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Abstract This paper studies the problem of analyzing variability in shapes of facial surfaces using a Rie-
mannian framework, a fundamental approach that allows for joint matchings, comparisons, and deformations
of faces under a chosen metric. The starting point is to impose a curvilinear coordinate system, named the
Darcyan coordinate system, on facial surfaces; it is based on the level curves of the surface distance function
measured from the tip of the nose. Each facial surface is now represented as an indexed collection of these
level curves. The task of finding optimal deformations, or geodesic paths, between facial surfaces reduces to
that of finding geodesics between level curves, which is accomplished using the theory of elastic shape analy-
sis of 3D curves. Elastic framework allows for nonlinear matching between curves and between points across
curves. The resulting geodesics provide optimal elastic deformations between faces and an elastic metric for
comparing facial shapes. We demonstrate this idea using examples from FSU face database.

1 Introduction

There is an increasing interest in analyzing shapes of facial surfaces with many applications including bio-
metrics, facial surgery, video communications, and 3D animation. This interest is fuelled by the advent of
cheaper and lighter scanners that can provide high-resolution measurements of both geometry and texture of
human facial surfaces. One general goal here is to develop computational tools for analyzing 3D face data. In
particular, one is interested in comparing the shapes of facial surfaces. Such a tool can be used to recognize
human beings according to their facial shapes, to measure changes in a facial shape due to a surgery, or to
study/capture the variations in facial shapes during conversations and expressions of emotions. Additionally,
a subproblem may be to find an optimal deformation of one surface into another, under some chosen crite-
rion. These deformations can be useful in defining summary statistics of a collection of faces. For example,
one can compute an average of faces of different people, under different facial expressions. Efficient tools for
understanding and studying variability in facial shapes are of great importance in our biometric-oriented
society. Accordingly, the main theme of this paper is to develop a computational framework for analyzing

shapes of facial surfaces.

1.1 Major Issues in Surface Analysis

What are the difficulties in performing standard shape analysis on the face data? The main issue is that
there is no canonical coordinate system to represent and study the geometry of a nonlinear surface, such as
a face. To highlight this issue, contrast the geometry of a surface with that of a curve. The points along a
curve have a fixed ordering which allows us to impose a coordinate system for studying shapes of curves.
Although the parametrization for a curve may not be unique, the task of analyzing shapes of curves modulo
all possible parameterizations is still tractable. More specifically, the space of all possible parameterizations
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of a curve is the set of all one-dimensional diffeomorphisms, and there exist efficient algorithms (such as the
dynamic programming algorithm) for optimally matching curves over all parameterizations. For surfaces,
there is no natural ordering of points and, thus, no natural way of parameterizing them. Thus, the goal of
analyzing shapes of surfaces, modulo all possible re-parameterizations, becomes quite difficult and leads to
enormous computational challenges.

1.2 Past Work

Past literature has tackled this fundamental issue with a varying degree of success, depending on the ultimate
application. If we divide the main tasks in facial shape analysis into representing, matching, comparing,
and deforming, several past papers that have addressed these individual tasks.

1. Surface Representations & Feature Comparisons: For comparing faces, a common theme in this
literature has been to represent facial surfaces by certain geometrical features, such as the height function
[16], convex regions, areas with high curvatures [15], saddle points, etc. These methods provide reasonable
results in classification and clustering of faces, but they do not study deformations nor develop statis-
tical analysis of shapes. Additionally, although some of these features are intuitively meaningful, their
computations, e.g. those involving second derivatives, may be susceptible to observation noise. Other
approaches, such as those based on shape distribution [33] and conformal geometry [40], have also been
proposed for matching surfaces. Beumier and Acheroy [2] have used shapes of facial profiles to compare
faces.
Another commonly used approach, that relates to our paper, is to define smooth functions, more specifi-
cally Morse functions, on surfaces and to use the level curves of these functions for defining coordinates on
surfaces. Samir et al. [34] used the level curves of the height function to define and study shapes of facial
curves. Bronstein et al. [4] used the geodesic distances on facial surfaces to perform surface matching and
comparisons. This distance has also been used by many other authors, including Gupta [14] and Samir
et al. [36], etc. Mpiperis et al. [32] have used this representation to match features across faces.

