78 research outputs found

    Qualitative Based Comparison of Routing Protocols for VANET

    Get PDF
    Vehicular ad hoc network is one of the most promising applications of MANET that an inter communication system. In VANET nodes which are vehicles can move safety with high speed and generally must communicate quickly reliably. When an accident occurs in a road or highway, alarm messages must be disseminated, instead of ad hoc routed, to inform all other vehicles. Vehicular ad hoc network architecture and cellular technology to achieve intelligent communication and improve road traffic safety and efficiency .To organize their in vehicle computing system, vehicle to vehicle ad hoc networks, hybrid architecture with special properties such as high mobility, network portioning and constrained topology .there is a lot of research about VANET for driving services, traffic information services, user communication and information services. VANET can perform effective communication by utilizing routing information. Some researchers are contributed a lots in the area of VANET. In this articles mainly focusing on significant features, performance improvement in comparisons of routing protocol for vehicular ad hoc network (VANET). Keywords: VANET, Routing Protocol, PBR, CAR, CBR etc

    SURVEY STUDY FOR VEHICULAR AD HOC NETWORKS PERFORMANCE IN CITY AND URBAN RESIDENTIAL AREAS

    Get PDF
    This thesis it survey study for VANET (Vehicular Ad-Hoc Networks) and it performance in city and urban residential areas, when the the number of vehicles on roads is increasing annually, due to the higher amount of traffic, there are more accidents associated with road traffic complexity. VANET can be used to detect dangerous situations which are forwarded to the driver assistant system by monitoring the traffic status.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Traffic Road Congestion System using by the internet of vehicles (IoV)

    Full text link
    Traffic problems have increased in modern life due to a huge number of vehicles, big cities, and ignoring the traffic rules. Vehicular ad hoc network (VANET) has improved the traffic system in previous some and plays a vital role in the best traffic control system in big cities. But due to some limitations, it is not enough to control some problems in specific conditions. Now a day invention of new technologies of the Internet of Things (IoT) is used for collaboratively and efficiently performing tasks. This technology was also introduced in the transportation system which makes it an intelligent transportation system (ITS), this is called the Internet of vehicles (IOV). We will elaborate on traffic problems in the traditional system and elaborate on the benefits, enhancements, and reasons to better IOV by Systematic Literature Review (SLR). This technique will be implemented by targeting needed papers through many search phrases. A systematic literature review is used for 121 articles between 2014 and 2023. The IoV technologies and tools are required to create the IoV and resolve some traffic rules through SUMO (simulation of urban mobility) which is used for the design and simulation the road traffic. We have tried to contribute to the best model of the traffic control system. This paper will analysis two vehicular congestion control models in term of select the optimized and efficient model and elaborate on the reasons for efficiency by searching the solution SLR based questions. Due to some efficient features, we have suggested the IOV based on vehicular clouds. These efficient features make this model the best and most effective than the traditional model which is a great reason to enhance the network system.Comment: pages 16, figures

    An Overview of QoS Enhancements for Wireless Vehicular Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) allow vehicles to form a self-organized network without the need for permanent infrastructure. Even though VANETs are mobile ad hoc networks (MANETs), because of the intrinsic characteristics of VANETs, several protocols designed for MANETs cannot be directly applied for VANETs. With high number of nodes and mobility, ensuring the Quality of Service (QoS) in VANET is a challenging task. QoS is essential to improve the communication efficiency in vehicular networks. Thus a study of QoS in VANET is useful as a fundamental for constructing an effective vehicular network. In this paper, we present a timeline of the development of the existing protocols for VANETs that try to support QoS. Moreover, we classify and characterize the existing QoS protocols for VANETs in a layered perspective. The review helps in understanding the strengths and weaknesses of the existing QoS protocols and also throws light on open issues that remain to be addressed. Keywords: QoS, VANET, Inter-Vehicle Communications, MAC, Routin

    AN ADAPTIVE INFORMATION DISSEMINATION MODEL FOR VANET COMMUNICATION

    Get PDF
    Vehicular ad hoc networks (VANETs) have been envisioned to be useful in road safety and many commercial applications. The growing trend to provide communication among the vehicles on the road has provided the opportunities for developing a variety of applications for VANET. The unique characteristics of VANET bring about new research challenges

    Towards reliable geographic broadcasting in vehicular networks

    Get PDF
    In Vehicular ad hoc Networks (VANETs), safety-related messages are broadcasted amongst cars, helping to improve drivers' awareness of the road situation. VANETs’ reliability are highly affected by channel contention. This thesis first addresses the issue of channel use efficiency in geographical broadcasts (geocasts). Constant connectivity changes inside a VANET make the existing routing algorithms unsuitable. This thesis presents a geocast algorithm that uses a metric to estimate the ratio of useful to useless packet received. Simulations showed that this algorithm is more channel-efficient than the farthest-first strategy. It also exposes a parameter, allowing it to adapt to channel load. Second, this thesis presents a method of estimating channel load for providing feedback to moderate the offered load. A theoretical model showing the relationship between channel load and the idle time between transmissions is presented and used to estimate channel contention. Unsaturated stations on the network were shown to have small but observable effects on this relationship. In simulations, channel estimators based on this model show higher accuracy and faster convergence time than by observing packet collisions. These estimators are also less affected by unsaturated stations than by observing packet collisions. Third, this thesis couples the channel estimator to the geocast algorithm, producing a closed-loop load-reactive system that allows geocasts to adapt to instantaneous channel conditions. Simulations showed that this system is not only shown to be more efficient in channel use and be able to adapt to channel contention, but is also able to self-correct suboptimal retransmission decisions. Finally, this thesis demonstrates that all tested network simulators exhibit unexpected behaviours when simulating broadcasts. This thesis describes in depth the error in ns-3, leading to a set of workarounds that allows results from most versions of ns-3 to be interpreted correctly

    Coherent, automatic address resolution for vehicular ad hoc networks

    Get PDF
    Published in: Int. J. of Ad Hoc and Ubiquitous Computing, 2017 Vol.25, No.3, pp.163 - 179. DOI: 10.1504/IJAHUC.2017.10001935The interest in vehicular communications has increased notably. In this paper, the use of the address resolution (AR) procedures is studied for vehicular ad hoc networks (VANETs). We analyse the poor performance of AR transactions in such networks and we present a new proposal called coherent, automatic address resolution (CAAR). Our approach inhibits the use of AR transactions and instead increases the usefulness of routing signalling to automatically match the IP and MAC addresses. Through extensive simulations in realistic VANET scenarios using the Estinet simulator, we compare our proposal CAAR to classical AR and to another of our proposals that enhances AR for mobile wireless networks, called AR+. In addition, we present a performance evaluation of the behaviour of CAAR, AR and AR+ with unicast traffic of a reporting service for VANETs. Results show that CAAR outperforms the other two solutions in terms of packet losses and furthermore, it does not introduce additional overhead.Postprint (published version

    Communications in Vehicular Ad Hoc Networks

    Get PDF
    • …
    corecore