light must be kept as long as the route
is still locked, i.e. the red light can’t be turned off beforea
release (where ia becomes true). Next subsection states the
conditions for when a release can happen.

6.6 Train Route Release

Before a locked train route can be released, the two last sec-
tions t1 and t2 of the route must first have been in a state
(called therelease start state) wheret1 is occupied andt2 is
unoccupied, and then in a state (called therelease end state)
wheret1 is unoccupied andt2 is occupied. This sequence
of states is called the release sequence. This sequence will
happen when a train passes the second last track section and
ends on the last track section of the route. The “Route re-
lease” columns of the interlocking table state the release start
and end states for each train route.

Principle 8. When a train route has been locked, the route
must not be released before the release sequence for the route
has taken place.

For each routex, this is expressed by a condition of the fol-
lowing form:

G(Lx ∧ X(RouteLockedx ∧ F(Lx)) ⇒
X(

U(¬Lx,
¬Lx ∧ Initx ∧

X(U(¬Lx, ¬Lx ∧ Endx))
)

)
)

whereLx is the locking relay ofx, Initx is a condition ex-
pressing the release start state forx, Endx is a condition ex-
pressing the release end state forx, U is the LTL until op-
erator,X is the next state operator andF is the eventually
operator.

If conditionLx is true, it implies thatRouteLockedx is
false, asRouteLockedx = ¬Lx∧PointsSetx. Therefore,
the left-hand side of the implication is true if routex is not
locked in the current state, it becomes locked in next state and
later it becomes released (unlocked) again. The right-hand
side of the implication expresses the condition that from the
next state (i.e. the state in which the route became locked ac-
cording to the left-hand side condition), the route will notbe
released, i.e.Lx will not become true, until after the release
sequence.

Example 8.Applying this principle to train route 2 for Sten-
strup Station, the following condition is generated:
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G(ia∧ X((¬ia∧ plus01∧ plus02)∧ F(ia))⇒
X(

U(¬ia,
¬ia ∧ (¬01∧ 02)∧

X(U(¬ia,¬ia ∧ (01∧ ¬02))
)

)
)

The left-hand side of the implication says that route 2
is not locked (i.e. ia is true) in the current state, it becomes
locked (i.e.¬ ia ∧ plus01∧ plus02) in the next state and
later on it becomes released (unlocked) again (i.e. F(ia)).The
right-hand side says that in the next state the route will stay
locked at least until the release start state (where track section
01 is occupied and track section 02 is unoccupied) and in the
state after this release start state, the route will continue be-
ing locked until the release end state where track section 01
is again unoccupied and track section 02 has been occupied.

6.7 Development of the Tool

A prototype of the generator tool was developed by creating
an executable specification in the RAISE specification lan-
guage RSL [21]. In this section the overall structure of the
specification is outlined.

The main components of the specification are:

– a specification of a data typeTable for representing in-
terlocking tables,

– a specification of a data typeAssertion for representing
conditions, i.e. LTL assertions (formulas), and

– a functiongen for generating conditions from interlock-
ing tables.

The generator functiongen is specified to take aTable
value as input and to return anAssertion− set value, i.e. a
set ofAssertion values (representations of LTL formulas).
For each signalling principlei stated above,gen instantiates
the formal condition pattern of principlei with data from the
interlocking table obtaining a setseti of assertions, and then
it returns the union of all these sets.

More details about the tool and its development can be
found in [2].

7 Experiments

We applied the developed signalling conditions generator to
the interlocking table (shown in Table 1) for Stenstrup station
in Denmark. In this way 52 conditions were generated. Ta-
ble 2 shows for each signalling principle stated in Section 6,
the number of conditions generated from the interlocking ta-
ble.

We also applied other conditions generators from our tool
set to generate 152 other desired properties from the station
documentation. Furthermore, we applied yet other generator
tools from our tool set to generate a state transition system

model for the behaviour of the implemented relay interlock-
ing system (described by 18 circuit diagrams) and its envi-
ronment (allowing operator input and an arbitrary number of
trains driving according to the traffic rules). This state transi-
tion system model had 71 Boolean variables (i.e. 271 states)
and 141 transition rules.

We then used the SAL symbolic model checker [1] to ver-
ify that the generated model satisfied the 204 generated con-
ditions. All conditions turned out to be valid. The SAL sym-
bolic model checker is a BDD-based model checker for finite
state systems.

Details on the elapsed execution time for checking the 52
signalling conditions (generated from the interlocking table)
and the 152 other conditions can be found in Table 3. Each
class of conditions were verified separately and without util-
ising intermediate results among queries. The elapsed time
was measured with the LinuxMint12time command on a
Lenovo T420.

According to the signalling engineers it would last about
a month to validate the circuit diagrams for Stenstrup station
by their traditional manual inspection, and they would only
check a small part of our 204 conditions. So it is really much
faster to use our tools.