2. Matching Facial Surfaces: There are two types of matching algorithms: rigid and non-rigid. Rigid
surface matching, often viewed as a matching of two point clouds in R

3, is performed using the Iterative
Closest Point (ICP) algorithm (see for example [1]) or its modifications. For non-rigid matching, several
ideas have been proposed. Lu et al. [26,27] have used thin plate splines to perform non-rigid matching
of faces. Chui and Rangarajan [8] have presented a robust algorithm for non-rigid deformation and
registration of point sets. Chang et al. [6] have suggested restricting to some prominent parts of faces,
such as the nose region, for performing the matching. One idea that is often used in medical image
analysis is the use of mutual information to register points across high-dimensional images. This idea has
been applied to matching of facial surfaces by Wang et al. [41]. However, this approach is often applied
to matching using statistics of pixel values in images rather than geometric properties of a surface.
Bronstein et al. [3] study the problem of matching points across surfaces in an isometric manner. Here
the task of matching surfaces has been accomplished by minimizing the Gromov-Hausdorff distance
using multidimensional scaling [28]. A Riemannian analysis of facial surfaces developed here is different
from Bonstein et al. in that the matching and deformation energies are based on lengths of geodesic
paths (under the chosen Riemannian metric) and not a global distance like Gromov-Hausdorff. For shape
analysis of planar shapes using Hausdorff distances, Charpiat et al. [7] have presented a Riemannian
framework, but such a connection for surfaces remains to be presented.

3. Deforming Facial Surfaces: In recent years there has been focus on deforming surfaces, one into an-
other, under a chosen criterion. Grenander’s deformable template theory [11] has been successfully applied
to studying shapes of anatomical parts using medical images [30,12]. The set of non-rigid deformations
can be subdivided into linear and nonlinear deformations. Nonlinear deformations imply local stretching,
compression, and bending of surfaces to match each other, and are also referred to as elastic defor-
mations. Earlier attempts at elastic matching utilized graphs based on texture images of faces [42,24].
Kakadiaris et al. [19] utilize an annotated face model to study geometrical variability across faces. Glaunes
et al. [9] have studied diffeomorphic matching of points sets in two and three-dimensions. Litke et al. [25]
take an interesting approach by representing surfaces as 2D images, using arbitrary parameterizations,
and matching of surfaces is accomplished by matching the corresponding 2D image coordinates. The
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cost function for matching includes distortions introduced due to parameterizations, deformations, and
features mismatch. A recent paper by Kilian et al. [21] describes a numerical approach to computing
geodesic paths between registered triangulated surfaces using Euclidean metrics; the invariance of this
approach to arbitrary parameterizations of surfaces was not discussed.

1.3 Our Approach

We present a unified Riemannian framework that provides optimal matching, comparisons and deformations
of faces using a single elastic metric. The following items highlight the contribution of this paper.

1. Darcyan Curvilinear Coordinate System: Rather than allowing arbitrary parameterizations of facial
surfaces, as in [25], we choose a specific coordinate system that is natural for analyzing shapes of facial
surfaces. We use the geodesic distance function from a fixed reference point to define this system. Being
intrinsic to the surface, it is invariant to rigid motions (rotations and translations). The fact that it
deforms with the changes in facial expressions provides a possibility of countering variability in facial
shapes induced by changes in facial expressions, as noted by several earlier papers [4,14]. We will denote
the coordinate system by Ξ and points in Ξ by ξ. The level sets of coordinates ξ1 or ξ2 are curves

that vary in shapes from face to face. This fact is exploited in this paper to characterize shapes of facial
surfaces. Such a curvilinear coordinate system has been proposed earlier for use in medical image analysis
by Grenander et al. [13] who referred to it as the Darcyan coordinate system, after the famous shape
analyst D’Arcy Thompson.

