12 research outputs found

    Fast Approximation of Distance Between Elastic Curves using Kernels

    Get PDF
    Abstract Elastic shape analysis on non-linear Riemannian manifolds provides an efficient and elegant way for simultaneous comparison and registration of non-rigid shapes. In such formulation, shapes become points on some high dimensional shape space. A geodesic between two points corresponds to the optimal deformation needed to register one shape onto another. The length of the geodesic provides a proper metric for shape comparison. However, the computation of geodesics, and therefore the metric, is computationally very expensive as it involves a search over the space of all possible rotations and reparameterizations. This problem is even more important in shape retrieval scenarios where the query shape is compared to every element in the collection to search. In this paper, we propose a new procedure for metric approximation using the framework of kernel functions. We will demonstrate that this provides a fast approximation of the metric while preserving its invariance properties

    Elastic Shape Models for Face Analysis Using Curvilinear Coordinates

    Get PDF
    International audienceThis paper studies the problem of analyzing variability in shapes of facial surfaces using a Rie- mannian framework, a fundamental approach that allows for joint matchings, comparisons, and deformations of faces under a chosen metric. The starting point is to impose a curvilinear coordinate system, named the Darcyan coordinate system, on facial surfaces; it is based on the level curves of the surface distance function measured from the tip of the nose. Each facial surface is now represented as an indexed collection of these level curves. The task of finding optimal deformations, or geodesic paths, between facial surfaces reduces to that of finding geodesics between level curves, which is accomplished using the theory of elastic shape analy- sis of 3D curves. Elastic framework allows for nonlinear matching between curves and between points across curves. The resulting geodesics provide optimal elastic deformations between faces and an elastic metric for comparing facial shapes. We demonstrate this idea using examples from FSU face databas

    Radiologic image-based statistical shape analysis of brain tumors

    Get PDF
    We propose a curve-based Riemannian-geometric approach for general shape-based statistical analyses of tumors obtained from radiologic images. A key component of the framework is a suitable metric that (1) enables comparisons of tumor shapes, (2) provides tools for computing descriptive statistics and implementing principal component analysis on the space of tumor shapes, and (3) allows for a rich class of continuous deformations of a tumor shape. The utility of the framework is illustrated through specific statistical tasks on a dataset of radiologic images of patients diagnosed with glioblastoma multiforme, a malignant brain tumor with poor prognosis. In particular, our analysis discovers two patient clusters with very different survival, subtype and genomic characteristics. Furthermore, it is demonstrated that adding tumor shape information into survival models containing clinical and genomic variables results in a significant increase in predictive power

    Radiologic image-based statistical shape analysis of brain tumors

    Get PDF
    We propose a curve-based Riemannian-geometric approach for general shape-based statistical analyses of tumors obtained from radiologic images. A key component of the framework is a suitable metric that (1) enables comparisons of tumor shapes, (2) provides tools for computing descriptive statistics and implementing principal component analysis on the space of tumor shapes, and (3) allows for a rich class of continuous deformations of a tumor shape. The utility of the framework is illustrated through specific statistical tasks on a dataset of radiologic images of patients diagnosed with glioblastoma multiforme, a malignant brain tumor with poor prognosis. In particular, our analysis discovers two patient clusters with very different survival, subtype and genomic characteristics. Furthermore, it is demonstrated that adding tumor shape information into survival models containing clinical and genomic variables results in a significant increase in predictive power

    Geodesics Between 3D Closed Curves Using Path-Straightening

    No full text
    Abstract. In order to analyze shapes of continuous curves in R3, we parameterize them by arc-length and represent them as curves on a unit two-sphere. We identify the subset denoting the closed curves, and study its differential geometry. To compute geodesics between any two such curves, we connect them with an arbitrary path, and then iteratively straighten this path using the gradient of an energy associated with this path. The limiting path of this path-straightening approach is a geodesic. Next, we consider the shape space of these curves by removing shape-preserving transformations such as rotation and re-parametrization. To construct a geodesic in this shape space, we construct the shortest geodesic between the all possible transformations of the two end shapes; this is accomplished using an iterative procedure. We provide step-by-step de-scriptions of all the procedures, and demonstrate them with simple ex-amples.

    Activity Representation from Video Using Statistical Models on Shape Manifolds

    Get PDF
    Activity recognition from video data is a key computer vision problem with applications in surveillance, elderly care, etc. This problem is associated with modeling a representative shape which contains significant information about the underlying activity. In this dissertation, we represent several approaches for view-invariant activity recognition via modeling shapes on various shape spaces and Riemannian manifolds. The first two parts of this dissertation deal with activity modeling and recognition using tracks of landmark feature points. The motion trajectories of points extracted from objects involved in the activity are used to build deformation shape models for each activity, and these models are used for classification and detection of unusual activities. In the first part of the dissertation, these models are represented by the recovered 3D deformation basis shapes corresponding to the activity using a non-rigid structure from motion formulation. We use a theory for estimating the amount of deformation for these models from the visual data. We study the special case of ground plane activities in detail because of its importance in video surveillance applications. In the second part of the dissertation, we propose to model the activity by learning an affine invariant deformation subspace representation that captures the space of possible body poses associated with the activity. These subspaces can be viewed as points on a Grassmann manifold. We propose several statistical classification models on Grassmann manifold that capture the statistical variations of the shape data while following the intrinsic Riemannian geometry of these manifolds. The last part of this dissertation addresses the problem of recognizing human gestures from silhouette images. We represent a human gesture as a temporal sequence of human poses, each characterized by a contour of the associated human silhouette. The shape of a contour is viewed as a point on the shape space of closed curves and, hence, each gesture is characterized and modeled as a trajectory on this shape space. We utilize the Riemannian geometry of this space to propose a template-based and a graphical-based approaches for modeling these trajectories. The two models are designed in such a way to account for the different invariance requirements in gesture recognition, and also capture the statistical variations associated with the contour data
    corecore