We also tried to introduce some design flaws in the relay
circuits to demonstrate that these can be found by using our
tools. E.g. we introduced flaws such that a signal could reach
a state where both the red light and the green light were turned
on at the same time. In this case the model checker detected
that the signal aspect condition in formula (3) was broken for
that signal.

Furthermore, we made some validation of the model. For
instance, we model checked that the behavioural model al-
lows trains to move through the network.

The safety conditions all take the formG(a ⇒ b). If for
such a condition,a is always false, the condition is trivially
true. For a given condition and model, one can check that
this is not the case by checking thatG(¬a) is violated. If it
turns out thata is always false, it can be an indication that
there may an error in the model or that the conditiona has
been formulated wrongly. By making such checks, we actu-
ally found a flaw in an earlier formulation of the left-hand
side condition of Principle 7.

8 Conclusions

Summary.This paper has described a tool component of a
tool set that supports formal verification of relay interlocking
systems.

Given the interlocking table of a relay interlocking sys-
tem, the tool can automatically generate formal safety re-
quirements for the implementation of the relay interlocking
system. The requirements express that the signalling rules
are followed. Other tool components of the tool set can be
used to generate a formal model of an interlocking system
and its environment. Having generated the requirements and
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signalling principle number of generated conditions
1 (no locking of conflicting routes) 8
2 (points set correctly while locked) 4
3 (not read and green signal) 6
4 (red signal when not green) 6
5 (only green signal when allowed) 6
6 (red signal when required) 8
7 (keep red signal until release) 6
8 (only allowed train route release) 8
total 52

Table 2.For each signalling principle stated in Section 6, the number of signalling conditions generated from the interlockingtable for Stenstrup station.

kind of conditions number of generated conditionsexecution time
signalling 52 409
no collisions, no derailments 12 20
circuit confidence 102 5139
model consistency 38 20

Table 3.For each of the four classes of conditions introduced in Section 1: (1) the number of conditions generated from the documentation of Stenstrup station
and (2) elapsed execution time in seconds for checking theseconditions.

the model, a model checker can be used to verify that these
requirements always hold for the formal model.

To use such an automated, formal verification approach is
a great improvement compared to manual inspections of in-
terlocking tables, track layout diagrams and circuit diagrams:
It is much faster and less error prone, it is much more com-
plete with right to what is being checked, and the checking
it-self is exhaustive considering all possible scenarios.The
approach has successfully been applied to the relay interlock-
ing system for Stenstrup station.

Although the signalling conditions generator tool has been
developed for a certain type of interlocking systems (the re-
lay based DSB type 1954), it is expected that it can easily
be adapted to other DSB types of interlocking systems that
are based on similar interlocking tables, as the safety condi-
tions for these systems are basically the same. With respectto
the input of the generator (i.e. the interlocking tables), there
may be small variations in the concrete syntax, but at least
for the Danish systems, the content is basically the same. For
other systems there may, apart from variations in the concrete
syntax of the tables, also be minor variations in the signalling
principles and therefore in the actual content of the tables. For
instance, if the signalling principle for releasing a trainroute
does not require the same release sequence of track sections
as in the Danish systems, the release conditions in the tables
will be different and the same holds for the formal release
conditions that should be generated. In such a case the gener-
ator tool should be changed accordingly.

Future work. The current tool set has been used for a proof-
of-concept. To be used in industry, further development needs
to be done, e.g. a better user interface should be provided.

We plan to apply the tools to larger stations to test to
which extent the method is scalable without state space ex-
plosion problems. Experience by other research groups shows

that the use of standard model checking techniques for veri-
fying similar systems is only feasible for small railway sta-
tions. For instance, in [12] a systematic study of applica-
bility bounds of the symbolic model-checker NuSMV and
the explicit model checker SPIN showed that these popular
model checkers could only verify small railway stations. So
it is likely that the application of our method to larger sta-
tions would also lead to state space explosion. If this happens,
more advanced verification techniques must be investigated.
Our safety conditions are independent of the model checking
technique so the conditions generator tool described in this
paper can be used in connection with more advanced model
checking techniques. Several domain-specific techniques to
push the applicability bounds for model checking interlock-
ing systems have been suggested. For instance, one could
combine bounded model checking with inductive reasoning,
as done in [16]. In [23] Winter pushes the applicability bounds
of symbolic model checking (NuSMV) by optimising the or-
dering strategies for variables and transitions using domain
knowledge about the track layout. In [19], it is suggested to
reduce the state space using several abstraction techniques:
reduction of the number of track sections and the number of
trains, and compositional reasoning by decomposition of the
railway network into several smaller networks.

We also plan to make a similar tool set for the new ERTMS
based signalling systems that are going to be implemented in
Denmark over the next decade.
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