2. Elastic Matching: An important requirement of a face analysis system is the non-rigid or elastic match-
ing of points across faces. We claim that the task of elastic matching becomes relatively simpler in a
Darcyan coordinate system. Let Ξ be the Darcyan coordinate system associated with one face and Ξ ′

with another. The main task in shape matching is to find a mapping φ : Ξ 7→ Ξ ′ that is a diffeomorphism
(smooth and invertible, with a smooth inverse). If φs are considered random, then shapes should be
compared by integrating over all possible φs.

d(S1, S2) =

∫
φ

dκ(κ1(ξ), κ2(φ(ξ)))P (φ)dφ ,

where
– κ is some geometric descriptor being used to compare the surfaces,
– dκ is an appropriate distance on the space of that descriptor, and
– P (φ) is the probability density on φ.

However, in practice one uses an optimal φ under a pre-determined criterion, to match shapes. This
requires solving an optimization problem over the set of all mapping φs.

d(S1, S2) ≈ dκ(κ1(ξ), κ2(φ∗(ξ))), where φ∗ = argmin
φ

dκ(κ1(ξ), κ2(φ(ξ))) .

The advantage of a Darcyan coordinate system is that the search for this optimal φ can be constrained
further. While in past papers, e.g. Litke et al. [25], surface matching has been studied as a full 2D
matching problem, in our approach it is restricted to two 1D matching problems. Here, the mapping
φ(ξ1, ξ2) decomposes into the form φ1(ξ1)φ2(ξ2; ξ1). The first function φ1 simply matches the level curves
of ξ1 on S1 with the level curves of ξ′1 on S2. Then, the second function φ2 matches points across the curves
previously matched using φ1. This function (φ2) can be different for different values of ξ1 and, hence, our
notation shows an explicit dependence of φ2 on ξ1. The search for optimal φ1 and φ2 is performed using
the same elastic energy function and the computational implementation is based on multiple uses of the
dynamic programming algorithm.

3. Optimal Deformation: The process of matching points and curves across faces also results in the
optimal elastic deformation between faces. As a basic unit for this deformation, we obtain geodesic paths
between corresponding (matched) curves from one face to the other; these paths provide optimal elastic
deformations between those curves. Each face is represented as an indexed collection of curves and, thus, a
composition of these individual geodesics provides a global geodesic (and an optimal elastic deformation)
between the two faces. A major advantage of a Riemannian framework is that it provides geodesic paths,



4 A. Srivastava et al.

between faces, that are necessary for a full statistical analysis. This is often not feasible in case of global
distance based matching algorithms, e.g. in case of Gromov-Hausdorff distance [3].

The main differences between this paper and our earlier papers are as follows:

1. In Samir et al. [35] and [34], we used the level curves of the height function to define facial curves.
Since these curves are planar, we used shape analysis of planar curves [23] to compare and deform faces;
nonlinear matching problem was not studied here (that is, the mapping was fixed to be linear). The
metric used was a non-elastic metric and the shooting method was used for computing geodesics between
planar curves. Consequently, this representation is not fully invariant to rigid motions of the face.

2. In Samir et al. [36], we used the level curves of the geodesic distance function that resulted in 3D curves.
We used a non-elastic metric and a path-straightening method to compute geodesics between these curves
[22]. Here also, the matching was not studied and the correspondence of curves and points across faces
was simply linear.

3. In the current paper, we extend the earlier Riemannian framework to be fully elastic by defining a formal
coordinate system on facial surfaces and using that to solve the matching, deformation, and comparison
problems. Two types of elastic matchings are developed – one for matching the curves and one for
matching points on the curves. Curves are represented using a square-root velocity function that has
recently been introduced for studying shapes of elastic curves [18,17].

The rest of this paper is organized as follows. We introduce the Darcyan coordinate system (ξ1, ξ2) on
facial surfaces in Section 2. In Section 3, we summarize ideas from [18] on elastic matching of points on
closed curves in R

3 and the resulting deformations of level curves of ξ1, while in Section 4, we use ideas
from dynamic programming to match curves on facial surfaces and to deform facial surfaces. In Section 5,
we present some examples on elastic deformation facial surfaces and some their use for applications in face
classification. We finish the paper with a summary in Section 6.

2 Curvilinear Coordinate System

The starting point of our framework is to define an intrinsic coordinate system on each facial surface that
is natural for studying shape variability. This system is used to decompose elastic matching/deformation of
facial surfaces into simpler, more elementary components. In this system the level curves are neither straight
lines nor circles; these are curves that lie completely on the surface and locally match the geometry of the
surface. Let S be a facial surface assumed to be a two-dimensional differentiable manifold that contains
its boundaries. This is obtained in practice by filling the holes in the data obtained from 3D scanners,
and by smoothly interpolating the resulting mesh to proper dimensionality of all patches on the surface.
Furthermore, S is endowed with a Riemannian structure using the Euclidean metric in R

2, the tangent space
at any interior point of S. Let r ∈ S denote the tip of the nose on S.

Proposition 1 For any point p, there exists a shortest geodesic, connecting r and p, that lies completely in

S. The shortest geodesic may not be unique, but there exists at least one.

The proof comes from the fact that S is a finite-dimensional, complete, and differentiable manifold. Based
on this proposition, one can define a smooth function on S using geodesic distances as follows:

Definition 1 For any point p ∈ S, define a function f : S 7→ R such that f(p) is the length of the shortest

geodesic from r to p.

Since there exists a shortest geodesic from r to p, for all p, the function f is well defined. Also, since S is a
differentiable manifold, the function f is a continuous function.

Remark: We caution the reader that this use of geodesic on facial surfaces is different from the later con-
struction of geodesic paths between two curves or two surfaces under appropriate Riemannian metrics. Here,
we compute geodesics on S, a two-dimensional manifold with boundaries, to define f , while later on we
will compute geodesics on infinite-dimensional spaces of curves and surfaces to realize optimal deformations
between their elements.
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Fig. 1 Top row: Level curves of ξ1 and middle row: level curves of ξ2 for three different facial surfaces. Bottom row:
full Darcyan coordinate system on some faces.

Define a coordinate system on S using f as follows. Define the level curves of f as the level curves of
the first coordinate ξ1, the value of ξ1 being equal to the value of f . Shown in the top row of Figure 1 are
examples of these curves for three different faces. Next, use the streamlines of ∇f , starting from r, as the
level curves of the second coordinate ξ2. The value of ξ2 along such curves will be dependent on the initial
directions of these streamlines. Shown in the second row of Figure 1 are examples of these curves. Together,
these two coordinates provide a well-defined, orthogonal coordinate system.

Lemma 1 For a given smooth surface S, the Darcyan coordinate system is well defined for all of S. It has

the property that the level curves of the two coordinates intersect at right angles.

Following Grenander et al. [13], we will call it the Darcyan coordinate system, named after the famous shape
analyst D’Arcy Thompson.

Note that one can also develop this system by forming a polar coordinate system on the tangent space,
Tr(S) ≡ R

2, and by projecting level curves (circles and radial lines) onto S using the exponential maps (or
geodesics along S) [5]. For this reason, these level curves of ξ1 have also being called geodesic (polar) circles.
Bronstein et al. [4] used largest geodesic circles to prune facial surfaces using multiple reference points; in
that context, these circles were called geodesic masks. Some authors, e.g. [32], have used this system for
matching features across faces but we are interested in a full shape analysis, that is, matching, deformation
and comparisons of faces.
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3 Elastic Matching/Deformation of Darcyan Level Curves

Once the Darcyan coordinate system is established, the task of elastically matching two surfaces is that of
finding a mapping φ : S1 7→ S2 that is optimal under the elastic metric. In our approach, φ can be decomposed
into simpler components. There are two ways of decomposing φ(ξ1, ξ2): (i) into φ1(ξ1)φ2(ξ2; ξ1) and (ii) into
φ2(ξ2)φ1(ξ1; ξ2). In the former decomposition, we first match the level curves of ξ1, to find φ1, and then for
each pair of matched curves we find φ2. This procedure is reversed for the latter decomposition. Similar to
[36], we choose the former in this paper since the level curves of ξ1 are more interesting and visually more
appealing for shape analysis. We remark that the level curves of ξ2 form facial profiles, similar to the idea
used in [2] for face profiling.

We start by describing the estimation of φ2. Let C1
ξ1

and C2
ξ′

1

be two arbitrary level curves of the first

coordinate in facial surfaces S1 and S2, respectively. Our goal is to find a mapping φ2 : ξ2 7→ ξ′2 that is a
diffeomorphism and it minimizes the elastic distance (to be defined) between the two curves. We treat the
two curves as closed, parameterized curves in R

3 with fixed origins for parameterizations. Furthermore, we
rescale them to be of the same length, say 2π. This viewpoint allows us to use one of many methods already
available for an elastic analysis of closed curves. The key idea in elastic analysis is that the mapping φ2 is
nonlinear, i.e. points that are matched together are at unequal distances from their origins. Such a matching
can be considered as an elastic matching, as one curve has to (locally) stretch, compress and bend to match
the other. Several authors, starting with Younes [44], followed by Michor & Mumford [29], Mio et al. [31],
and others have studied it for planar shapes. More recently Joshi et al. [18,17] have extended it to curves in
R

n using an efficient representation of curves. Several authors, including Yezzi & Mennucci [43], have also
used Riemannian metrics on spaces of curves but mainly to study evolution of curves rather than for shape
analysis. Here we adopt the approach presented in Joshi et al. [18,17] because it greatly simplifies the elastic
shape analysis. The main steps are: (i) define a space of closed curves of interest, (ii) impose a Riemannian
structure on it using the elastic metric, and (iii) compute geodesic paths under this metric. These geodesic
paths can then be interpreted as optimal elastic deformations of curves.

For the interval I ≡ [0, 2π], let β : I → R
3 be a parameterized curve with a non-vanishing derivative

everywhere. We represent its shape by the function q : I → R
3 defined as: q(s) = β̇(s)√

‖β̇(s)‖
∈ R

3. Here, ‖ · ‖
is the standard Euclidean norm in R

3. The quantity ‖q(s)‖ is the square-root of the instantaneous speed on

the curve β, whereas the ratio q(s)
‖q(s)‖ is the instantaneous direction at the point s ∈ [0, 2π) along the curve.

Let Q ≡ {q = (q1, q2, q3)|q(s) : I → R
3, ‖q(s)‖ 6= 0,∀s} be the space of all square integrable functions in R

3.
The closure condition for a curve β requires that

∫
I
β̇(s)ds = 0, which translates to

∫
I
‖q(s)‖q(s) ds = 0. We

define a mapping G : Q 7→ R
4, with components:

G1 =

∫
I

q1(s) ‖q(s)‖ds, G2 =

∫
I

q2(s) ‖q(s)‖ds, G3 =

∫
I

q3(s) ‖q(s)‖ds, G4 =

∫
I

‖q(s)‖2ds .

The space obtained by the inverse image C = G−1(0, 0, 0, 2π) is the space of all closed curves of length 2π,
and this representation is invariant to translation and scaling. C is endowed with a Riemannian structure
using the metric: for any two tangent vectors v1, v2 ∈ Tq(C), we define

〈v1, v2〉 =

∫
I

v1(s)
T v2(s)ds . (1)

It is shown in [18] that this metric is equivalent to the elastic metric described in [31].
Next, we want a tool to compute geodesic paths between arbitrary elements of C. There have been two

prominent numerical approaches for computing geodesic paths on nonlinear manifolds. One approach uses
the shooting method ([23,31]) where, given a pair of shapes, one finds a tangent direction at the first
shape such that its image under the exponential map reaches as close to the second shape as possible. We
will use another, more stable approach that uses path-straightening flows to find a geodesic between two
shapes. In this approach, the given pair of shapes is connected by an initial arbitrary path that is iteratively
“straightened” so as to minimize its length. The path-straightening method, proposed by Klassen et al [22],
overcomes some of the practical limitations in the shooting method. Other authors, including Schmidt et
al. [37] and Glaunes et al [10], have also presented other variational techniques for finding optimal matches.
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Fig. 2 Elastic matching of facial curves. The top and the middle rows show two different views of the matching
points across the curves, while the bottom panels show optimal matching functions φ∗

2.

Given two curves, represented by q0 and q1, our goal is to find a geodesic between them in C. Let α : [0, 1] → C
be any path connecting q0, q1 in C, i.e. α(0) = q0 and α(1) = q1. Then, the critical points of the energy

E[α] =
1

2

∫ 1

0

〈α̇(t), α̇(t)〉 dt , (2)

with the inner product defined in Eqn. 1, are geodesics in C (this result is true on a general manifold [39]).
As described by Klassen et al. [22] (for general shape manifolds), and Joshi et al. [18] (for this particular
representation of curves), one can use a gradient approach to find a critical point of E and reach a geodesic.
The distance between the two curves q0 and q1 is given by the length of the geodesic α:

dc(q
0, q1) =

∫ 1

0

(〈α′(t), α′(t)〉)1/2dt .

We will call this the elastic distance between the curves represented by q0 and q1.
Similar to Kendall’s shape formulation [20], we define shapes of curves as invariant under rigid motions,

uniform scaling and other such “shape-preserving” transformations. Since translation, scaling, and location
of origin are already accounted for, we need to remove the variability associated with rotations and origin-
preserving (positive) diffeomorphisms on I. In other words, the shape space for analyzing shapes of closed
curves in R

3 is given by S = C/(SO(3) × D), where SO(3) is the three-dimensional rotation group and D
is the set of origin-preserving positive diffeomorphisms on I. The task of finding a geodesic in S is that of
finding a geodesic in C that achieves the distance:

ds(q1, q2) = min
γ∈D,O∈SO(3)

dc(q1, γ · (Oq2)) , (3)

where γ · q2 is the re-parametrization of q2 according to the formula:
√

γ̇q2(γ). As described in [17], one can
solve for this minimization on D × SO(3) using a gradient approach; please refer to that paper for details.
We will illustrate these ideas using some examples. Some examples of elastic matching of corresponding
points across facial curves is shown in Figure 2; it shows three examples of matching pairs of facial curves
and the corresponding optimal matching functions φ∗

2. The optimal γ, that minimizes the right side of Eqn.
3, provides the component φ∗

2 of the optimal mapping φ∗. Figure 3 illustrates the idea of optimal elastic
deformations between facial curves. It shows the geodesic paths between facial curves in S under the elastic
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Fig. 3 Examples of optimal elastic deformations between facial curves extracted as level curves of ξ1.

metric. In each case, the first and the last curve are the examples of facial curves and the intermediate curves
are points along a geodesic path connecting them in S.

4 Elastic Matching of Curves Across Facial Surfaces

Now that we have tools for elastically deforming arbitrary facial curves into each other, we consider the
problem of matching curves across two faces. Each facial surface is denoted by an indexed collection of facial
curves, Si ≡ {Ci

ξ1
|ξ1 ∈ [0, L]}, i = 1, 2. (We remind the reader that Ci

ξ1
is the level curve of first Darcyan

coordinate at the value ξ1 for the facial surface Si, i = 1, 2.) Our goal is to find φ1 that optimally matches
curves across these collections. We initially formulate the problem in the continuum, but will later discretize
the domain to reach a computational solution. Let φ1 : [0, L] 7→ [0, L] be a diffeomorphic mapping that
minimizes the cost function:

Es[φ1; 0, L] =

∫ L

0

ds(C
1
ξ1

, C2
φ1(ξ1)

)2dξ1 , (4)

where ds is as described in Eqn. 3. The solution requires a search over the infinite-dimensional space of all
diffeomorphisms from [0, L] to itself. There exists a computational approach to solving this type of problem
in situations where the domain and the range of φ1 are sampled evenly using a finite number of points.
Termed as dynamic time warping, this technique has been used for matching points on curves by several
authors, include Sebastian et al. [38] and Mio et al. [31]. For notational convenience we will rescale ξ1 so
that it takes values in [0, 1], and we seek an optimal φ1 on D[0,1], the set of all diffeomorphisms from [0, 1]
to itself.

Let each facial surface be sampled evenly in ξ1 at n points to give an indexed collection of n curves,
each an element in C. This results in an n × n graph, of the type shown in Figure 4, whose nodes denote
possible matchings of corresponding curves from the two surfaces. The goal is now to find a piecewise linear
φ1 ∈ D[0,1], i.e. a curve that passes through the nodes on the graph, that minimizes the energy function given
in Eqn. 4, and we do so using dynamic programming (DP). DP is useful in finding optimal paths between
any two points on a finite graph when the cost associated with the path is additive over its segments. The
piecewise-linear path between the points (0, 0) to (1, 1) is constrained to be such that: (i) the slope is always
positive along the path, and (ii) it minimizes the elastic energy. To evaluate the elastic energy we will need
the term ds(C

1
(i/n), C

2
(j/n)) for all i, j, as described in the previous section.

Consider a uniform, n × n grid in R
2 such that the bottom left maps to (0, 0) and the top right maps

to indices (1, 1) on this grid, as shown in Figure 4. For any point (i/n, j/n), for 0 < i, j ≤ n, let Nij be the
set of indices that are allowed to go to (i/n, j/n). In principle, all the points (k/n, l/n) such that k < i and
l < j are valid, but one may restrict to a smaller set to seek a faster approximation. Let L(k, l; i, j) denote
a straight line joining the pairs (k/n, l/n) and (i/n, j/n). Then, the iterative optimization problem is:

(k̂, l̂) = argmin
(k,l)∈Nij

Es[L(k, l; i, j); k/n, i/n] , (5)

with Es as defined in Eqn. 4. Define the minimum energy of reaching the point (i/n, j/n), in an iterative
fashion as:

Hs(i/n, j/n) = Es[L(k̂, l̂; i, j), k̂/n, i/n] + Hs(k̂/n, l̂/n) , with H(0, 0) = 0 .
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Fig. 4 Left: An example of a φ1 function restricted to a finite graph. Right: An illustration of some nodes that are
allowed to go to (i/n, j/n) point on the graph.
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Fig. 5 The left two panels show a sub-sampled set of matched curves– 10 with 11,20 with 21, etc – across the two
collections representing S1 and S2. The rightmost panel shows the optimal matching function φ∗

1 between the two
collections.

The optimization problem in Eqn. 5 is solved sequentially for each point (i/n, j/n), starting from (0, 0) and
increasing i/n, j/n until the last point (1, 1). Tracing the path that results in the optimal elastic energy
Hs(1, 1) provides a discrete version of the optimal φ1. The set of nodes on the graph, contained in optimal φ1,
provide the matching pairs in the two collections. Shown in Figure 5 is an example of this idea for n = 70.
The rightmost panel shows a pictorial view of the function H with darker shade corresponding to lower
energy. Overlaid on this picture is the plot of optimal φ1 for this case. Shown in the left two panels are the
corresponding pairs of curves in the two faces. Only the matching curves, associated with the nodes that lie
on optimal φ1, are shown for clarity. According to this figure, the 10th curve in the first surface matches the
11th curve in the second, the 50th curve in the first surface matches the 51st curve in the second, and so on.

5 Elastic Deformation of Facial Surfaces

The previous two sections provide the solutions for solving optimal mappings φ∗
2 (Section 3) and φ∗

1 (Section
4). Together they provide an elastic matching of points across the two facial surfaces according to φ∗(ξ1, ξ2) =
φ∗

1(ξ1)φ
∗
2(ξ2; ξ1).

The construction of geodesic paths between Darcyan curves in Section 3, using an elastic metric, allows
us to realize optimal deformations between surfaces. Applying this idea repeatedly to each pair of registered
curves gives us a full elastic deformation from one face to another. If we view each facial surface as an indexed
collection of curves, indexed by ξ1, this idea provides a path on the space of such collections, in going from
one face to another. We will denote this path by Ω, where Ω(t), for any t ∈ [0, 1] is an indexed collection of
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Fig. 6 Optimal deformations of facial surfaces into each other, both belonging to the same person, under the elastic
energy.

points in S. This path is optimal in the sense that it minimizes the total length:

d(S1, S2) ≡
∫ 1

0

ds(C
1
ξ1

, C2
φ∗

1
(ξ1)

)dξ1 . (6)

Shown in Figures 6 - 7 are examples of these deformations. Figure 6 shows four examples of deforming
facial surfaces, one into another, when both the faces belong to the same person. Similarly, Figure 7 shows
four examples of elastic deformations when the faces come from different persons.

Shown in Figure 8 is an example of comparison of deformations obtained under elastic and non-elastic
metrics. The top row shows an example of non-elastic, or bending-only, deformation as described in Samir
et al. [36], while the bottom row shows the elastic deformation introduced in this paper. Although the
differences between the two deformations are not apparent visually, a closer inspection reveals a smoother
deformation, especially around the lips, in the elastic case.

This solution also provides an elastic distance (Eqn. 6) between individual facial surfaces. To illustrate
the usefulness of this distance, we show a matrix of pairwise distances between 12 faces in Figure 9, six of
which belong to the same person while the remaining six belong to different persons. In this display, the
distances have been scaled to take value between 0 and 1. As expected, the distances between faces of same
person are much smaller compared to the distances between faces of different persons.

Since the Darcyan system relies critically on the location of the reference point (tip of the nose), and
there is a possibility of numerical error in estimating this point, how stable is the framework presented here
to such numerical errors? We have studied this issue experimentally and some results are presented in Figure
10. The left two panels show the level curves of ξ1 on the same facial surface when the reference point is



Elastic Shape Models for Face Analysis Using Curvilinear Coordinates 11

Fig. 7 Optimal deformations of a facial surface into another, belonging to a different person, under the elastic energy.

Fig. 8 Elastic versus non-elastic deformation. For the same pair of faces we show geodesic paths (deformations)
using the non-elastic metric (top, as described in Samir et al. [36]) and the elastic metric (bottom) used in this paper.
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Fig. 9 Matrix of (scaled) pairwise distances between 12 facial surfaces. The first six faces belong to the same person
while the remaining six are all different individuals.
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Fig. 10 Left two panels show level curves of Darcyan coordinate ξ1 when the location of reference point is changed
slightly. The panels shows the variation in shapes of level curves versus changes in locations of reference points, for
curves at four levels of ξ1.

located in a slightly different spot. The right plot shows the variation in shapes of levels curves, at four
different levels, versus changes in the location of the reference point. For example, one curve in this plot
shows the change in shapes of level curve 31, measured using the geodesic distance ds, when the reference
point is moved away from the actual tip of the nose. These variations are found to be sub-linear, implying
a stability of shape analysis with respect to reference point location.
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6 Summary

We have presented a Riemannian framework for analyzing shapes of facial surfaces for the purposes of
matching, comparing, and deforming them. This approach uses a Darcyan coordinate system, a system that
is intrinsic to a facial surface. This system is centered at the tip of the nose and its two coordinates ξ1 and ξ2

specify distances from this tip and the plane of symmetry, respectively. In this coordinate system, the task of
elastic matching and deforming is broken into two distinct components. One component matches level curves
of each surfaces, and the other component matches points along each pair of matched curves. These tasks
are performed using geodesics on appropriate manifolds of curves and surfaces, with Riemannian metrics
that measure elastic deformation. In other words, geodesics provide the optimal deformations of curves and
surfaces across faces.

Acknowledgements

The authors would like to thank CNRS, France, for a visiting Professorship to Anuj Srivastava, and Groupe
des Ecole de Telecommunications for its support. This research was also supported in part by the grants
ARO W911NF-04-1-0268, ARO W911NF-04-1-0113, and AFOSR FA9550-06-10324. We also thank the two
reviewers and the associate editor for their feedback in improving this paper.

References

1. P.J. Besl and N.D. McKay. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 14(2):239–256, February 1992.

2. C. Beumier and M. Acheroy. Automatic 3D face authentication. Journal of Image and Vision Computing,
18(4):315–321, 2000.

3. A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Efficient computation of isometry-invariant distances between
surfaces. SIAM Journal on Scientific Computing, 28(5):1812–1836, 2006.

4. A. M. Bronstein, M.M. Bronstein, and R. Kimmel. Three-dimensional face recognition. International Journal of
Computer Vision, 64(1):5–30, 2005.

5. M. P. Do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall, Inc., 1976.
6. K. I. Chang, K. W. Bowyer, and P. J. Flynn. Multiple nose region matching for 3D face recognition under varying

facial expression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1695–1700, 2006.
7. G. Charpiat, O. Faugeras, and R. Keriven. Approximations of shape metrics and application to shape warping

and empirical shape statistics. Journal of Foundations of Computational Mathematics, 5(1):1–58, 2005.
8. H. Chui and A. Rangarajan. A new algorithm for non-rigid point matching. In Proc. of IEEE Conferences on

CVPR, pages 44–51, 2000.
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